Information on EC 4.1.1.2 - Oxalate decarboxylase:

   PRINT
Please wait a moment until all data are loaded. This message will disappear when all data are loaded.
Mark a special word or phrase in this record:  
Select one or more organisms in this record:

The expected taxonomic range for this enzyme is: Eukaryota, Bacteria


Show additional data Do not include text mining results
Include (text mining) results (more...)
Include results (AMENDA + additional results, but less precise; more...)

Please login to have access to the AMENDA and FRENDA data

EC NUMBERCOMMENTARY
4.1.1.2-

RECOMMENDED NAMEGeneOntology No.
Oxalate decarboxylaseGO:0046564

REACTIONREACTION DIAGRAMCOMMENTARYORGANISM UNIPROT ACCESSION NO.LITERATURE
oxalate = formate + CO2
show the reaction diagram
----
oxalate = formate + CO2
show the reaction diagram
reaction proceeds with a single electron transferAspergillus niger-4104
oxalate = formate + CO2
show the reaction diagram
detailed catalytic mechanism, kinetic mechanismBacillus subtilis-651590
oxalate = formate + CO2
show the reaction diagram
mechanismBacillus subtilisO34767652196
oxalate = formate + CO2
show the reaction diagram
catalytic mechanism, the N-terminal Mn-binding site can mediate catalysis involving the important residue Asp92Bacillus subtilis-677825
oxalate = formate + CO2
show the reaction diagram
catalytic mechanism of oxalate decarboxylase compared to oxalate oxidase, EC 1.2.3.4Bacillus subtilisO34714678229
oxalate = formate + CO2
show the reaction diagram
catalytic mechanismBacillus subtilis-650168, 652532, 681596
oxalate = formate + CO2
show the reaction diagram
catalytic mechanism; detailed catalytic mechanism, kinetic mechanism; mechanismBacillus subtilis 168--

REACTION TYPEORGANISM UNIPROT ACCESSION NO.COMMENTARYLITERATURE
decarboxylation----

PATHWAYKEGG LinkMetaCyc Link
Glyoxylate and dicarboxylate metabolism00630 -
Metabolic pathways01100 -
oxalate degradation V-PWY-6698

SYSTEMATIC NAMEIUBMB Comments
oxalate carboxy-lyase (formate-forming)The enzyme from Bacillus subtilis contains manganese and requires O2 for activity, even though there is no net redox change.

SYNONYMSORGANISM UNIPROT ACCESSION NO.COMMENTARYLITERATURE
AtuOXDCAgrobacterium tumefaciens-putative recombinant enzyme, contains N- and C-cupin domains of OXDC693597
ODCno activity in Ceriporiopsis subvermispora, no activity in Haploporus odorus strain T154, no activity in Nematoloma frowardii, no activity in Phanerochaete chrysosporium, no activity in Phlebiopsis gigantea, no activity in Radulodon erikssonii, no activity in Trichaptum fusco-violaceum, Phanerochaete sanguinea, Trametes ochracea--651021
ODCAgaricus bisporus, Aspergillus niger, Aspergillus sp., Bacillus subtilis--713879
ODCDichomitus squalens--651021, 713879
ODCFlammulina sp., Flammulina velutipes, Pandorea sp., Phanerochaete chrysosporium--713879
ODCTrametes versicolor--651021, 713879
ODCDichomitus squalens PO114, Flammulina sp. IJF 140502, no activity in Ceriporiopsis subvermispora CZ-3, no activity in Nematoloma frowardii b19, no activity in Phanerochaete chrysosporium F1767, no activity in Phlebiopsis gigantea T55, no activity in Radulodon erikssonii T84, no activity in Trichaptum fusco-violaceum T21, Pandorea sp. OXJ-11a, Phanerochaete sanguinea T51, Trametes ochracea T7---
oxalate carboxy-lyaseAgaricus bisporus, Aspergillus niger, Aspergillus sp., Bacillus subtilis, Dichomitus squalens, Flammulina sp., Flammulina velutipes, Pandorea sp., Phanerochaete chrysosporium, Trametes versicolor--713879
oxalate carboxy-lyaseFlammulina sp. IJF 140502, Pandorea sp. OXJ-11a---
oxalate-decarboxylaseMus musculus--690331
oxazymeBacillus subtilis-oxazyme (OC4) is an orally administered formulation that has as an active component a recombinant mutant form of Bacillus subtilis oxalate decarboxylase (OxDC) enzyme C383S704104
OXD----
OXDCFlammulina velutipesQ9UVK4-652089
OXDCBacillus subtilis-formerly YvrK652532
OXDCThermotoga maritima--687082
OXDCAgrobacterium tumefaciens--693597
OXDCTrametes versicolor--701766
OXDCBacillus subtilis--650168, 651590, 677825, 678138, 678229, 681596, 687082, 691955, 692903, 694237, 702319, 704104, 705343, 713879, 714726, 715086, 716726
OXDCBacillus subtilis 168-; formerly YvrK-
OXDCBacillus subtilis CU1065-; -
OXDCTrametes versicolor PRL572---
OxDc-CLECMus musculus-commercial preparation690331
OxdDBacillus subtilis-formerly YoaN651732
TOXDCTrametes versicolor--692203
YoaNBacillus subtilisO34767-652196
YoaNBacillus subtilis 168---
YvrKBacillus subtilis--651662, 652196
YvrKBacillus subtilis 168-; -
Decarboxylase, oxalate----
additional informationBacillus subtilis-member of the cupin superfamily651590
additional informationBacillus subtilis-belongs to the cupin superfamily, bicupin650168, 651662, 652196
additional informationBacillus subtilis-enzyme belongs to the cupin superfamily, bicupin652532
additional informationBacillus subtilisO34714the enzyme is a member of the cupin superfamily of proteins678229
additional informationBacillus subtilis 168-belongs to the cupin superfamily, bicupin; belongs to the cupin superfamily, bicupin; enzyme belongs to the cupin superfamily, bicupin; member of the cupin superfamily-

