Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 1.1.1.1 - alcohol dehydrogenase and Organism(s) Saccharolobus solfataricus and UniProt Accession P39462

for references in articles please use BRENDA:EC1.1.1.1
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
     1 Oxidoreductases
         1.1 Acting on the CH-OH group of donors
             1.1.1 With NAD+ or NADP+ as acceptor
                1.1.1.1 alcohol dehydrogenase
IUBMB Comments
A zinc protein. Acts on primary or secondary alcohols or hemi-acetals with very broad specificity; however the enzyme oxidizes methanol much more poorly than ethanol. The animal, but not the yeast, enzyme acts also on cyclic secondary alcohols.
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Saccharolobus solfataricus
UNIPROT: P39462
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Saccharolobus solfataricus
The expected taxonomic range for this enzyme is: Eukaryota, Bacteria, Archaea
Synonyms
adh, alcohol dehydrogenase, aldehyde dehydrogenase, adh1b, short-chain dehydrogenase/reductase, ssadh, adh1c, yeast alcohol dehydrogenase, retinol dehydrogenase, faldh, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
alcohol dehydrogenase 10
-
NAD+-dependent (S)-stereospecific alcohol dehydrogenase
-
40 kDa allergen
-
-
-
-
ADH-A2
-
-
-
-
ADH-B2
-
-
-
-
ADH-C2
-
-
-
-
ADH-HT
-
-
-
-
ADH3
-
-
-
-
alcohol dehydrogenase (NAD)
-
-
-
-
Alcohol dehydrogenase-B2
-
-
-
-
alcohol-aldehyde/ketone oxidoreductase, NAD+-dependent
-
the enzyme transfers the pro-R hydrogen from coenzyme to substrate and is therefore an A-specific dehydrogenase
aldehyde reductase
-
-
-
-
aliphatic alcohol dehydrogenase
-
-
-
-
dehydrogenase, alcohol
-
-
-
-
ethanol dehydrogenase
-
-
-
-
FALDH
-
-
-
-
FDH
-
-
-
-
Gastric alcohol dehydrogenase
-
-
-
-
Glutathione-dependent formaldehyde dehydrogenase
-
-
-
-
GSH-FDH
-
-
-
-
NAD-dependent alcohol dehydrogenase
-
-
-
-
NAD-specific aromatic alcohol dehydrogenase
-
-
-
-
NADH-alcohol dehydrogenase
-
-
-
-
NADH-aldehyde dehydrogenase
-
-
-
-
Octanol dehydrogenase
-
-
-
-
primary alcohol dehydrogenase
-
-
-
-
Retinol dehydrogenase
-
-
-
-
yeast alcohol dehydrogenase
-
-
-
-
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
redox reaction
-
-
-
-
oxidation
-
-
-
-
reduction
-
-
-
-
SYSTEMATIC NAME
IUBMB Comments
alcohol:NAD+ oxidoreductase
A zinc protein. Acts on primary or secondary alcohols or hemi-acetals with very broad specificity; however the enzyme oxidizes methanol much more poorly than ethanol. The animal, but not the yeast, enzyme acts also on cyclic secondary alcohols.
CAS REGISTRY NUMBER
COMMENTARY hide
9031-72-5
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
(R)-2-butanol + NAD+
2-butanone + NADH + H+
show the reaction diagram
-
-
-
r
(R)-2-pentanol + NAD+
2-pentanone + NADH + H+
show the reaction diagram
-
-
-
r
(S)-2-butanol + NAD+
2-butanone + NADH + H+
show the reaction diagram
-
-
-
r
(S)-2-pentanol + NAD+
2-pentanone + NADH + H+
show the reaction diagram
-
-
-
r
1-butanol + NAD+
butanal + NADH + H+
show the reaction diagram
-
-
-
r
1-heptanol + NAD+
1-heptanal + NADH + H+
show the reaction diagram
-
-
-
r
1-hexanol + NAD+
1-hexanal + NADH + H+
show the reaction diagram
-
-
-
r
1-pentanol + NAD+
1-pentanal + NADH + H+
show the reaction diagram
-
-
-
r
1-propanol + NAD+
propanal + NADH + H+
show the reaction diagram
-
-
-
r
2-(3,5-dimethylphenyl)propanal + NADH + H+
(S)-2-(3,5-dimethylphenyl)propanol + NAD+
show the reaction diagram
18 h, 99% yield, 90% enantiomeric excess
-
-
?
2-(3-benzoylphenyl)propanal + NADH + H+
(S)-2-(3-benzoylphenyl)propanol + NAD+
show the reaction diagram
18 h, 85% yield, 95% enantiomeric excess
-
-
?
