Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Synonyms
ADH, D-sorbitol dehydrogenase, dehydrogenase, L-iditol,
Dgeo_2865, glucitol dehydrogenase, GoSCR, L-iditol 2-dehydrogenase, L-iditol dehydrogenase (sorbitol), L-iditol:NAD oxidoreductase, L-iditol:NAD+ 5-oxidoreductase,
more
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
1,2-butanediol + NAD+
? + NADH + H+
1,2-hexanediol + NAD+
? + NADH + H+
2-deoxy-D-sorbitol + NAD+
2-deoxy-D-fructose + NADH + H+
-
-
-
-
r
2-fluoro-D-sorbitol + NAD+
2-fluoro-D-fructose + NADH + H+
-
-
-
-
r
2-hydroxyacetophenone + NADH + H+
(S)-1-phenyl-1,2-ethanediol + NAD+
3-deoxy-D-sorbitol + NAD+
? + NADH
-
-
-
-
?
3-fluoro-D-sorbitol + NAD+
3-fluoro-D-fructose + NADH + H+
-
-
-
-
r
4-deoxy-D-sorbitol + NAD+
4-deoxy-D-fructose + NADH + H+
-
-
-
-
r
4-fluoro-D-sorbitol + NAD+
4-fluoro-D-fructose + NADH + H+
-
-
-
-
r
6-deoxy-D-sorbitol + NAD+
? + NADH
-
nearly 2fold higher activity compared to D-sorbitol
-
-
?
6-fluoro-D-sorbitol + NAD+
? + NADH
-
over 2fold higher activity compared to D-sorbitol, best substrate
-
-
?
D-adonitol + NAD+
D-ribulose + NADH
-
-
-
-
?
D-arabitol + NAD(P)+
D-xylulose + NAD(P)H + H+
D-arabitol + NAD+
D-xylulose + NADH + H+
D-fructose + NADH
?
-
-
-
-
?
D-fructose + NADH + H+
D-sorbitol + NAD+
D-galactitol + NAD+
D-tagatose + NADH
D-galactitol + NAD+
D-tagatose + NADH + H+
D-glucitol + NAD+
D-fructose + NADH + H+
D-gluconate + NAD+
?
-
low activity
-
-
?
D-glucose + NADH
?
-
low activity
-
-
?
D-glycero-D-gluco-heptitol + NAD+
?
-
-
-
-
?
D-mannitol + NAD(P)+
D-fructose + NAD(P)H + H+
D-mannitol + NAD+
D-fructose + NADH + H+
D-mannose + NADH
?
-
low activity
-
-
?
D-psicose + NADH
?
-
-
-
-
?
D-raffinose + NADH
?
-
low activity
-
-
?
D-ribose + NADH
?
-
low activity
-
-
?
D-sorbitol + 2,6-dichlorophenolindophenol
L-sorbose + ?
-
electron acceptor: i.e. DCIP
-
-
?
D-sorbitol + acceptor
L-sorbose + reduced acceptor
-
-
-
?
D-sorbitol + NAD(P)+
L-sorbose + NAD(P)H + H+
D-sorbitol + NAD+
? + NADH + H+
-
-
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
D-sorbitol + NAD+
L-sorbose + NADH + H+
D-sorbose + NADH
?
-
low activity
-
-
?
D-tagatose + NADH
D-galactitol + NAD+
D-xylitol + NAD+
? + NADH + H+
D-xylitol + NADP+
? + NADPH + H+
NADP+ is not a cofactor for wild-type, but for a substrate-binding loop chimera
-
-
?
ethanol + NAD+
acetaldehyde + NADH
glycerol + NAD+
?
-
low activity
-
-
?
glycerol + NAD+
dihydroxyacetone + NADH
L-erythrulose + NADH
?
-
-
-
-
?
L-rhamnose + NADH
?
-
low activity
-
-
?
meso-erythritol + NAD+
erythrulose + NADH
-
high activity
-
-
?
ribitol + NAD+
?
60% of the activity with D-sorbitol
-
-
?
sorbitol + NAD+
D-fructose + NADH
Xylitol + NAD+
?
29% of the activity with D-sorbitol
-
-
?
xylitol + NAD+
D-xylulose + NADH + H+
-
-
-
r
additional information
?
-
1,2-butanediol + NAD+

? + NADH + H+
-
-
-
?
1,2-butanediol + NAD+
? + NADH + H+
-
-
-
?
1,2-hexanediol + NAD+

? + NADH + H+
-
-
-
?
1,2-hexanediol + NAD+
? + NADH + H+
-
-
-
?
2-hydroxyacetophenone + NADH + H+

(S)-1-phenyl-1,2-ethanediol + NAD+
-
-
-
?
2-hydroxyacetophenone + NADH + H+
(S)-1-phenyl-1,2-ethanediol + NAD+
99% enantiomeric excess
-
-
?
2-hydroxyacetophenone + NADH + H+
(S)-1-phenyl-1,2-ethanediol + NAD+
-
-
-
?
2-hydroxyacetophenone + NADH + H+
(S)-1-phenyl-1,2-ethanediol + NAD+
99% enantiomeric excess
-
-
?
D-arabinose + NADH