CAS REGISTRY NUMBERCOMMENTARY
9024-97-9-

ORGANISMCOMMENTARYLITERATURESEQUENCE CODESEQUENCE DB SOURCE
Agaricus bisporus-653286, 713879--Manually annotated by BRENDA team
Agrobacterium tumefaciens-693597--Manually annotated by BRENDA team
Aspergillus niger-4104, 695712, 713879--Manually annotated by BRENDA team
Aspergillus phoenicis-4105--Manually annotated by BRENDA team
Aspergillus sp.-713879--Manually annotated by BRENDA team
Bacillus subtilis-650168O34714SwissProtManually annotated by BRENDA team
Bacillus subtilis-651590, 651662, 651732--Manually annotated by BRENDA team
Bacillus subtilis-652196O34767SwissProtManually annotated by BRENDA team
Bacillus subtilis-652196, 652532O34714SwissProtManually annotated by BRENDA team
Bacillus subtilis-669296, 681596, 687082, 691955, 704104, 705343, 713879, 714726, 715299, 716726, 677825, 678138--Manually annotated by BRENDA team
Bacillus subtilis-678075, 678229O34714SwissProtManually annotated by BRENDA team
Bacillus subtilis-692903, 694237--Manually annotated by BRENDA team
Bacillus subtilis-702319, 715086O34714SwissProtManually annotated by BRENDA team
Bacillus subtilis 168-651590, 651662--Manually annotated by BRENDA team
Bacillus subtilis 168-652196O34767SwissProtManually annotated by BRENDA team
Bacillus subtilis 168-652196, 652532, 678075O34714SwissProtManually annotated by BRENDA team
Bacillus subtilis CU1065-650168O34714SwissProtManually annotated by BRENDA team
Bacillus subtilis CU1065-692903, 694237--Manually annotated by BRENDA team
Cavia porcellus-4103--Manually annotated by BRENDA team
Dichomitus squalens-651021, 713879--Manually annotated by BRENDA team
Dichomitus squalens PO114-651021--Manually annotated by BRENDA team
Flammulina sp.-682396Q870M8SwissProtManually annotated by BRENDA team
Flammulina sp.-713879--Manually annotated by BRENDA team
Flammulina sp. IJF 140502-682396Q870M8SwissProtManually annotated by BRENDA team
Flammulina sp. IJF 140502-713879--Manually annotated by BRENDA team
Flammulina velutipes-4107, 713879--Manually annotated by BRENDA team
Flammulina velutipes-652089Q9UVK4SwissProtManually annotated by BRENDA team
Mus musculus-690331--Manually annotated by BRENDA team
no activity in Ceriporiopsis subvermispora-651021--Manually annotated by BRENDA team
no activity in Ceriporiopsis subvermispora CZ-3-651021--Manually annotated by BRENDA team
no activity in Haploporus odorus strain T154-651021--Manually annotated by BRENDA team
no activity in Nematoloma frowardii-651021--Manually annotated by BRENDA team
no activity in Nematoloma frowardii b19-651021--Manually annotated by BRENDA team
no activity in Phanerochaete chrysosporium-651021--Manually annotated by BRENDA team
no activity in Phanerochaete chrysosporium F1767-651021--Manually annotated by BRENDA team
no activity in Phlebiopsis gigantea-651021--Manually annotated by BRENDA team
no activity in Phlebiopsis gigantea T55-651021--Manually annotated by BRENDA team
no activity in Radulodon erikssonii-651021--Manually annotated by BRENDA team
no activity in Radulodon erikssonii T84-651021--Manually annotated by BRENDA team
no activity in Trichaptum fusco-violaceum-651021--Manually annotated by BRENDA team
no activity in Trichaptum fusco-violaceum T21-651021--Manually annotated by BRENDA team
Pandorea sp.-713879--Manually annotated by BRENDA team
Pandorea sp. OXJ-11a-713879--Manually annotated by BRENDA team
Phanerochaete chrysosporium-713879--Manually annotated by BRENDA team
Phanerochaete sanguinea-651021--Manually annotated by BRENDA team
Phanerochaete sanguinea T51-651021--Manually annotated by BRENDA team
Sclerotinia sclerotiorum-4102--Manually annotated by BRENDA team
Thermotoga maritima-687082--Manually annotated by BRENDA team
Trametes ochracea-651021--Manually annotated by BRENDA team
Trametes ochracea T7-651021--Manually annotated by BRENDA team
Trametes versicolor-4106, 713879, 651021, 692203, 701766--Manually annotated by BRENDA team
Trametes versicolor PRL572-701766--Manually annotated by BRENDA team