2-(3-fluorobiphenyl-4-yl)propanal + NADH + H+
(S)-2-(3-(fluoro)biphenyl-4-yl)propanol + NAD+
show the reaction diagram
18 h, 77% yield, 97% enantiomeric excess
-
-
?
2-(3-phenoxyphenyl)propanal + NADH + H+
(S)-2-((3-phenoxy)phenyl)propanol + NAD+
show the reaction diagram
18 h, 85% yield, 95% enantiomeric excess
-
-
?
2-(4-isobutylphenyl)propanal + NADH + H+
(S)-2-(4-isobutylphenyl)propanol + NAD+
show the reaction diagram
18 h, 92% yield, 99% enantiomeric excess
-
-
?
2-(4-trifluoromethylphenyl)propanal + NADH + H+
(S)-2-(4-trifluoromethyl)phenylpropanol + NAD+
show the reaction diagram
18 h, 55% yield, 98% enantiomeric excess
-
-
?
2-(6-methoxynaphthalen-2-yl)propanal + NADH + H+
(S)-2-(6-methoxynaphthalen-2-yl)propan-1-ol + NAD+
show the reaction diagram
18 h, 96% yield, 98% enantiomeric excess
-
-
?
2-(naphthalen-1-yl)propanal + NADH + H+
(S)-2-(naphthalen-1-yl)propanol + NAD+
show the reaction diagram
18 h, 90% yield, 80% enantiomeric excess
-
-
?
2-(naphthalen-2-yl)propanal + NADH + H+
(S)-2-(naphthalen-2-yl)propanol + NAD+
show the reaction diagram
18 h, 57% yield, 94% enantiomeric excess
-
-
?
2-ethoxyethanol + NAD+
2-ethoxyacetaldehyde + NADH + H+
show the reaction diagram
-
-
-
r
2-phenylpropanal + NADH + H+
(S)-2-phenylpropanol + NAD+
show the reaction diagram
18 h, 74% yield, 98% enantiomeric excess
-
-
?
2-[3-(2-phenyl-1,3-dioxolan-2-yl)phenyl]propanal + NADH + H+
(S)-2-(3-(2-phenyl-1,3-dioxolan-2-yl)phenyl)propanol + NAD+
show the reaction diagram
18 h, 95% yield, 61% enantiomeric excess
-
-
?
3-pentanol + NAD+
3-pentanone + NADH + H+
show the reaction diagram
-
-
-
r
4-methoxybenzyl alcohol + NAD+
4-methoxybenzaldehyde + NADH + H+
show the reaction diagram
-
-
-
r
benzyl alcohol + NAD+
benzaldehyde + NADH + H+
show the reaction diagram
-
-
-
r
cyclohexanol + NAD+
cyclohexanone + NADH + H+
show the reaction diagram
-
-
-
r
ethanol + NAD+
acetaldehyde + NADH + H+
show the reaction diagram
isobutyraldehyde + NADH + H+
isobutanol + NAD+
show the reaction diagram
-
-
-
r
n-butanol + NAD+
butyraldehyde + NADH + H+
show the reaction diagram
-
-
-
r
pentan-3-ol + NAD+
3-pentanone + NADH + H+
show the reaction diagram
-
-
-
r
trans-cinnamaldehyde + NADH + H+
cinnamyl alcohol + NAD+
show the reaction diagram
-
-
-
r
1-propanol + NAD+
propanal + NADH + H+
show the reaction diagram
-
-
-
-
?
2-methylcyclohexanol + NAD+
(+)-2-methylcyclohexanone + NADH + H+
show the reaction diagram
-
-
-
-
r
2-propanol + NAD+
2-propanone + NADH + H+
show the reaction diagram
-
-
-
-
?
3-bromobenzyl alcohol + NAD+
3-bromobenzaldehyde + NADH + H+
show the reaction diagram
-
-
-
-
?
3-bromobenzylalcohol + NAD+
3-bromobenzaldehyde + NADH + H+
show the reaction diagram
-
-
-
-
?
3-methoxybenzyl alcohol + NAD+
3-methoxybenzaldehyde + NADH + H+
show the reaction diagram
-
-
-
-
?
3-methoxybenzylalcohol + NAD+
3-methoxybenzaldehyde + NADH + H+
show the reaction diagram
-
-
-
-
?
3-methylbutan-2-one + NADH
3-methylbutan-2-ol + NAD+
show the reaction diagram
-
-
-
-
?
3-methylbutan-2-one + NADH + H+
3-methylbutan-2-ol + NAD+
show the reaction diagram
-
-
-
-
?
