Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
(S)-malate + NAD+ = pyruvate + CO2 + NADH + H+
(S)-malate + NAD+ = pyruvate + CO2 + NADH + H+

-
-
-
-
(S)-malate + NAD+ = pyruvate + CO2 + NADH + H+
sequential mechanism
Crassula argentea
-
(S)-malate + NAD+ = pyruvate + CO2 + NADH + H+
slow reaction transient in the form of a lag before reaching a steady-state rate in assay
Crassula argentea
-
(S)-malate + NAD+ = pyruvate + CO2 + NADH + H+
rapid equilibrium reaction of the intersecting type
-
(S)-malate + NAD+ = pyruvate + CO2 + NADH + H+
sequential mechanism, each of the substrate pairs binds randomly to the enzyme
-
(S)-malate + NAD+ = pyruvate + CO2 + NADH + H+
sequential mechanism with each substrate bound randomly
-
(S)-malate + NAD+ = pyruvate + CO2 + NADH + H+
active site structure, catalytic residues are Y126, R181, K199, D295, N343, and N479
-
(S)-malate + NAD+ = pyruvate + CO2 + NADH + H+
catalytic mechanism, malate is bound deeply in the active site, Mn2+ catalyzes the entire reaction, Lys183 is the general base for oxidation, Tyr112-Lys183 functions as the general acid-base pair to catalyze the tautomerization of the enolpyruvate product from decarboxylation to pyruvate, substrate and cofacor binding modes
-
(S)-malate + NAD+ = pyruvate + CO2 + NADH + H+
reaction mechanism of oxidative decarboxylation
-
(S)-malate + NAD+ = pyruvate + CO2 + NADH + H+
reaction mechanism, active site structure, enzyme-cofactor interactions, overview
-
(S)-malate + NAD+ = pyruvate + CO2 + NADH + H+
acid-base chemical mechanism for Ascaris suum malic enzyme
-
(S)-malate + NAD+ = pyruvate + CO2 + NADH + H+
isozyme NAD-ME2 and chimeric mutant NAD-ME1q follow a sequential ordered Bi-Ter mechanism, NAD+ being the leading substrate followed by (S)-malate. Hetereodimer NAD-MEH can bind both substrates randomly. Interaction between NAD-ME1 and -ME2 generates a heteromeric isozyme NAD-MEH with a particular kinetic behaviour
(S)-malate + NAD+ = pyruvate + CO2 + NADH + H+
isozyme NAD-ME2 and chimeric mutant NAD-ME1q follow a sequential ordered Bi-Ter mechanism, NAD+ being the leading substrate followed by (S)-malate. Isozyme NAD-ME1 and hetereodimer NAD-MEH can bind both substrates randomly. However, NAD-ME1 shows a preferred route that involves the addition of NAD+ first. interaction between NAD-ME1 and -ME2 generates a heteromeric isozyme NAD-MEH with a particular kinetic behaviour
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
(2R,3R)-erythrofluoromalate + NAD+
?
-
-
-
-
?
(2S,3R)-tartrate + NAD+
?
-
-
-
-
?
(S)-malate + NAD(P)+
pyruvate + CO2 + NAD(P)H
(S)-malate + NAD+
pyruvate + CO2 + NADH
(S)-malate + NAD+
pyruvate + CO2 + NADH + H+
(S)-malate + NAD+
pyruvate + NADH + CO2
-
-
-
-
ir
(S)-malate + NAD+
pyruvate + NADH + H+ + CO2
(S)-malate + NADP+
pyruvate + CO2 + NADPH
(S)-malate + NADP+
pyruvate + NADPH + H+ + CO2
L-aspartate + NAD+
iminopyruvate + CO2 + NADH + H+
-
-
-
-
?
L-malate + NAD+
pyruvate + NADH + H+ + CO2
-
-
-
-
r
malate + NAD+
pyruvate + CO2 + NADH + H+
meso-tartrate + NAD+
?
-
-
-
-
?
pyruvate + CO2 + NADH
(S)-malate + NAD+
pyruvate + CO2 + NADH + H+
(S)-malate + NAD+
pyruvate + NAD+ + HCO3-
(S)-malate + NADH
additional information
?
-
(S)-malate + NAD(P)+

pyruvate + CO2 + NAD(P)H
-
-
-
-
?
(S)-malate + NAD(P)+
pyruvate + CO2 + NAD(P)H
-
-
-
-
r
(S)-malate + NAD+