GENERAL INFORMATIONORGANISM UNIPROT ACCESSION NO.COMMENTARYLITERATURE
No entries in this field

SUBSTRATEPRODUCT                      REACTION DIAGRAMORGANISM UNIPROT ACCESSION NO. COMMENTARY
(Substrate)
LITERATURE
(Substrate)
COMMENTARY
(Product)
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
OxalateFormate + CO2
show the reaction diagram
Cavia porcellus--4103-4103-
OxalateFormate + CO2
show the reaction diagram
Bacillus subtilis--681596--?
OxalateFormate + CO2
show the reaction diagram
Bacillus subtilis--677825--ir
OxalateFormate + CO2
show the reaction diagram
Sclerotinia sclerotiorum--4102-4102-
OxalateFormate + CO2
show the reaction diagram
Aspergillus phoenicis--4105-4105-
OxalateFormate + CO2
show the reaction diagram
Trametes versicolor--4106-4106-
OxalateFormate + CO2
show the reaction diagram
Flammulina velutipes--4107-4107-
OxalateFormate + CO2
show the reaction diagram
Bacillus subtilisO34714-678229--?
OxalateFormate + CO2
show the reaction diagram
Aspergillus niger--4104traces of H2O2 and oxidation products of aromatic amines and phenols are formed, these aromatic compounds are added with the purpose of stimulating and protecting the enzyme during its catalytic action4104-
OxalateFormate + CO2
show the reaction diagram
Bacillus subtilis-the first two steps of the catalytic mechanism are reversible, the last step is irreversible677825--ir
Oxalate?
show the reaction diagram
Trametes versicolor-induction by oxalate4106---
Oxalate?
show the reaction diagram
Flammulina velutipes-induction by oxalate4107---
Oxalate?
show the reaction diagram
Sclerotinia sclerotiorum-induced by oxalate or succinate4102---
oxalate + H+formate + CO2
show the reaction diagram
Bacillus subtilisO34714-650168-650168?
oxalate + H+formate + CO2
show the reaction diagram
Bacillus subtilis--651590-651590?
oxalate + H+formate + CO2
show the reaction diagram
Bacillus subtilis--651732-651732?
oxalate + H+formate + CO2
show the reaction diagram
Bacillus subtilis--678138, 687082, 691955, 692903, 694237, 713879, 714726, 715299, 716726--?
oxalate + H+formate + CO2
show the reaction diagram
Bacillus subtilis--669296--ir
oxalate + H+formate + CO2
show the reaction diagram
Bacillus subtilisO34714-678075--ir
oxalate + H+formate + CO2
show the reaction diagram
Mus musculus--690331--?
oxalate + H+formate + CO2
show the reaction diagram
Aspergillus niger, Agaricus bisporus--713879--?
oxalate + H+formate + CO2
show the reaction diagram
Agrobacterium tumefaciens--693597--?
oxalate + H+formate + CO2
show the reaction diagram
Trametes versicolor--651021-651021?
oxalate + H+formate + CO2
show the reaction diagram
Trametes versicolor--692203, 713879--?
oxalate + H+formate + CO2
show the reaction diagram
Flammulina velutipes, Aspergillus sp., Phanerochaete chrysosporium--713879--?
oxalate + H+formate + CO2
show the reaction diagram
Thermotoga maritima--687082--?
oxalate + H+formate + CO2
show the reaction diagram
Dichomitus squalens--651021-651021?
oxalate + H+formate + CO2
show the reaction diagram
Dichomitus squalens--713879--?
oxalate + H+formate + CO2
show the reaction diagram
Trametes ochracea--651021-651021?
oxalate + H+formate + CO2
show the reaction diagram
Bacillus subtilis--715086--?
oxalate + H+formate + CO2
show the reaction diagram
Phanerochaete sanguinea--651021-651021?
oxalate + H+formate + CO2
show the reaction diagram
Flammulina sp., Pandorea sp.--713879--?
oxalate + H+formate + CO2
show the reaction diagram
Bacillus subtilis-acts exclusively on oxalate651662-651662?
oxalate + H+formate + CO2
show the reaction diagram
Bacillus subtilis-catalytic mechanism involves the requirement of an active site proton donor: Glu-162, catalytic cycle, enzyme structure, N-terminal domain is the catalytically active domain, dioxygen-dependent reaction involves no net redox change652532-652532?
oxalate + H+formate + CO2
show the reaction diagram
Bacillus subtilisO34714, O34767contains two potential active sites per subunit652196-652196?