3-methylcyclohexanol + NAD+
3-methylcyclohexanone + NADH
show the reaction diagram
-
-
-
-
r
3-methylcyclohexanone + NADH
3-methylcyclohexanol + NAD+
show the reaction diagram
-
-
-
-
r
4-bromobenzyl alcohol + NAD+
4-bromobenzaldehyde + NADH + H+
show the reaction diagram
-
-
-
-
?
4-bromobenzylalcohol + NAD+
4-bromobenzaldehyde + NADH + H+
show the reaction diagram
-
-
-
-
?
4-carboxybenzaldehyde + NADH + H+
4-carboxybenzyl alcohol + NAD+
show the reaction diagram
-
-
-
-
?
4-carboxybenzaldehyde + NADH + H+
4-carboxybenzylalcohol + NAD+
show the reaction diagram
-
-
-
-
?
4-methoxybenzyl alcohol + NAD+
4-methoxybenzaldehyde + NADH + H+
show the reaction diagram
-
-
-
-
r
4-methoxybenzylalcohol + NAD+
4-methoxybenzaldehyde + NADH + H+
show the reaction diagram
-
-
-
-
r
4-nitrobenzaldehyde + NADH + H+
4-nitrobenzyl alcohol + NAD+
show the reaction diagram
-
-
-
-
?
4-nitrobenzaldehyde + NADH + H+
4-nitrobenzylalcohol + NAD+
show the reaction diagram
-
-
-
-
?
acetone + NADH
isopropanol + NAD+
show the reaction diagram
-
-
-
r
anisaldehyde + NADH + H+
anisic alcohol + NAD+
show the reaction diagram
-
-
-
-
?
benzaldehyde + NADH + H+
benzyl alcohol + NAD+
show the reaction diagram
-
-
-
-
?
benzyl alcohol + NAD+
benzaldehyde + NADH
show the reaction diagram
-
-
-
-
?
benzyl alcohol + NAD+
benzaldehyde + NADH + H+
show the reaction diagram
benzylalcohol + NAD+
benzaldehyde + NADH + H+
show the reaction diagram
butan-2-ol + NAD+
butan-2-one + NADH
show the reaction diagram
-
-
-
-
?
butan-2-one + NADH
butan-2-ol + NAD+
show the reaction diagram
-
-
-
-
r
butanol + NAD+
butyraldehyde + NADH
show the reaction diagram
-
-
-
-
?
butyraldehyde + NADH + H+
n-butanol + NAD+
show the reaction diagram
-
-
-
-
?
cyclohexanol + NAD+
cyclohexanone + NADH + H+
show the reaction diagram
-
-
-
-
?
cyclopetanone + NADH + H+
cyclopentanol + NAD+
show the reaction diagram
-
-
-
-
?
ethanol + NAD+
acetaldehyde + NADH + H+
show the reaction diagram
iso-propanol + NAD+
isopropanal + NADH + H+
show the reaction diagram
-
-
-
?
methanol + NAD+
formaldehyde + NADH + H+
show the reaction diagram
-
-
-
-
r
n-propanol + NAD+
propanal + NADH + H+
show the reaction diagram
-
-
-
?
pentan-2-ol + NAD+
2-pentanone + NADH
show the reaction diagram
-
-
-
-
?
pentan-3-ol + NAD+
3-pentanone + NADH
show the reaction diagram
-
-
-
-
?
propan-2-ol + NAD+
acetone + NADH
show the reaction diagram
-
-
-
-
?
propanol + NAD+
propionaldehyde + NADH + H+
show the reaction diagram
-
-
-
-
?
additional information
?