?
-
-
-
-
?
(S)-malate + NAD+
?
-
the enzyme plays a special role in the decarboxylation of C4 acids to pyruvate and CO2, which are used in subsequent photosynthesis. pH, NAD+, and coenzyme A levels in the matrix act together to regulate (S)-malate oxidation
-
-
?
(S)-malate + NAD+
?
-
the enzyme plays a special role in the decarboxylation of C4 acids to pyruvate and CO2, which are used in subsequent photosynthesis. pH, NAD+, and coenzyme A levels in the matrix act together to regulate (S)-malate oxidation
-
-
?
(S)-malate + NAD+

pyruvate + CO2 + NADH
-
-
-
-
r
(S)-malate + NAD+
pyruvate + CO2 + NADH
-
-
-
?
(S)-malate + NAD+
pyruvate + CO2 + NADH
-
-
-
r
(S)-malate + NAD+
pyruvate + CO2 + NADH
-
-
-
r
(S)-malate + NAD+
pyruvate + CO2 + NADH
the enzyme plays a central role in the metabolite flux through the tricarboxylic acid cycle, overview
-
-
r
(S)-malate + NAD+
pyruvate + CO2 + NADH
-
-
-
-
?
(S)-malate + NAD+
pyruvate + CO2 + NADH
-
-
-
-
r
(S)-malate + NAD+
pyruvate + CO2 + NADH
-
the mitochondrial NAD-malic enzyme catalyzes the oxidative decarboxylation of malate to pyruvate and CO2
-
-
r
(S)-malate + NAD+
pyruvate + CO2 + NADH
-
the NAD-malic enzyme catalyzes the oxidative decarboxylation of (S)-malate via oxaloacetate, Arg181 is within hydrogen bonding distance of the 1-carboxylate of malate in the active site of the enzyme and interacts with the carboxamide side chain of the nicotinamide ring of NADH, but not with NAD+
-
-
r
(S)-malate + NAD+
pyruvate + CO2 + NADH
-
-
-
-
r
(S)-malate + NAD+
pyruvate + CO2 + NADH
-
-
-
-
r
(S)-malate + NAD+
pyruvate + CO2 + NADH
-
-
-
-
r
(S)-malate + NAD+
pyruvate + CO2 + NADH
-
-
-
-
r
(S)-malate + NAD+
pyruvate + CO2 + NADH
-
the decarboxylation reaction is preferred, overview
-
-
r
(S)-malate + NAD+
pyruvate + CO2 + NADH
-
-
-
-
r
(S)-malate + NAD+
pyruvate + CO2 + NADH
-
-
-
-
r
(S)-malate + NAD+
pyruvate + CO2 + NADH
-
-
-
-
?
(S)-malate + NAD+
pyruvate + CO2 + NADH
-
enzyme is involved in carbon fixation and metabolism, regulation of the pathways, overview
-
-
?
(S)-malate + NAD+
pyruvate + CO2 + NADH
-
-
-
-
r
(S)-malate + NAD+
pyruvate + CO2 + NADH
-
mitochondrial isozyme ME2 responds to elevated amino acids and serves to supply sufficient pyruvate for increased Krebs cycle flux when glucose is limiting
-
-
r
(S)-malate + NAD+
pyruvate + CO2 + NADH
-
-
-
-
r
(S)-malate + NAD+
pyruvate + CO2 + NADH
-
-
-
-
r
(S)-malate + NAD+
pyruvate + CO2 + NADH
-
-
-
-
r
(S)-malate + NAD+
pyruvate + CO2 + NADH
-
the enzyme plays a role in symbiotic N2 fixation, overview
-
-
r
(S)-malate + NAD+
pyruvate + CO2 + NADH
-
-
-
?
(S)-malate + NAD+
pyruvate + CO2 + NADH
-
-
-
?
(S)-malate + NAD+
pyruvate + CO2 + NADH
-
-
-
-
?
(S)-malate + NAD+
pyruvate + CO2 + NADH
-
-
-
-
?
(S)-malate + NAD+
pyruvate + CO2 + NADH
-
-
-
?
(S)-malate + NAD+
pyruvate + CO2 + NADH
-
-
-
?
(S)-malate + NAD+