oxalate + H+formate + CO2
show the reaction diagram
Bacillus subtilisO34714, O34767enzyme structure, YvrK possesses two potential active sites per subunit, but only one could be fully occupied by manganese, mechanism, catalytic cycle652196-652196?
oxalate + H+formate + CO2
show the reaction diagram
Bacillus subtilis-mechanism, multistep model in which a reversible, proton-coupled, electron transfer from bound oxalate to the Mn-enzyme gives an oxalate radical, which decarboxylates to yield a formate radical anion, subsequent reduction and protonation of this intermediate then gives formate, irreversible decarboxylation step, no net redox change between substrate and products, roles of Arg-270 and Glu-333 in catalysis651590-651590?
oxalate + H+formate + CO2
show the reaction diagram
Bacillus subtilisO34714OXDC acts exclusively on oxalate, Glu-333 of the second Mn-binding site serves as a proton donor in the production of formate, catalytic mechanism, enzyme structure650168-650168?
oxalate + H+formate + CO2
show the reaction diagram
Flammulina velutipesQ9UVK4specific for oxalate652089-652089?
oxalate + H+formate + CO2
show the reaction diagram
Trametes versicolor, Dichomitus squalens, Trametes ochracea, Phanerochaete sanguinea-inducible enzyme, key role in regulating the level of oxalate concentrations inside the fungal cells and in the vicinity of the fungal hyphae651021-651021?
oxalate + H+formate + CO2
show the reaction diagram
Bacillus subtilis-involved in the elevation of cytoplasmic pH652532-652532?
oxalate + H+formate + CO2
show the reaction diagram
Flammulina velutipesQ9UVK4oxalate-catabolizing enzyme652089-652089?
oxalate + H+formate + CO2
show the reaction diagram
Bacillus subtilisO34714, O34767oxalate-degrading enzyme652196-652196?
oxalate + H+formate + CO2
show the reaction diagram
Bacillus subtilisO34714, O34767oxalate-degrading enzyme, may be involved in the elevation of cytoplasmic pH, because the reaction involves the net consumption of a proton652196-652196?
oxalate + H+formate + CO2
show the reaction diagram
Bacillus subtilis-oxalate-degrading enzyme, possibly involved in decarboxylative phosphorylation, YvrK could contribute to the raising of cytoplasmic pH when the organism encounters low values of pH in soil and rotting vegetation651662-651662?
oxalate + H+formate + CO2
show the reaction diagram
Bacillus subtilis-regulation of OxdD synthesis and assembly in the spore coat, transcription of oxdD gene is induced during sporulation as a monocistronic unit under the control of sigmaK and is negatively regulated by GerE651732-651732?
oxalate + H+formate + CO2
show the reaction diagram
Bacillus subtilisO34714catalytic cycle involving radical formation with O2, overview, only Mn2+ binding site 1 is catalytically active, while Mn2+ binding site 2 is purely structural, overview678075--ir
oxalate + H+formate + CO2
show the reaction diagram
Bacillus subtilis-catalytic cycle, overview, the enzyme converts oxalate to formate and carbon dioxide, via an enzyme-bound formyl radical catalytic intermediate, and uses dioxygen as a cofactor despite the reaction involving no net redox change, overview, a proton transfer event occurs during a rate-limiting step, hydron exchange in formate, semiempirical quantum mechanical calculation, overview678138--?
oxalate + H+formate + CO2
show the reaction diagram
Bacillus subtilis 168-mechanism, multistep model in which a reversible, proton-coupled, electron transfer from bound oxalate to the Mn-enzyme gives an oxalate radical, which decarboxylates to yield a formate radical anion, subsequent reduction and protonation of this intermediate then gives formate, irreversible decarboxylation step, no net redox change between substrate and products, roles of Arg-270 and Glu-333 in catalysis651590-651590?
oxalate + H+formate + CO2
show the reaction diagram