-
METALS and IONS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
selenium
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
4-iodopyrazole
-
competitive inhibitor
4-Methylpyrazole
-
competitive inhibitor
guanidine hydrochloride
-
-
o-phenanthroline
-
loses 30% of its activity immediately on addition of o-phenanthroline
pyrazole
-
competitive inhibitor
sodium iodoacetate
-
increasing concentrations od sodium iodoacetate produce a slight decrease in activity
additional information
-
not affected by Cu2+
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
iodoacetamide
-
1 mM activates up to 25fold
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.41 - 37.4
(R)-2-butanol
0.22 - 11.7
(R)-2-pentanol
0.012 - 29.8
(S)-2-butanol
0.07 - 8.8
(S)-2-pentanol
0.08 - 1.6
1-butanol
0.038 - 0.67
1-Heptanol
0.035 - 0.88
1-Hexanol
0.027 - 1.9
1-Pentanol
0.24 - 6.5
1-propanol
0.25
2-ethoxyethanol
wild type enzyme, in 0.1 M glycine-NaOH buffer (pH 10.5), at 65°C
0.27
3-Pentanol
wild type enzyme, in 0.1 M glycine-NaOH buffer (pH 10.5), at 65°C
0.07 - 1.3
4-methoxybenzyl alcohol
0.03 - 0.28
benzaldehyde
0.12 - 3.8
benzyl alcohol
0.07 - 0.27
Butyraldehyde
0.03 - 4.5
Cyclohexanol
4.6 - 66
ethanol
0.26 - 0.76
Isobutyraldehyde
0.5 - 50
NAD+
0.008 - 0.75
NADH
0.009 - 0.23
trans-cinnamaldehyde
0.25
(+/-)-3-methylcyclohexanone
-
-
0.33 - 2.4
1-propanol
0.021
2-Methylcyclohexanol
-
-
0.6 - 53
2-propanol
0.14 - 0.9
3-bromobenzyl alcohol
0.14
3-bromobenzylalcohol
-
in the presence of 3 mM NAD+, in 0.1 M glycine-NaOH, pH 9.2, at 65°C
1.2 - 3.3
3-Methoxybenzyl alcohol
1.2
3-methoxybenzylalcohol
7.5
3-methylbutan-2-one
-
-
0.12 - 0.4
4-bromobenzyl alcohol
0.12
4-bromobenzylalcohol
-
in the presence of 3 mM NAD+, in 0.1 M glycine-NaOH, pH 9.2, at 65°C
0.28
4-carboxybenzaldehyde
0.024 - 0.86
4-methoxybenzaldehyde
0.23 - 1.4
4-methoxybenzyl alcohol
1.3
4-methoxybenzylalcohol
-
in the presence of 3 mM NAD+, in 0.1 M glycine-NaOH, pH 9.2, at 65°C
0.0025 - 0.09
Anisaldehyde
0.03 - 0.3
benzaldehyde
0.013 - 2
benzyl alcohol
0.44 - 0.8
benzylalcohol
0.055
butan-1-ol
-
-
0.35
butan-2-ol
-
-
14
butan-2-one
-
-
0.03 - 1.9
Cyclohexanol
1.3
Cyclopentanone
-
-
0.26 - 184
ethanol
2.4
iso-propanol
2 mM zinc sulfate in 100 mM glycine-NaOH (pH 10.5) at 65°C
0.19
n-Propanol
2 mM zinc sulfate in 100 mM glycine-NaOH (pH 10.5) at 65°C
0.2 - 12.4
NAD+
0.013 - 0.21
NADH
0.05
pentan-2-ol
-
-
0.225
pentan-3-ol
-
-
0.019
propan-1-ol
-
-
0.5
propan-2-ol
-
-
TURNOVER NUMBER [1/s]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
1 - 1.7
(R)-2-butanol
1.1 - 1.9
(R)-2-pentanol
1.2 - 4.8
(S)-2-butanol
2.6 - 6.7
(S)-2-pentanol
3.1 - 15.1
1-butanol
0.51 - 11.9
1-Heptanol
0.42 - 13.3
1-Hexanol
0.53 - 16.3
1-Pentanol
2.5 - 15.7
1-propanol
1.6
2-ethoxyethanol
wild type enzyme, in 0.1 M glycine-NaOH buffer (pH 10.5), at 65°C
1.5
3-Pentanol
wild type enzyme, in 0.1 M glycine-NaOH buffer (pH 10.5), at 65°C
0.37 - 16.8
4-methoxybenzyl alcohol
0.36 - 13.1
benzaldehyde
0.35 - 20
benzyl alcohol
0.36 - 19.7
Butyraldehyde
1.2 - 12.4
Cyclohexanol
3.1 - 4.1
ethanol
0.82 - 29
Isobutyraldehyde
0.52 - 21
NAD+
0.38 - 34.8
NADH
0.21 - 18.9
trans-cinnamaldehyde
1.2 - 16.6
1-propanol
0.25 - 0.45
2-propanol
1.2 - 2
3-bromobenzyl alcohol
1.2
3-bromobenzylalcohol
-
in the presence of 3 mM NAD+, in 0.1 M glycine-NaOH, pH 9.2, at 65°C
1.4 - 16
3-Methoxybenzyl alcohol
1.2 - 1.4
3-methoxybenzylalcohol
7.72
3-methyl-cyclohexanol
-
-
1.22
3-methylbutan-2-one
-
-
2.17
3-methylcyclohexanone
-
-
1.1 - 3.5
4-bromobenzyl alcohol
1.1
4-bromobenzylalcohol
-
in the presence of 3 mM NAD+, in 0.1 M glycine-NaOH, pH 9.2, at 65°C
0.7
4-carboxybenzaldehyde
0.6 - 20.5
4-methoxybenzaldehyde
1.5 - 25.5
4-methoxybenzyl alcohol
1.5
4-methoxybenzylalcohol
-
in the presence of 3 mM NAD+, in 0.1 M glycine-NaOH, pH 9.2, at 65°C
4.6
4-nitrobenzaldehyde
0.983
Anisaldehyde
-
-
1.8 - 25.5
benzaldehyde
1.4 - 21.7
benzyl alcohol
1.4
benzylalcohol
-
in the presence of 3 mM NAD+, in 0.1 M glycine-NaOH, pH 9.2, at 65°C
1.97
butan-1-ol
-
-
3.55
butan-2-ol
-
-
1.93
butan-2-one
-
-
0.65 - 15.9
Cyclohexanol
1.02
Cyclopentanone
-
-
0.5 - 1.88
ethanol
1.4 - 50
NAD+
2 - 25.3
NADH
2.92
pentan-3-ol
-
-
3.82
pentan2-ol
-
-
4.03
propan-1-ol
-
-
6.92
propan-2-ol
-
-
Ki VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.0032