pyruvate + CO2 + NADH + H+
-
-
-
?
(S)-malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
-
r
(S)-malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
-
?
(S)-malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
-
r
(S)-malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
-
r
(S)-malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
-
r
(S)-malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
-
r
(S)-malate + NAD+
pyruvate + CO2 + NADH + H+
-
the enzyme acts preferably in the direction of malate decarboxylation, the reverse reaction proceeds with much lower rate
-
-
r
(S)-malate + NAD+

pyruvate + NADH + H+ + CO2
-
-
-
ir
(S)-malate + NAD+
pyruvate + NADH + H+ + CO2
NAD-ME1, -ME2 and -MEH catalyse the reverse reaction of pyruvate reductive carboxylation with very low catalytic activity, supporting the notion that these isoforms act only in (S)-malate oxidation in plant mitochondria
-
-
ir
(S)-malate + NAD+
pyruvate + NADH + H+ + CO2
NAD-ME1, -ME2 and -MEH catalyse the reverse reaction of pyruvate reductive carboxylation with very low catalytic activity, supporting the notion that these isoforms act only in (S)-malate oxidation in plant mitochondria
-
-
r
(S)-malate + NAD+
pyruvate + NADH + H+ + CO2
very low activity in the reverse reaction in vitro
-
-
r
(S)-malate + NAD+
pyruvate + NADH + H+ + CO2
-
-
-
-
?
(S)-malate + NAD+
pyruvate + NADH + H+ + CO2
Lacticaseibacillus casei BL23 and ATCC 334
-
-
-
-
?
(S)-malate + NAD+
pyruvate + NADH + H+ + CO2
Mnium undulatum
-
-
-
-
r
(S)-malate + NAD+
pyruvate + NADH + H+ + CO2
-
-
-
-
r
(S)-malate + NAD+
pyruvate + NADH + H+ + CO2
-
-
-
-
r
(S)-malate + NAD+
pyruvate + NADH + H+ + CO2
-
-
-
-
?
(S)-malate + NAD+
pyruvate + NADH + H+ + CO2
-
-
-
?
(S)-malate + NAD+
pyruvate + NADH + H+ + CO2
-
-
-
?
(S)-malate + NADP+

pyruvate + CO2 + NADPH
-
15% of the activity with NAD+
-
?
(S)-malate + NADP+
pyruvate + CO2 + NADPH
Crassula argentea
-
14% of the activity with NAD+
-
?
(S)-malate + NADP+
pyruvate + CO2 + NADPH
-
at 1.5% of the activity with NAD+
-
?
(S)-malate + NADP+
pyruvate + CO2 + NADPH
-
-
-
ir
(S)-malate + NADP+
pyruvate + CO2 + NADPH
-
-
-
r
(S)-malate + NADP+
pyruvate + CO2 + NADPH
-
-
-
-
r
(S)-malate + NADP+
pyruvate + CO2 + NADPH
-
-
-
?
(S)-malate + NADP+
pyruvate + CO2 + NADPH
-
-
-
?
(S)-malate + NADP+
pyruvate + CO2 + NADPH
-
-
-
?
(S)-malate + NADP+
pyruvate + CO2 + NADPH
-
-
-
?
(S)-malate + NADP+

pyruvate + NADPH + H+ + CO2
NADP+ shows 22% of the activity with NAD+
-
-
?
(S)-malate + NADP+
pyruvate + NADPH + H+ + CO2
NADP+ shows 22% of the activity with NAD+
-
-
?
malate + NAD+

pyruvate + CO2 + NADH + H+
Amaranthus edulis
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
-
ionized malic acid is the true substrate
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
-
no decarboxylation of malate in absence of either Mg2+ or NAD+
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
Crassula argentea
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
Crassula argentea
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
Crassula argentea
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
Crassula argentea
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
Crassula argentea
-
activity of the reverse reaction is 1.5% of that of the forward reaction
-
r
malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
ir
malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
Heliocarpus sp.
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
ir
malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
r
malate + NAD+
pyruvate + CO2 + NADH + H+
salmon
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
ir
malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
?
malate + NAD+
pyruvate + CO2 + NADH + H+
-
-
-
?
pyruvate + CO2 + NADH