Bacillus subtilis 168-acts exclusively on oxalate, oxalate-degrading enzyme, possibly involved in decarboxylative phosphorylation, YvrK could contribute to the raising of cytoplasmic pH when the organism encounters low values of pH in soil and rotting vegetation651662-651662?
oxalate + H+formate + CO2
show the reaction diagram
Bacillus subtilis 168O34714, O34767contains two potential active sites per subunit652196-652196?
oxalate + H+formate + CO2
show the reaction diagram
Bacillus subtilis 168O34714, O34767enzyme structure, YvrK possesses two potential active sites per subunit, but only one could be fully occupied by manganese, mechanism, catalytic cycle652196-652196?
oxalate + H+formate + CO2
show the reaction diagram
Bacillus subtilis 168-catalytic mechanism involves the requirement of an active site proton donor: Glu-162, catalytic cycle, enzyme structure, N-terminal domain is the catalytically active domain, dioxygen-dependent reaction involves no net redox change, involved in the elevation of cytoplasmic pH652532-652532?
oxalate + H+formate + CO2
show the reaction diagram
Bacillus subtilis 168O34714, O34767oxalate-degrading enzyme652196-652196?
oxalate + H+formate + CO2
show the reaction diagram
Bacillus subtilis 168O34714, O34767oxalate-degrading enzyme, may be involved in the elevation of cytoplasmic pH, because the reaction involves the net consumption of a proton652196-652196?
oxalate + H+formate + CO2
show the reaction diagram
Trametes ochracea T7-inducible enzyme, key role in regulating the level of oxalate concentrations inside the fungal cells and in the vicinity of the fungal hyphae651021-651021?
oxalate + H+formate + CO2
show the reaction diagram
Pandorea sp. OXJ-11a--713879--?
oxalate + H+formate + CO2
show the reaction diagram
Dichomitus squalens PO114-inducible enzyme, key role in regulating the level of oxalate concentrations inside the fungal cells and in the vicinity of the fungal hyphae651021-651021?
oxalate + H+formate + CO2
show the reaction diagram
Flammulina sp. IJF 140502--713879--?
oxalate + H+formate + CO2
show the reaction diagram
Bacillus subtilis CU1065--692903, 694237--?
oxalate + H+formate + CO2
show the reaction diagram
Phanerochaete sanguinea T51-inducible enzyme, key role in regulating the level of oxalate concentrations inside the fungal cells and in the vicinity of the fungal hyphae651021-651021?
oxalate + H+CO2 + formate
show the reaction diagram
Bacillus subtilis--692903, 704104, 705343--?
oxalate + H+CO2 + formate
show the reaction diagram
Aspergillus niger--695712--?
oxalate + H+CO2 + formate
show the reaction diagram
Trametes versicolor--701766--?
oxalate + H+CO2 + formate
show the reaction diagram
Bacillus subtilisO34714-702319--?
oxalate + H+CO2 + formate
show the reaction diagram
Trametes versicolor PRL572--701766--?
oxalate + H+CO2 + formate
show the reaction diagram
Bacillus subtilis CU1065--692903--?
additional information?-Bacillus subtilisO34714, O34767enzyme catalyzes minor side reactions: oxalate oxidation to produce H2O2 and oxalate-dependent, H2O2-independent dye oxidations652196-652196?
additional information?-Bacillus subtilisO34714, O34767enzyme catalyzes minor side reactions: oxalate oxidation to produce H2O2 and oxalate-dependent, H2O2-independent dye oxidations, at less than 1% of the oxalate decarboxylation rate652196-652196?
additional information?-Bacillus subtilisO34714the enzyme also shows oxalate oxidase activity, catalytic cycle, overview678075---
additional information?-Bacillus subtilis-the enzyme also shows oxalate oxidase activity, catalytic cycle, overview678138---
additional information?-Bacillus subtilis 168O34714, O34767enzyme catalyzes minor side reactions: oxalate oxidation to produce H2O2 and oxalate-dependent, H2O2-independent dye oxidations652196-652196?
additional information?-Bacillus subtilis 168O34714, O34767enzyme catalyzes minor side reactions: oxalate oxidation to produce H2O2 and oxalate-dependent, H2O2-independent dye oxidations, at less than 1% of the oxalate decarboxylation rate652196-652196?