4-iodopyrazole
-
apparent value
0.009
4-Methylpyrazole
-
apparent value
0.13
pyrazole
-
apparent value
IC50 VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
1.7 - 2.2
guanidine hydrochloride
SPECIFIC ACTIVITY [µmol/min/mg]
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
0.5
purified mutant enzyme W95L, using benzyl alcohol as substrate, in 0.1 M glycine-NaOH buffer (pH 10.5), at 65°C
18.6
purified mutant enzyme W95L/N249Y, using benzyl alcohol as substrate, in 0.1 M glycine-NaOH buffer (pH 10.5), at 65°C
4.2
purified wild type enzyme, using benzyl alcohol as substrate, in 0.1 M glycine-NaOH buffer (pH 10.5), at 65°C
0.01
-
wild type recombinant enzyme, from crude extract, at 65°C
0.02
-
mutant recombinant enzyme E97C, from crude extract, at 65°C
0.03
crude extract, using benzylalcohol as substrate, at 65°C
0.18
after 5.67fold purification, using benzylalcohol as substrate, at 65°C
0.64
-
wild type enzyme, crude extract, at 65°C
0.75
purified enzyme, using benzylalcohol as substrate, at 80°C
0.78
-
crude extract, at pH 10.0
10.1
-
after 12.9fold purification, at pH 10.0
26.1
-
mutant enzyme N249Y, at 65°C
4.03
-
recombinant wild type enzyme, after 6fold purification, at 65°C
4.1
-
wild type enzyme, at 65°C
4.5
-
wild type recombinant enzyme, after 450fold purification, at 65°C
43
-
mutant enzyme N249Y, after 6fold purification, at 65°C
5.2
-
mutant recombinant enzyme E97C, after 260fold purification, at 65°C
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
6.8
for the reduction reaction with benzaldehyde
9.5
for the oxidation reaction, ADH activity shows a slight dependence on pH, displaying a broad peak with a maximum around 9.5
6.9 - 7.5
-
apparent optimal pH for the benzaldehyde reduction
7.5
-
reduction of anisaldehyde
pH RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
TEMPERATURE OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
TEMPERATURE RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
45 - 95
-
continous increase in activity from 40°C to 95°C
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
highest ethanol consumption rate in cultures grown on 0.79% w/v ethanol
Manually annotated by BRENDA team
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
140000
-
gel filtration
150300
-
electrospray mass spectrometry
35000
-
4 * 35000, gel filtration
36000
deduced from amino acid sequence
37000
-
2 * 37000, SDS-PAGE
37585
-
4 * 37585, electrospray mass spectrometry
37588
-
4 * 37588, calculated from amino acid sequence
37591
-
4 * 37591, electrospray mass spectrometry
70000
-
gel filtration, sucrose density gradient centrifugation
74000
-
gel filtration, sucrose density gradient centrifugation
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
dimer
dimer of dimers, X-ray crystallography
homotetramer
tetramer
x-ray crystallography
dimer
-
2 * 37000, SDS-PAGE
homotetramer
tetramer
POSTTRANSLATIONAL MODIFICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
additional information
-
carboxymethylation with sodium iodoacetate
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
apoenzyme and ternary complex of enzyme with NADH and 2-ethoxyethanol bound to each subunit, X-ray diffraction structure determination and analysis at 2.3 A resolution
crystals are grown in the Advanced Protein Crystallization Facility during the Life and Microgravity Sciences Spacelab mission on the US Space Shuttle. Large diffracting crystals are obtained by dialysis, whereas only poor-quality crystals are obtained by vapour diffusion. The quality of both the microgravity and ground-based crystals is analysed by X-ray diffraction. There is some improvement in terms of size and diffraction resolution limit for the microgravity crystals. The twinning observed in the Earthgrown crystals is also present for those grown in microgravity
microbatch method in 100 mM Tris-HCl (pH 7.8), 10 mM dithiotreitol with the same volume of 12% (w/v) PEG 4000, 12% (v/v) 2-propanol, 100 mM sodium citrate (pH 5.6) at 20°C
holo-enzyme form and apo-enzyme form
-