?
-
low activity
-
-
?
D-arabinose + NADH
?
-
low activity
-
-
?
D-arabitol + NAD(P)+

D-xylulose + NAD(P)H + H+
-
-
-
?
D-arabitol + NAD(P)+
D-xylulose + NAD(P)H + H+
-
-
-
?
D-arabitol + NAD+

?
-
D-arabinitol is identical, low activity
-
-
?
D-arabitol + NAD+
?
Luteovulum sphaeroides Si4 / DSM 8371
-
D-arabinitol is identical, low activity
-
-
?
D-arabitol + NAD+
?
-
D-arabinitol is identical, low activity
-
-
?
D-arabitol + NAD+
?
-
D-arabinitol is identical, low activity
-
-
?
D-arabitol + NAD+
?
-
D-arabinitol is identical, low activity
-
-
?
D-arabitol + NAD+
?
-
D-arabinitol is identical, low activity
-
-
?
D-arabitol + NAD+

D-xylulose + NADH + H+
-
best substrate
-
-
?
D-arabitol + NAD+
D-xylulose + NADH + H+
-
best substrate
-
-
?
D-fructose + NADH + H+

D-sorbitol + NAD+
-
-
-
-
?
D-fructose + NADH + H+
D-sorbitol + NAD+
-
-
-
-
?
D-fructose + NADH + H+
D-sorbitol + NAD+
-
-
-
-
?
D-fructose + NADH + H+
D-sorbitol + NAD+
-
-
-
-
?
D-fructose + NADH + H+
D-sorbitol + NAD+
-
-
-
-
?
D-fructose + NADH + H+
D-sorbitol + NAD+
-
-
-
-
?
D-fructose + NADH + H+
D-sorbitol + NAD+
-
-
-
-
?
D-fructose + NADH + H+
D-sorbitol + NAD+
-
-
-
-
?
D-fructose + NADH + H+
D-sorbitol + NAD+
-
-
-
-
?
D-fructose + NADH + H+
D-sorbitol + NAD+
-
-
-
-
?
D-fructose + NADH + H+
D-sorbitol + NAD+
-
-
-
-
?
D-fructose + NADH + H+
D-sorbitol + NAD+
-
-
-
-
r
D-fructose + NADH + H+
D-sorbitol + NAD+
-
-
-
-
?
D-galactitol + NAD+

D-tagatose + NADH
-
-
-
-
?
D-galactitol + NAD+
D-tagatose + NADH
-
low activity
-
-
?
D-galactitol + NAD+
D-tagatose + NADH
-
-
-
r
D-galactitol + NAD+
D-tagatose + NADH
-
-
-
r
D-galactitol + NAD+
D-tagatose + NADH
-
-
-
-
?
D-galactitol + NAD+

D-tagatose + NADH + H+
-
-
-
?
D-galactitol + NAD+
D-tagatose + NADH + H+
-
-
-
?
D-glucitol + NAD+

D-fructose + NADH + H+
-
-
-
-
r
D-glucitol + NAD+
D-fructose + NADH + H+
-
-
-
-
r
D-mannitol + NAD(P)+

D-fructose + NAD(P)H + H+
-
-
-
?
D-mannitol + NAD(P)+
D-fructose + NAD(P)H + H+
-
-
-
?
D-mannitol + NAD+

?
-
low activity
-
-
?
D-mannitol + NAD+
?
-
low activity
-
-
?
D-mannitol + NAD+
?
-
low activity
-
-
?
D-mannitol + NAD+
?
-
-
-
-
?
D-mannitol + NAD+
?
-
low activity
-
-
?
D-mannitol + NAD+
?
-
low activity
-
-
?
D-mannitol + NAD+
?
-
low activity
-
-
?
D-mannitol + NAD+
?
-
-
-
-
?
D-mannitol + NAD+
?
-
-
-
-
?
D-mannitol + NAD+
?
-
low activity
-
-
?
D-mannitol + NAD+
?
-
-
-
-
?
D-mannitol + NAD+
?
-
low activity
-
-
?
D-mannitol + NAD+
?
6% of the activity with D-sorbitol
-
-
?
D-mannitol + NAD+
?
-
-
-
-
?
D-mannitol + NAD+

D-fructose + NADH + H+
-
-
-
-
?
D-mannitol + NAD+
D-fructose + NADH + H+
-
-
-
-
?
D-ribitol + NAD+

?
-
-
-
-
?
D-ribitol + NAD+
?
-
-
-
-
?
D-ribitol + NAD+
?
-
-
-
-
?
D-ribitol + NAD+
?
-
-
-
-
?
D-ribitol + NAD+
?
-
-
-
-
?
D-ribitol + NAD+
?
-
-
-
-
?
D-ribitol + NAD+
?
-
-
-
-
?
D-ribitol + NAD+
?
-
-
-
-
?
D-ribitol + NAD+
?
-
-
-
-
?
D-ribitol + NAD+
?
-
-
-
-
?
D-ribulose + NADH