NATURAL SUBSTRATESNATURAL PRODUCTSREACTION DIAGRAMORGANISM UNIPROT ACCESSION NO.COMMENTARY
(Substrate)
LITERATURE
(Substrate)
COMMENTARY
(Product)
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
No entries in this field

COFACTORORGANISM UNIPROT ACCESSION NO.COMMENTARYLITERATUREIMAGE
O2Bacillus subtilisO34767requirement, both Mn2+ and O2 are cofactors acting together as a two-electron sink during catalysis652196 2D-image
O2Bacillus subtilis-utilizes dioxygen as cofactor652532 2D-image
O2Bacillus subtilis--678138, 678229 2D-image
O2Agaricus bisporus, Aspergillus niger, Aspergillus sp., Bacillus subtilis, Dichomitus squalens, Flammulina sp., Flammulina velutipes, Pandorea sp., Phanerochaete chrysosporium, Trametes versicolor-required for catalysis713879 2D-image
additional informationBacillus subtilisO34714no requirement for any organic cofactor650168-
additional informationFlammulina velutipesQ9UVK4no cofactor requirement652089-

METALS and IONS ORGANISM UNIPROT ACCESSION NO.COMMENTARY LITERATURE
Mn2+Bacillus subtilisO34714metalloenzyme, Mn2+-dependent, each cupin domain contains one Mn-binding site that is buried deeply inside the beta-barrel, 2 binding sites within a monomer, mode of binding, mechanism650168
Mn2+Bacillus subtilis-contains Mn2+ in its resting state and two Mn-binding sites, may be only the C-terminal binding site is catalytically active, the N-terminal site not, manganese in the active site can abstract an electron from bound substrate651590
Mn2+Bacillus subtilis-Mn2+-dependent651732
Mn2+Bacillus subtilisO34767specific requirement; specific requirement for the correct folding and activity, contains between 0.86 and 1.14 atoms of manganese per subunit, predominantly in the Mn2+ oxidation state, both Mn2+ and O2 are cofactors acting together as a two-electron sink during catalysis652196
Mn2+Bacillus subtilis-contains 2 Mn2+ per subunit, role in catalysis, mechanism, 2 Mn-binding sites, the N-terminal Mn-binding site 1 is catalytically active652532
Mn2+Bacillus subtilis-required669296
Mn2+Bacillus subtilis-the enzyme is composed of two cupin domains, each of which contains Mn(II) coordinated by four conserved residues Arg92, Arg270, Glu162, and Glu333, the N-terminal Mn-binding site can mediate catalysis677825
Mn2+Bacillus subtilisO34714required, each subunit contains two similar, but distinct, manganese sites 1 and 2, only site 1 is catalytically active, and site 2 is purely structural, manganese content of mutant enzymes, overview678075
Mn2+Bacillus subtilis--678138
Mn2+Bacillus subtilisO34714two manganese binding sites, Glu162 on a flexible lid is the site 1 general acid, Mn2+ content of mutant enzymes, overview678229
Mn2+Bacillus subtilis-the enzyme is composed of two cupin domains, each of which contains a Mn2+ ion coordinated by four identical conserved residues, multifrequency EPR studies on the Mn2+ centers of oxalate decarboxylase, overview681596