twinned crystals are grown with the sitting drop vapour diffusion method using 2-methyl-2,4-pentanediol (50% v/v), Tris/HCl buffer (150 mM, pH 8.4), and NADH (1 mM), prismatic crystals are grown at 4°C and 20°C by microbatch and free interface diffusion methods with Tris/HCl buffer (130 mM, pH 8.0), NADH (2 mM), polyethyleneglycol 4000 (16% w/v), propan-2-ol or propan-1-ol (16% v/v) in trisodium citrate (100 mM, pH 4.8-5.6)
-
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
N249Y
mutant exhibits increased catalytic activity compared to the wild type enzyme
W95L
the mutant displays no apparent activity with short-chain primary and secondary alcohols and poor activity with aromatic substrates and coenzyme, the substitution affects the structural stability of the archaeal ADH, decreasing its thermal stability without relevant changes in secondary structure, optimum pH is at about pH 10
W95L/N249Y
the mutant exhibits higher activity but decreased affinity toward aliphatic alcohols, aldehydes as well as NAD+ and NADH compared to the wild type enzyme, optimum pH is at about pH 8.6
E97C
-
shows the same activity but a reduced thermostability with respect to the wild type recombinant protein
N249Y
TEMPERATURE STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
65 - 88
the single and double mutant are less thermoresistant than the wild type enzyme, displaying a transition temperature of 78 and 88°C, respectively, which are 17 and 7°C lower than that of the wild-type enzyme. At 65°C the single mutant W95L is 10fold less active and the double mutant W95L/N249Y is about 6fold more active than wild type enzyme, the reaction rate catalyzed by the double mutant W95L/N249Y increases more markedly than that of the wild type enzyme up to a temperature of about 83°C and then decreases rapidly due to thermal inactivation. The reaction rate of the single mutant W95L increases more slowly up to about 80°C and then decreases rapidly. At 65°C the single mutant is 10fold less active and the double mutant is about 6fold more active than wild type enzyme.
50
-
24 h, 30% loss of activity
55
-
the native enzyme remains completely stable after heating for 3 h at 55°C while the carboxymethylated enzyme loses 10% of activity under the same conditions
60
-
half-life: 20 h
70 - 80
-
wild type and mutant enzyme N249Y are stable at 70°C, the mutant enzyme seems more thermoresistant than the wild type enzyme up to a temperature of 80°C, after which its activity decreases abruptly
85
-
pH 8.0, protein concentration 0.5 mg/ml, 3 h, 50% loss of activity
85 - 90
-
half-life of 3 h at 85°C and 1 h at 90°C, the catalytic efficiency is considerably higher at temperatures below 90°C
90
-
at 90°C the specific activity is about three times as high as that measured at 65°C
GENERAL STABILITY
ORGANISM
UNIPROT
LITERATURE
does not require the presence of reducing agents to mantain its stability even at high temperature, evidently due to the lack in free cysteines
-
STORAGE STABILITY
ORGANISM
UNIPROT
LITERATURE
-20°C, 1 M NaCl in 20 mM Tris-HCl (pH 8.4) in the presence of an equal volume of glycerol, 12 months, no loss of activity
-
4°C, 1 M NaCl in 20 mM Tris-HCl (pH 8.4) in the absence of glycerol, 4 months, 60% loss of activity
-
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
Blue A column chromatography
-
DEAE-Sepharose Fast Flow column chromatography and G75 gel filtration
-
DEAE-Sepharose Fast Flow column chromatography, Matrex Gel Red A column chromatography, and Blue A column chromatography
-
HiLoad Superdex 200 gel filtration
-
HIS-Select High Flow cartridge chromatography
HiTrap heparin-Sepharose column chromatography, DEAE-Sepharose fast-flow column chromatography, and HiLoad Superdex S-75 gel filtration
-
Toyopearl Butyl 650 S column chromatography, Q Sepharose fast flow column chromatography, Superose 12 prep-grade gel filtration, and TosoHaas G 2000 SWXL gel filtration
-
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
expressed in Escherichia coli
expressed in Escherichia coli RB791 cells
expression in Escherichia coli host strain PBL339
expressed in Escherichia coli
-
expressed in Escherichia coli BL21 Star (DE3) cells
expressed in Escherichia coli JM109(DE3) cells
-
expressed in Escherichia coli RB791 cells
-
expressed in Escherichia coli strain RB791
-
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Pearl, L.H.; Demasi, D.; Hemmings, A.M.; Sica, F.; Mazzarella, L.; Raia, C.A.; D'Auria, S.; Rossi, M.