?
-
-
-
-
?
D-ribulose + NADH
?
-
-
-
-
?
D-ribulose + NADH
?
-
-
-
-
?
D-ribulose + NADH
?
-
-
-
-
?
D-ribulose + NADH
?
-
-
-
-
?
D-sorbitol + NAD(P)+

L-sorbose + NAD(P)H + H+
-
-
-
?
D-sorbitol + NAD(P)+
L-sorbose + NAD(P)H + H+
-
-
-
?
D-sorbitol + NAD+

D-fructose + NADH + H+
-
-
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
-
-
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
-
-
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
-
-
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
-
-
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
-
-
-
-
r
D-sorbitol + NAD+
D-fructose + NADH + H+
-
-
-
r
D-sorbitol + NAD+
D-fructose + NADH + H+
-
-
-
r
D-sorbitol + NAD+
D-fructose + NADH + H+
-
-
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
-
second step of the polyol pathway of glucose metabolism, important in diabetic disease and hyperglycaemia
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
-
i.e. D-glucitol, dissociation of the enzyme-coenzyme binary complex is the rate-limiting step, interaction of Zn2+ with Ser46 and the oxygen atom of the 2-hydroxy and the 4-hydroxy groups is important for substrate binding
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
-
-
-
-
r
D-sorbitol + NAD+
D-fructose + NADH + H+
-
-
-
-
r
D-sorbitol + NAD+
D-fructose + NADH + H+
-
-
-
r
D-sorbitol + NAD+
D-fructose + NADH + H+
Luteovulum sphaeroides Si4 / DSM 8371
-
-
-
r
D-sorbitol + NAD+
D-fructose + NADH + H+
-
-
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
-
second step of the polyol pathway of glucose metabolism
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
-
i.e. D-glucitol, dissociation of the enzyme-coenzyme binary complex is the rate-limiting step
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
-
-
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
-
-
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
-
-
-
r
D-sorbitol + NAD+
D-fructose + NADH + H+
-
second step of the polyol pathway of glucose metabolism
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
-
i.e. D-glucitol, dissociation of the enzyme-coenzyme binary complex is the rate-limiting step, 2- and 4-hydroxy groups of D-sorbitol are important for substrate bindig
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
-
-
-
r
D-sorbitol + NAD+
D-fructose + NADH + H+
-
-
-
r
D-sorbitol + NAD+
D-fructose + NADH + H+
-
-
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
-
-
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
-
second step of the polyol pathway of glucose metabolism
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
-
i.e. D-glucitol, dissociation of the enzyme-coenzyme binary complex is the rate-limiting step
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
-
-
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
-
-
-
r
D-sorbitol + NAD+
D-fructose + NADH + H+
-
-
-
-
r
D-sorbitol + NAD+
D-fructose + NADH + H+
-
-
-
-
?
D-sorbitol + NAD+

L-sorbose + NADH + H+
-
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
-
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
-
-
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
-
enzyme is the main L-sorbose producing activity in the cell
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
-
-
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
-
enzyme is the main L-sorbose producing activity in the cell
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
-
-
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
-
-
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
-
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
part of the polyol pathway that interconverts glucose and fructose
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
-
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
the primary enzyme responsible for metabolism of the major phloem-transported carbohydrate sorbitol, present and active during apple fruit set and early development
-
-
?
D-tagatose + NADH

D-galactitol + NAD+
-
-
-
-
?
D-tagatose + NADH
D-galactitol + NAD+
-
-
-
-
r
D-tagatose + NADH
D-galactitol + NAD+
-
-
-
-
r
D-xylitol + NAD+

?
-
-
-
-
?
D-xylitol + NAD+
?
-
-
-
-
?
D-xylitol + NAD+
?
-
-
-
-
?
D-xylitol + NAD+
?
-
-
-
-
?
D-xylitol + NAD+
?
-
-
-
-
?
D-xylitol + NAD+
?
-
-
-
-
?
D-xylitol + NAD+
?
-
low activity
-
-
?
D-xylitol + NAD+
?
-
-
-
-
?
D-xylitol + NAD+
?
-
-
-
-
?
D-xylitol + NAD+
?
-
low activity
-
-
?
D-xylitol + NAD+
?
-
-
-
-
?
D-xylitol + NAD+
?
-
-
-
-
?
D-xylitol + NAD+
?
-
-
-
-
?
D-xylitol + NAD+
?
-
-
-
-
?
D-xylitol + NAD+

? + NADH + H+
-
-
-
?
D-xylitol + NAD+
? + NADH + H+
-
-
-
?
D-xylose + NADH

?
-
low activity
-
-
?
D-xylose + NADH
?
-
low activity
-
-
?
D-xylulose + NADH

?
-
-
-
-
?
D-xylulose + NADH
?
-
-
-
-
?
D-xylulose + NADH
?
-
-
-
-
?
D-xylulose + NADH
?
-
low activity
-
-
?
D-xylulose + NADH
?
Luteovulum sphaeroides Si4 / DSM 8371
-
low activity
-
-
?
D-xylulose + NADH
?
-
-
-
-
?
D-xylulose + NADH
?
-
low activity
-
-
?
D-xylulose + NADH
?
-
-
-
-
?
D-xylulose + NADH
?
-
-
-
-
?
erythritol + NAD+