Mn2+Bacillus subtilis, Thermotoga maritima-dependent on687082
Mn2+Bacillus subtilis-the enzyme is composed of two cupin domains, each of which contains a Mn2+ ion, OxDC activity is linearly correlated with manganese content, untagged enzyme samples exhibit a metal content of 1.8 Mn2+ per monomer702319
Mn2+Bacillus subtilis-His-tagged recombinant enzyme contains 1.2 Mn2+ per subunit, non-His-tagged recombinant enzyme contains 2.0 Mn2+ per subunit705343
Mn2+Agaricus bisporus, Aspergillus niger, Aspergillus sp., Bacillus subtilis, Dichomitus squalens, Flammulina sp., Flammulina velutipes, Pandorea sp., Phanerochaete chrysosporium, Trametes versicolor-required for catalysis713879
Mn2+Bacillus subtilis-the enzyme possesses two Mn(II) centers714726
Mn2+Bacillus subtilis-the wild type enzyme contains 1.4 Mn2+ ions per monomer715086
Mn2+Bacillus subtilis-contains manganese715299
O2Bacillus subtilisO34714required for catalysis678075
Mn2+Bacillus subtilis-Mn2+ binding to the enzyme is not easy to release716726
additional informationBacillus subtilisO34714enzyme contains an additional unidentified metal binding site on the enzyme surface, modeled as Mg2+650168
additional informationBacillus subtilis-presence of a metal ion, role of a transition metal in catalysis651662
additional informationBacillus subtilisO34767not: Fe2+, Cu2+, Ni2+, Co2+, Mg2+, Zn2+652196

INHIBITORSORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE IMAGE
Biomimetic monochlorotriazinyl dyesAspergillus phoenicis-bearing a mercaptopyruvate at the terminal biomimetic moiety, competitive against oxalate4105-
ChloriteAspergillus niger-26% residual activity at 8.0 mM695712 2D-image
Co2+Aspergillus niger-complete inhibition at 10 mM695712 2D-image
DithioniteAspergillus niger--4104 2D-image
DithioniteBacillus subtilisO347671 mM, complete loss of activity, some irreversible effect652196 2D-image
formic acidAspergillus niger-75% residual activity at 20 mM695712 2D-image
glycolic acidAspergillus niger-88% residual activity at 20 mM695712 2D-image
hydrogen peroxideAspergillus niger-5% residual activity at 20 mM695712 2D-image
nitric oxideBacillus subtilis-reversible inhibition under dioxygen-depleted conditions with 100fold reduction of activity in the presence of 0.05 mM nitric oxide. At 12 min, air is re-introduced, resulting in the restoration of full OxDC catalytic activity, albeit after a time lag of approximately 5 min714726 2D-image
oxalateBacillus subtilisO34714substrate inhibition650168 2D-image
phosphateFlammulina velutipes-competitive4107 2D-image
SO32-Aspergillus niger--4104 2D-image
sulfiteAspergillus niger-complete inhibition at 1.0 mM695712 2D-image
Surface-active ionic substancesAspergillus niger-anionic or cationic4104-
hydroxylamineAspergillus niger--4104 2D-image
additional informationAspergillus niger-up to 4 mM chlorate has no inhibitory effect on oxalate decarboxylase695712-