Crystallization and preliminary X-ray analysis of an NAD(+)-dependent alcohol dehydrogenase fromthe extreme thermophilic archaebacterium Sulfolobus solfataricus
J. Mol. Biol.
229
782-784
1993
Saccharolobus solfataricus
Manually annotated by BRENDA team
Rella, R.; Raia, C.A.; Pensa, M.; Pisani, F.M.; Gambacorta, A.; de Rosa, M.; Rossi, M.
A novel archaebacterial NAD+-dependent alcohol dehydrogenase. Purification and properties
Eur. J. Biochem.
167
475-479
1987
Saccharolobus solfataricus
Manually annotated by BRENDA team
Ammendola, S.; Raia, C.A.; Caruso, C.; Camardella, L.; D'Auria, S.; De Rosa, M.; Rossi, M.
Thermostable NAD(+)-dependent alcohol dehydrogenase from Sulfolobus solfataricus: gene and protein sequence determination and relationship to other alcohol dehydrogenases
Biochemistry
31
12514-12523
1992
Saccharolobus solfataricus
Manually annotated by BRENDA team
Esposito, L.; Bruno, I.; Sica, F.; Raia, C.A.; Giordano, A.; Rossi, M.; Mazzarella, L.; Zagari, A.
Crystal structure of a ternary complex of the alcohol dehydrogenase from Sulfolobus solfataricus
Biochemistry
42
14397-14407
2003
Saccharolobus solfataricus (P39462), Saccharolobus solfataricus
Manually annotated by BRENDA team
Sica, F.; Demasi, D.; Mazzarella, D.L.; Zagari, A.; Capasso, S.; Pearl, L.H.; D'Auria, S.; Raia, C.A.; Rossi, M.
Elimination of twinning in crystals of Sulfolobus sofataricus alcohol dehydrogenase holo-enzyme by growth in agarose gels
Acta Crystallogr. Sect. D
50
508-511
1994
Saccharolobus solfataricus
Manually annotated by BRENDA team
Raia, C.A.; Caruso, C.; Marino, M.; Vespa, N.; Rossi, M.
Activation of Sulfolobus solfataricus alcohol dehydrogenase by modification of cysteine residue 38 with iodoacetic acid
Biochemistry
35
638-647
1996
Saccharolobus solfataricus, Saccharolobus solfataricus DSM 1617
Manually annotated by BRENDA team
Giordano, A.; Cannio, R.; La Cara, F.; Bartolucci, S.; Rossi, M.; Raia, C.A.
Asn249Tyr substitution at the coenzyme binding domain activates Sulfolobus solfataricus alcohol dehydrogenase and increases its thermal stability.
Biochemistry
38
3043-3054
1999
Saccharolobus solfataricus
Manually annotated by BRENDA team
Trincone, A.; Lama, L.; Rella, R.; D'Auria, S.; Raia, C.A.; Nicolaus, B.
Determination of hydride transfer stereospecificity of NADH-dependent alcohol-aldehyde/ketone oxidoreductase from Sulfolobus solfataricus
Biochim. Biophys. Acta
1041
94-96
1990
Saccharolobus solfataricus
Manually annotated by BRENDA team
Esposito, L.; Bruno, I.; Sica, F.; Raia, C.A.; Giordano, A.; Rossi, M.; Mazzarella, L.; Zagari, A.
Structural study of a single-point mutant of Sulfolobus solfataricus alcohol dehydrogenase with enhanced activity.
FEBS Lett.
539
14-18
2003
Saccharolobus solfataricus (P39462), Saccharolobus solfataricus
Manually annotated by BRENDA team
Cannio, R.; Fiorentino, G.; Rossi, M.; Bartolucci, S.
The alcohol dehydrogenase gene: distribution among Sulfolobales and regulation in Sulfolobus solfataricus
FEMS Microbiol. Lett.
170
31-39
1999
Saccharolobus solfataricus, Saccharolobus solfataricus Gtheta
Manually annotated by BRENDA team
Cannio, R.; Fiorentino, G.; Carpinelli, P.; Rossi, M.; Bartolucci, S.