?
-
low activity
-
-
?
erythritol + NAD+
?
-
-
-
-
?
erythritol + NAD+
?
13% of the activity with D-sorbitol
-
-
?
ethanol + NAD+

acetaldehyde + NADH
-
-
-
-
?
ethanol + NAD+
acetaldehyde + NADH
-
low activity
-
-
?
ethanol + NAD+
acetaldehyde + NADH
-
-
-
-
?
glycerol + NAD+

dihydroxyacetone + NADH
-
-
-
-
?
glycerol + NAD+
dihydroxyacetone + NADH
-
-
-
-
?
L-arabitol + NAD+

?
-
-
-
-
?
L-arabitol + NAD+
?
-
low activity
-
-
?
L-arabitol + NAD+
?
-
-
-
-
?
L-arabitol + NAD+
?
Luteovulum sphaeroides Si4 / DSM 8371
-
-
-
-
?
L-arabitol + NAD+
?
-
-
-
-
?
L-arabitol + NAD+
?
-
low activity
-
-
?
L-arabitol + NAD+
?
-
-
-
-
?
L-arabitol + NAD+
?
-
low activity
-
-
?
L-arabitol + NAD+
?
-
-
-
-
?
L-arabitol + NAD+
?
13% of the activity with D-sorbitol
-
-
?
L-iditol + NAD+

?
-
-
-
-
?
L-iditol + NAD+
?
-
-
-
-
?
L-iditol + NAD+
?
-
-
-
-
?
L-iditol + NAD+
?
-
-
-
-
?
L-iditol + NAD+
?
-
-
-
-
?
L-iditol + NAD+
?
-
-
-
-
?
L-iditol + NAD+
?
Luteovulum sphaeroides Si4 / DSM 8371
-
-
-
-
?
L-iditol + NAD+
?
-
-
-
-
?
L-iditol + NAD+
?
-
-
-
-
?
L-iditol + NAD+
?
-
-
-
-
?
L-iditol + NAD+
?
-
-
-
-
?
L-iditol + NAD+
?
-
-
-
-
?
L-iditol + NAD+
?
79% of the activity with D-sorbitol
-
-
?
L-iditol + NAD+
?
-
low activity
-
-
?
L-sorbose + NADH

?
-
-
-
-
?
L-sorbose + NADH
?
-
-
-
-
?
L-sorbose + NADH
?
-
-
-
-
?
L-sorbose + NADH
?
-
low activity
-
-
?
L-sorbose + NADH
?
-
-
-
-
?
L-sorbose + NADH
?
-
low activity
-
-
?
L-sorbose + NADH
?
-
-
-
-
?
L-sorbose + NADH
?
-
-
-
-
?
L-sorbose + NADH
?
-
low activity
-
-
?
L-threitol + NAD+

?
-
low activity
-
-
?
L-threitol + NAD+
?
-
-
-
-
?
L-threitol + NAD+
?
-
-
-
-
?
sorbitol + NAD+

D-fructose + NADH
-
-
-
r
sorbitol + NAD+
D-fructose + NADH
-
-
-
-
?
additional information

?
-
-
no activity with D-glucose, D-fructose, L-sorbose, methanol, ethanol, and sucrose
-
-
?
additional information
?
-
no activity against D-xylitol, D-ribitol, D-inositol or glycerol
-
-
?
additional information
?
-
-
no activity against D-xylitol, D-ribitol, D-inositol or glycerol
-
-
?
additional information
?
-
an enantiocomplementary carbonyl reductase, polyol dehydrogenase (GoSCR) from Gluconobacter oxydans is discovered to convert 2-hydroxyacetophenone (2-HAP) to (S)-1-phenyl-1,2-ethanediol ((S)-PED) with excellent stereochemical selectivity. No activity with NADPH
-
-
-
additional information
?
-
an enantiocomplementary carbonyl reductase, polyol dehydrogenase (GoSCR) from Gluconobacter oxydans is discovered to convert 2-hydroxyacetophenone (2-HAP) to (S)-1-phenyl-1,2-ethanediol ((S)-PED) with excellent stereochemical selectivity. No activity with NADPH
-
-
-
additional information
?
-
no activity against D-xylitol, D-ribitol, D-inositol or glycerol
-
-
?
additional information
?
-
-
no activity against D-xylitol, D-ribitol, D-inositol or glycerol
-
-
?
additional information
?
-
-
no activity with D-glucose, D-fructose, L-sorbose, methanol, ethanol, and sucrose
-
-
?
additional information
?
-
-
no activity with 2-deoxy-D-sorbitol and 2-fluoro-D-sorbitol, 3-fluoro-D-sorbitol and 4-fluoro-D-sorbitol are poor substrates
-
-
?
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
2-hydroxyacetophenone + NADH + H+
(S)-1-phenyl-1,2-ethanediol + NAD+
D-sorbitol + acceptor
L-sorbose + reduced acceptor
-
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
D-sorbitol + NAD+
L-sorbose + NADH + H+
sorbitol + NAD+
D-fructose + NADH
xylitol + NAD+
D-xylulose + NADH + H+
-
-
-
r
2-hydroxyacetophenone + NADH + H+