(S)-malate + NAD+
-
the rate of carboxylation of pyruvate to malate is lower than for the decarboxylation reaction
-
-
r
pyruvate + CO2 + NADH
(S)-malate + NAD+
Crassula argentea
-
activity is 1.5% of the decarboxylation of (S)-malate
-
r
pyruvate + CO2 + NADH + H+

(S)-malate + NAD+
-
-
-
-
r
pyruvate + CO2 + NADH + H+
(S)-malate + NAD+
-
-
-
-
r
pyruvate + CO2 + NADH + H+
(S)-malate + NAD+
-
-
-
-
r
pyruvate + CO2 + NADH + H+
(S)-malate + NAD+
-
-
-
-
r
pyruvate + CO2 + NADH + H+
(S)-malate + NAD+
-
-
-
-
r
pyruvate + CO2 + NADH + H+
(S)-malate + NAD+
-
the enzyme acts preferably in the direction of malate decarboxylation, the reverse reaction proceeds with much lower rate
-
-
r
pyruvate + NAD+ + HCO3-

(S)-malate + NADH
-
method optimization of the reverse reaction of the malic enzyme for HCO3- fixation into pyruvic acid to produce L-malic acid with NADH generation including the activity of glucose-6-phosphate dehydrogenase, EC 1.1.1.49, from Leuconostoc mesenteroides
-
-
?
pyruvate + NAD+ + HCO3-
(S)-malate + NADH
-
method optimization of the reverse reaction of the malic enzyme for HCO3- fixation into pyruvic acid to produce L-malic acid with NADH generation including the activity of glucose-6-phosphate dehydrogenase, EC 1.1.1.49, from Leuconostoc mesenteroides
-
-
?
additional information

?
-
-
NAD-ME1 does not perform decarboxylation of oxaloacetate
-
-
?
additional information
?
-
NAD-ME1 does not perform decarboxylation of oxaloacetate
-
-
?
additional information
?
-
NAD-ME1 does not perform decarboxylation of oxaloacetate
-
-
?
additional information
?
-
-
NAD-ME2 does not perform decarboxylation of oxaloacetate
-
-
?
additional information
?
-
NAD-ME2 does not perform decarboxylation of oxaloacetate
-
-
?
additional information
?
-
NAD-ME2 does not perform decarboxylation of oxaloacetate
-
-
?
additional information
?
-
-
NAD-MEH does not perform decarboxylation of oxaloacetate
-
-
?
additional information
?
-
NAD-MEH does not perform decarboxylation of oxaloacetate
-
-
?
additional information
?
-
NAD-MEH does not perform decarboxylation of oxaloacetate
-
-
?
additional information
?
-
NAD-ME1 has a regulatory site for L-malate that can also bind fumarate
-
-
?
additional information
?
-
NAD-ME1 has a regulatory site for L-malate that can also bind fumarate
-
-
?
additional information
?
-
NAD-ME1 has a regulatory site for L-malate that can also bind fumarate. L-Malate binding to this site elicits a sigmoidal and low substrate-affinity response, whereas fumarate binding turns NAD-ME1 into a hyperbolic and high substrate affinity enzyme. This effect is also observed when the allosteric site is either removed or altered. Fumarate is not really an activator, but suppresses the inhibitory effect of L-malate. Residues Arg50, Arg80 and Arg84 show different roles in organic acid binding. These residues form a triad, which is the basis of the homo and heterotrophic effects that characterize NAD-ME1
-
-
?
additional information
?
-
NAD-ME1 has a regulatory site for L-malate that can also bind fumarate. L-Malate binding to this site elicits a sigmoidal and low substrate-affinity response, whereas fumarate binding turns NAD-ME1 into a hyperbolic and high substrate affinity enzyme. This effect is also observed when the allosteric site is either removed or altered. Fumarate is not really an activator, but suppresses the inhibitory effect of L-malate. Residues Arg50, Arg80 and Arg84 show different roles in organic acid binding. These residues form a triad, which is the basis of the homo and heterotrophic effects that characterize NAD-ME1
-
-
?
additional information
?
-