Cloning and overexpression in Escherichia coli of the genes encoding NAD-dependent alcohol dehydrogenase from two Sulfolobus species
J. Bacteriol.
178
301-305
1996
Saccharolobus solfataricus, Sulfolobus sp. (P50381), Sulfolobus sp., Sulfolobus sp. RC3 (P50381)
Manually annotated by BRENDA team
Fiorentino, G.; Cannio, R.; Rossi, M.; Bartolucci, S.
Transcriptional regulation of the gene encoding an alcohol dehydrogenase in the archaeon Sulfolobus solfataricus involves multiple factors and control elements
J. Bacteriol.
185
3926-3934
2003
Saccharolobus solfataricus
Manually annotated by BRENDA team
Esposito, L.; Sica, F.; Raia, C.A.; Giordano, A.; Rossi, M.; Mazzarella, L.; Zagari, A.
Crystal structure of the alcohol dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus at 1.85 A resolution
J. Mol. Biol.
318
463-477
2002
Saccharolobus solfataricus (P39462), Saccharolobus solfataricus
Manually annotated by BRENDA team
Chong, P.K.; Burja, A.M.; Radianingtyas, H.; Fazeli, A.; Wright, P.C.
Proteome and transcriptional analysis of ethanol-grown Sulfolobus solfataricus P2 reveals ADH2, a potential alcohol dehydrogenase
J. Proteome Res.
6
3985-3994
2007
Saccharolobus solfataricus (Q9UXF1), Saccharolobus solfataricus P2 (Q9UXF1), Saccharolobus solfataricus P2
Manually annotated by BRENDA team
Raia, C.A.; Giordano, A.; Rossi, M.
Alcohol dehydrogenase from Sulfolobus solfataricus
Methods Enzymol.
331
176-195
2001
Saccharolobus solfataricus
Manually annotated by BRENDA team
Casadio, R.; Martelli, P.L.; Giordano, A.; Rossi, M.; Raia, C.A.
A low-resolution 3D model of the tetrameric alcohol dehydrogenase from Sulfolobus solfataricus
Protein Eng.
15
215-223
2002
Saccharolobus solfataricus
Manually annotated by BRENDA team
Ammendola, S.; Raucci, G.; Incani, O.; Mele, A.; Tramontano, A.; Wallace, A.
Replacing the glutamate ligand in the structural zinc site of Sulfolobus solfataricus alcohol dehydrogenase with a cysteine decreases thermostability.
Protein Eng.
8
31-37
1995
Saccharolobus solfataricus
Manually annotated by BRENDA team
Pennacchio, A.; Esposito, L.; Zagari, A.; Rossi, M.; Raia, C.A.
Role of Tryptophan 95 in substrate specificity and structural stability of Sulfolobus solfataricus alcohol dehydrogenase
Extremophiles
13
751-761
2009
Saccharolobus solfataricus (P39462), Saccharolobus solfataricus
Manually annotated by BRENDA team
Esposito, L.; Sica, F.; Sorrentino, G.; Berisio, R.; Carotenuto, L.; Giordano, A.; Raia, C.A.; Rossi, M.; Lamzin, V.S.; Wilson, K.S.; Zagari, A.
Protein crystal growth in the advanced protein crystallization facility on the LMS mission: a comparison of Sulfolobus solfataricus alcohol dehydrogenase crystals grown on the ground and in microgravity
Acta Crystallogr. Sect. D
54
386-390
1998
Saccharolobus solfataricus (P39462), Saccharolobus solfataricus
Manually annotated by BRENDA team
Giordano, A.; Raia, C.A.
Steady-state fluorescence properties of S. solfataricus alcohol dehydrogenase and its selenomethionyl derivative
J. Fluoresc.
13
17-24
2003
Saccharolobus solfataricus (P39462)
-
Manually annotated by BRENDA team
Giordano, A.; Russo, C.; Raia, C.A.; Kuznetsova, I.M.; Stepanenko, O.V.; Turoverov, K.K.
Highly UV-absorbing complex in selenomethionine-substituted alcohol dehydrogenase from Sulfolobus solfataricus
J. Proteome Res.
3
613-620
2004
Saccharolobus solfataricus (P39462), Saccharolobus solfataricus
Manually annotated by BRENDA team
Friest, J.A.; Maezato, Y.; Broussy, S.; Blum, P.; Berkowitz, D.B.
Use of a robust dehydrogenase from an archael hyperthermophile in asymmetric catalysis-dynamic reductive kinetic resolution entry into (S)-profens
J. Am. Chem. Soc.
132
5930-5931
2010
Saccharolobus solfataricus (P39462), Saccharolobus solfataricus, Saccharolobus solfataricus P2 (P39462)
Manually annotated by BRENDA team