(S)-1-phenyl-1,2-ethanediol + NAD+
-
-
-
?
2-hydroxyacetophenone + NADH + H+
(S)-1-phenyl-1,2-ethanediol + NAD+
-
-
-
?
D-sorbitol + NAD+

D-fructose + NADH + H+
-
second step of the polyol pathway of glucose metabolism, important in diabetic disease and hyperglycaemia
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
-
-
-
-
r
D-sorbitol + NAD+
D-fructose + NADH + H+
-
-
-
-
r
D-sorbitol + NAD+
D-fructose + NADH + H+
-
second step of the polyol pathway of glucose metabolism
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
-
-
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
-
second step of the polyol pathway of glucose metabolism
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
-
second step of the polyol pathway of glucose metabolism
-
-
?
D-sorbitol + NAD+

L-sorbose + NADH + H+
-
-
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
-
enzyme is the main L-sorbose producing activity in the cell
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
-
enzyme is the main L-sorbose producing activity in the cell
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
-
-
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
part of the polyol pathway that interconverts glucose and fructose
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
the primary enzyme responsible for metabolism of the major phloem-transported carbohydrate sorbitol, present and active during apple fruit set and early development
-
-
?
sorbitol + NAD+

D-fructose + NADH
-
-
-
r
sorbitol + NAD+
D-fructose + NADH
-
-
-
-
?
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
(2S)-1-(3-thio-2-methylpropionyl)-L-proline
-
-
1,2,3,4,5,6-cyclohexanehexolphosphoric acid
-
at pH 9.9
2,3-Dimercaptopropanol
-
-
2-hydroxybenzoic acid
-
at pH 9.9
2-hydroxymethyl-4-(4-N,N-dimethylaminosulfonyl-1-piperazino)pyrimidine
2-methyl-4-(4-N,N-dimethylaminosulfonyl-1-piperazino)pyrimidine
i.e. SDI-157
2-methypropanoic acid amide
-
at pH 9.9
2-propylpentanoic acid
-
at pH 9.9
3,4-dihydroxyphenyl-1-hydroxyacetic acid
3,4-dihydroxyphenyl-ethanediol
-
at pH 7.4
3-hydroxy-4-methoxy-phenyl-1-hydroxy-acetic acid
-
at pH 7.4
4-hydroxy-3-methoxy-phenyl-1-hydroxy-acetic acid
-
at pH 7.4
4-hydroxy-3-methoxy-phenylacetic acid
-
at pH 7.4
4-hydroxy-3-methoxy-phenylethanediol
-
at pH 7.4
4-hydroxy-3-methoxy-phenylethyl alcohol
acetic acid amide
-
at pH 9.9
Ba(CH3COO)2
-
1 mM reduces activity to about 20%
bis-diethylthiocarbamoyldisulfide
-
-
butanedioic acid
-
at pH 9.9
CP-642,931
-
a potent and specific sorbitol dehydrogenase inhibitor, rmacokinetics, biomarker pharmacodynamics, and safety analysis, overview. The inhibitor is rapidly absorbed through the oral route and effectively inhibits SDH. However, the drug is not well tolerated due to adverse neuromuscular effects. The inhibitor alters the red blood cell sorbitol dehydrogenase activity after oral administration
cysteamine
-
significant only at pH 9.9
D-sorbitol
-
above 49 mM, substrate inhibition
Decanoic acid
-
at pH 9.9
dithioerythritol
-
protection at low concentration, inhibition at high concentration, 100 mM
DL-2-bromosuccinate
-
1 mM
DTT
-
competitive and noncompetitive with respect to D-sorbitol and NAD+, respectively
ethanedioic acid
-
at pH 9.9
Fe2+
-
complete inhibition at 0.91 mM
iodoacetamide
-
NADH 0.4 mM protects
Isonicotinic acid hydrazide
-
-
KCl
-
0.1 M, inactivation
Mg2+
-
slightly inhibitory
Mn2+
-
slightly inhibitory
monoiodoacetate
-
75% inhibition at 1.79 mM
p-hydroxymercuribenzoate
-
-
Penicillamine
-
weak inhibition
propanedioic acid
-
at pH 9.9
quinine x HCl
-
slightly inhibitory, 25% inhibition at 1.79 mM
Valproic acid
-
weak inhibition
1,10-phenanthroline

-
-
2-hydroxymethyl-4-(4-N,N-dimethylaminosulfonyl-1-piperazino)pyrimidine

-
i.e. SDI-158
2-hydroxymethyl-4-(4-N,N-dimethylaminosulfonyl-1-piperazino)pyrimidine
i.e. SDI-158 or CP-166,572
2-hydroxymethyl-4-(4-N,N-dimethylaminosulfonyl-1-piperazino)pyrimidine
-
i.e. SDI-158, inhibition mechanism, dissociation constants of enzyme-inhibitor complex at various pH values
2-hydroxymethyl-4-(4-N,N-dimethylaminosulfonyl-1-piperazino)pyrimidine
-
i.e. SDI-158
3,4-dihydroxyphenyl-1-hydroxyacetic acid

-
at pH 7.4
3,4-dihydroxyphenyl-1-hydroxyacetic acid
-
weak inhibition
4-hydroxy-3-methoxy-phenylethyl alcohol

-
at pH 7.4
4-hydroxy-3-methoxy-phenylethyl alcohol
-
-
AgNO3

-
-
CoCl2

-
1 mM
Cu2+

-
complete inhibition at 0.91 mM
CuSO4

-
-
cyanamide

-
at pH 9.9
cyanamide
-
weak inhibition
cysteine

-
strong effect on sorbitol oxidation, slight effect on fructose reduction, ZnSO4 reverses inhibition
cysteine
-
at alkaline pH
cysteine
-
inhibits fructose reduction at pH 9.0, stimulates at pH 7.4
cysteine
-
4 mM does not inhibit sorbitol oxidation
D-fructose

-
at high concentration, product inhibition
D-fructose
-
above 250 mM, substrate inhibition
Diethylthiocarbamate

-
at pH 9.9
Diethylthiocarbamate
-
weak inhibition
dithiothreitol

-
protection at low concentration, inhibition at high concentration, 100 mM
EDTA

-
-
EDTA
-
at pH 7.4, not at pH 9.0, fructose reduction
HgCl2

-
-
iodoacetate

-
-
iodoacetate
-
strong effect on sorbitol oxidation, weaker effect on fructose reduction
MgCl2

-
-
NAD+

-
above 7 mM, substrate inhibition
NAD+
-
above 7 mM, substrate inhibition
NAD+
-
above 1 mM, substrate inhibition
NADH

-
-
NADH
-
at high concentration, product inhibition
NADH
-
above 0.4 mM, substrate inhibition
NiCl2

-
1 mM
NiCl2
-
1 mM reduces activity to about 20%
p-chloromercuribenzoate

-
-
p-chloromercuribenzoate
-
-
p-chloromercuribenzoate
-
-
p-chloromercuribenzoate
-
1 mM
pyrazole

-
-
pyrazole
-
weak inhibition
quercetin

-
-
thiocyanate

-
at pH 9.9
thiocyanate
-
weak inhibition
ZnSO4

-
1 mM
additional information

-
drug design, inhibitory compounds
-
additional information
-
inhibition mechanism, poor inhibitors are 3,4-dihydroxyphenyl-ethandiol, imidazole, isobutyramide, and urea
-
additional information
-
drug design, inhibitory compounds
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
4.7 - 8
-
at pH 4.7 and 8 about 50% of activity maximum, D-fructose reduction
5 - 7.5
-
less than 20% of maximal activity below pH 5, less than 80% above pH 7.5, fructose reduction
6 - 7.2
-
less than 50% of maximal activity above and below, sugar reduction
6 - 9
-
at pH 6 about 70% of maximal activity, at pH 9 about 40%, fructose reduction
7 - 10
-
40% of maximal activity at 7 and 70% of maximal activity at 10, sorbitol oxidation
7.5 - 10
-
at pH 7.5 about 70% of maximal activity, at pH 10 about 100%, sorbitol oxidation
7.5 - 9
-
less than 20% of maximal activity below pH 7.5, 100% at pH 9.0, sorbitol oxidation
7.5 - 9.5
-
at pH 7.5 and pH 9.5 about 70% of maximal activity, sorbitol oxidation
8 - 11
-
at pH 8 and 11 about 50% of activity maximum, sorbitol oxidation
9 - 10.5
-
less than 70% of maximal activity above and below, sorbitol oxidation
9.2 - 11.6
-
less than 50% of maximal activity above and below, sorbitol oxidation
5 - 7

-
30% of maximal activity at pH 5.0 and 60% of maximal activity at pH 7.0, fructose reduction
5 - 7
-
at pH 5.0 and pH 7.0 about 60% of maximal activity, fructose reduction
additional information

-
broad pH spectrum in vivo
additional information
-
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
-
-
brenda
-
-
brenda
-
isoform Sdh1, specific for kernel and endosperm
brenda
-
-
brenda
-
cell culture derived from the kidney inner medulla
brenda
-
isoform Sdh1, specific for kernel and endosperm. Maximaml expression at both mRNA and enzyme activity level during early kernel development
brenda
-
tissue culture
brenda
-
ventral and dorsal
brenda
-
enzyme activity is higher in seed than in cortex per mg and fresh weight. Isoforms SDH1 and SDH3 are expressed in both seed and cortex tissue, isoform SDH2 expression is limited to cortex
brenda
-
activity is higher than in cortex per mg and fresh weight, and contributes significantly to whole fruit activity during weeks 2-5 after bloom. Isoforms SDH1 and SDH3 are expressed in both seed and cortex tissue. Isoforms SDH6 and SDH9 are expressed in seed tissues only
brenda
-
-
brenda
-
shoot tip
brenda
-
SORD is present along the entire length of sperm flagellum, but does not show the same distribution pattern as alpha-tubulin. Sord mRNA and SORD protein expression is up-regulated during late spermiogenesis
brenda
-
-
brenda
-
-
brenda
-
electrophoretic karyotyping and array-based comparative genomic hybridization (array-CGH), comparison of four different species derived from the Saccharomyces sensu stricto complex of 22 distillery strains, overview. The genomic diversity is mainly revealed within subtelomeric regions and the losses and/or gains of fragments of chromosomes I, III, VI and IX are the most frequently observed. Statistically significant differences in the gene copy number are documented in six functional gene categories: 1. telomere maintenance via recombination, DNA helicase activity or DNA binding, 2. maltose metabolism process, glucose transmembrane transporter activity, 3. asparagine catabolism, cellular response to nitrogen starvation, localized in cell wall-bounded periplasmic space, 4. siderophore transport, 5. response to copper ion, cadmium ion binding and 6. L-iditol 2-dehydrogenase activity. Distillery yeasts are diploid. Gene ontology overrepresentation profiles are species-specific
brenda
electrophoretic karyotyping and array-based comparative genomic hybridization (array-CGH), comparison of four different species derived from the Saccharomyces sensu stricto complex of 22 distillery strains, overview. The genomic diversity is mainly revealed within subtelomeric regions and the losses and/or gains of fragments of chromosomes I, III, VI and IX are the most frequently observed. Statistically significant differences in the gene copy number are documented in six functional gene categories: 1. telomere maintenance via recombination, DNA helicase activity or DNA binding, 2. maltose metabolism process, glucose transmembrane transporter activity, 3. asparagine catabolism, cellular response to nitrogen starvation, localized in cell wall-bounded periplasmic space, 4. siderophore transport, 5. response to copper ion, cadmium ion binding and 6. L-iditol 2-dehydrogenase activity. Distillery yeasts are diploid. Gene ontology overrepresentation profiles are species-specific
brenda
-
electrophoretic karyotyping and array-based comparative genomic hybridization (array-CGH), comparison of four different species derived from the Saccharomyces sensu stricto complex of 22 distillery strains, overview. The genomic diversity is mainly revealed within subtelomeric regions and the losses and/or gains of fragments of chromosomes I, III, VI and IX are the most frequently observed. Statistically significant differences in the gene copy number are documented in six functional gene categories: 1. telomere maintenance via recombination, DNA helicase activity or DNA binding, 2. maltose metabolism process, glucose transmembrane transporter activity, 3. asparagine catabolism, cellular response to nitrogen starvation, localized in cell wall-bounded periplasmic space, 4. siderophore transport, 5. response to copper ion, cadmium ion binding and 6. L-iditol 2-dehydrogenase activity. Distillery yeasts are diploid. Gene ontology overrepresentation profiles are species-specific
brenda
-
electrophoretic karyotyping and array-based comparative genomic hybridization (array-CGH), comparison of four different species derived from the Saccharomyces sensu stricto complex of 22 distillery strains, overview. The genomic diversity is mainly revealed within subtelomeric regions and the losses and/or gains of fragments of chromosomes I, III, VI and IX are the most frequently observed. Statistically significant differences in the gene copy number are documented in six functional gene categories: 1. telomere maintenance via recombination, DNA helicase activity or DNA binding, 2. maltose metabolism process, glucose transmembrane transporter activity, 3. asparagine catabolism, cellular response to nitrogen starvation, localized in cell wall-bounded periplasmic space, 4. siderophore transport, 5. response to copper ion, cadmium ion binding and 6. L-iditol 2-dehydrogenase activity. Distillery yeasts are diploid. Gene ontology overrepresentation profiles are species-specific
brenda
-
-
brenda
-
-
brenda
-
expression is higher at the young and mature stage than at other stages
brenda
-
-
brenda
-
brenda
-
sorbitol dehydrogenase is active throughout development
brenda
flesh and vascular tissue
brenda
-
-
brenda
-
-
brenda
-
-
brenda
-
papilla, inner medulla, cortex
brenda
-
papilla, inner medulla, cortex
brenda
-
expression in mature leaf is higher than in young and folded leaf
brenda
vascular tissue and mesophyll tissue of young and old leaves
brenda
-
-
brenda
-
-
brenda
-
-
brenda
-
-
brenda
-
-
brenda
-
-
brenda
-
-
285872, 285880, 285883, 285889, 285891, 285893, 285894, 285900, 655289, 684974, 687821 brenda
-
commercial preparation
brenda
-
-
brenda
-
-
brenda
-
-
brenda
-
-
brenda
-
-
brenda
-
-
brenda
-
-
brenda
additional information

-
SDH expression analysis, overview
brenda
additional information
enzyme expression and activity during apple fruit set and early development, mRNA and activity is present during the first 5 wees after bloom, important for carbohydrate metabolism, overview
brenda
additional information
enzyme expression and activity during apple fruit set and early development, mRNA and activity is present during the first 5 wees after bloom, important for carbohydrate metabolism, overview
brenda
additional information
enzyme expression and activity during apple fruit set and early development, mRNA and activity is present during the first 5 wees after bloom, important for carbohydrate metabolism, overview
brenda
additional information
enzyme expression and activity during apple fruit set and early development, mRNA and activityis present during the first 5 wees after bloom, important for carbohydrate metabolism, overview
brenda
additional information
enzyme expression and activity during apple fruit set and early development, mRNA and activityis present during the first 5 wees after bloom, important for carbohydrate metabolism, overview
brenda
additional information
enzyme expression and activity during apple fruit set and early development, mRNA and activityis present during the first 5 wees after bloom, important for carbohydrate metabolism, overview
brenda
additional information
the enzyme is ubiquitously expressed in both sink and source organs
brenda
additional information
the enzyme is ubiquitously expressed in both sink and source organs
brenda
additional information
-
the enzyme is ubiquitously expressed in both sink and source organs
brenda
additional information
the enzyme is ubiquitously expressed in both sink and source organs, immunohistochemic analysis, overview
brenda
additional information
the enzyme is ubiquitously expressed in both sink and source organs, immunohistochemic analysis, overview
brenda
additional information
-
the enzyme is ubiquitously expressed in both sink and source organs, immunohistochemic analysis, overview
brenda
additional information
-
SDH expression analysis, overview
brenda
additional information
-
sorbitol can substitute for glucose or fructose in capacitating media
brenda
additional information
molecular karyotyping reveals the diversity of chromosome patterns, four strains with the most accented genetic variabilities are selected and subjected to genome-wide array-based comparativ genomic hybridization (array-CGH) analysis. The differences in the gene copy number are found in five functional gene categories: (1) maltose metabolism and transport, (2) response to toxin, (3) siderophore transport, (4) cellular aldehyde metabolic process, and (5) L-iditol 2-dehydrogenase activity
brenda
additional information
molecular karyotyping reveals the diversity of chromosome patterns, four strains with the most accented genetic variabilities are selected and subjected to genome-wide array-based comparativ genomic hybridization (array-CGH) analysis. The differences in the gene copy number are found in five functional gene categories: (1) maltose metabolism and transport, (2) response to toxin, (3) siderophore transport, (4) cellular aldehyde metabolic process, and (5) L-iditol 2-dehydrogenase activity
brenda
additional information
-
molecular karyotyping reveals the diversity of chromosome patterns, four strains with the most accented genetic variabilities are selected and subjected to genome-wide array-based comparativ genomic hybridization (array-CGH) analysis. The differences in the gene copy number are found in five functional gene categories: (1) maltose metabolism and transport, (2) response to toxin, (3) siderophore transport, (4) cellular aldehyde metabolic process, and (5) L-iditol 2-dehydrogenase activity
brenda
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
physiological function
-
sorbitol dehydrogenase can convert sorbitol to fructose, which can then be metabolized via the glycolytic pathway in sperm to make ATP. Sorbitol can serve as an alternative energy source for sperm motility and protein tyrosine phosphorylation
metabolism

NAD-SDH is a key enzyme in sorbitol metabolism and plays an important role in regulating sink strength and determining the quality of apple fruit
metabolism
-
the zinc-finger protein ZAC1 is up-regulated under hypertonic stress and negatively regulates expression of SDH, allowing for accumulation of sorbitol as a compatible organic osmolyte
metabolism
-
the zinc-finger protein ZAC1 is up-regulated under hypertonic stress and negatively regulates expression of SDH, allowing for accumulation of sorbitol as a compatible organic osmolyte
additional information

-
comprehensive evaluation of genomic features of distillery strains, overview. Naturally occurring diversity in the YRF1 gene copy number may promote genetic stability in the Saccharomyces bayanus group of distillery yeast strains
additional information
-
comprehensive evaluation of genomic features of distillery strains, overview. Naturally occurring diversity in the YRF1 gene copy number may promote genetic stability in the Saccharomyces bayanus group of distillery yeast strains
additional information
-
comprehensive evaluation of genomic features of distillery strains, overview. Naturally occurring diversity in the YRF1 gene copy number may promote genetic stability in the Saccharomyces bayanus group of distillery yeast strains
additional information
comprehensive evaluation of genomic features of distillery strains, overview. Naturally occurring diversity in the YRF1 gene copy number may promote genetic stability in the Saccharomyces bayanus group of distillery yeast strains
additional information
comprehensive evaluation of genomic features of distillery strains, overview. Naturally occurring diversity in the YRF1 gene copy number may promote genetic stability in the Saccharomyces bayanus group of distillery yeast strains
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.