ACTIVATING COMPOUNDORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE IMAGE
O2Bacillus subtilis-requires catalytic dioxygen for activity651590 2D-image
O2Bacillus subtilis-dioxygen-dependent reaction suggesting the role of a transition metal in catalysis651662 2D-image
additional informationBacillus subtilisO34714not induced by oxalate, but acid induced650168-
additional informationDichomitus squalens-6fold higher specific activity after induction by 5 mM oxalic acid, also some non-induced activity651021-
additional informationPhanerochaete sanguinea, Trametes ochracea, Trametes versicolor-induced by 5 mM oxalic acid651021-
additional informationBacillus subtilis-pH-dependent induction in acidic growth media, particularly at pH 5, but not by oxalate651662-
additional informationBacillus subtilisO34767induced by acidic pH and not by oxalate652196-
additional informationBacillus subtilis-induced by low pH, not by oxalate salts652532-
additional informationBacillus subtilis-OxdC is maximally expressed under acidic growth conditions (LB medium acidified to pH 5.4 with either phytate or HCl); YvrI and its associated coregulators YvrHa and YvrL are required for the regulation of OxdC expression by acid stress692903-
additional informationBacillus subtilis-overexpression of YvrI results in induction of OxdC transcription694237-

KM VALUE [mM]KM VALUE [mM] MaximumSUBSTRATEORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE IMAGE
0.006-oxalateCavia porcellus--4103 2D-image
1-oxalateBacillus subtilis-pH 4, 26C, R270K mutant OxdC652532 2D-image
1.14-oxalateBacillus subtilisO34714pH 4.0, 26C, recombinant mutant R270Q678075 2D-image
1.9-oxalateBacillus subtilisO34714pH 4.0, 26C, recombinant mutant R92K678075 2D-image
2-oxalateBacillus subtilis-pH 4, 26C, R92K mutant OxdC652532 2D-image
2-oxalateBacillus subtilisO34714pH 4.0, recombinant mutant E162A/N163S/S164N678229 2D-image
2.3-oxalateBacillus subtilisO34714pH 4.0, 26C, recombinant deletion mutant DELTA163-163678075 2D-image
2.9-oxalateBacillus subtilis-mutant enzyme E101A , in 50 mM NaOAc (pH 4.2), 0.2% (v/v) Triton X-100, 0.5 mM o-phenylenediamine, at 22C; mutant enzyme E101Q/E280Q, in 50 mM NaOAc (pH 4.2), 0.2% (v/v) Triton X-100, 0.5 mM o-phenylenediamine, at 22C702319 2D-image
3-oxalateBacillus subtilis-mutant enzyme E280A , in 50 mM NaOAc (pH 4.2), 0.2% (v/v) Triton X-100, 0.5 mM o-phenylenediamine, at 22C702319 2D-image
3.4-oxalateBacillus subtilis-mutant enzyme E101D, in 50 mM NaOAc (pH 4.2), 0.2% (v/v) Triton X-100, 0.5 mM o-phenylenediamine, at 22C702319 2D-image
4-oxalateBacillus subtilis-pH 4, 26C, E333A mutant OxdC652532 2D-image
4-oxalateBacillus subtilis-mutant enzyme E101Q, in 50 mM NaOAc (pH 4.2), 0.2% (v/v) Triton X-100, 0.5 mM o-phenylenediamine, at 22C702319 2D-image
4.1-oxalateBacillus subtilisO34714pH 4.0, 26C, recombinant mutant E333A678075 2D-image
4.5-oxalateFlammulina velutipes--4107 2D-image
4.5-oxalateFlammulina velutipesQ9UVK4native OXDC652089 2D-image
5-oxalateFlammulina velutipesQ9UVK4recombinant OXDC, expressed in Nicotiana tabaccum652089 2D-image
5.4-oxalateBacillus subtilis-mutant enzyme E280D, in 50 mM NaOAc (pH 4.2), 0.2% (v/v) Triton X-100, 0.5 mM o-phenylenediamine, at 22C702319 2D-image
6.3-oxalateBacillus subtilisO34714pH 4.0, 26C, recombinant mutant E333D678075 2D-image
6.616.4oxalateBacillus subtilisO34714pH 4.0, 26C, recombinant wild-type enzyme678075 2D-image
6.6-oxalateBacillus subtilisO34714pH 4.0, recombinant wild-type enzyme678229 2D-image
8-oxalateBacillus subtilis-pH 4, 26C, R270A mutant OxdC652532 2D-image
8-oxalateBacillus subtilisO34714pH 4.0, 26C, recombinant mutant R270A678075 2D-image
8.4-oxalateBacillus subtilis-wild type enzyme, in 50 mM NaOAc (pH 4.2), 0.2% (v/v) Triton X-100, 0.5 mM o-phenylenediamine, at 22C702319 2D-image
9.1-oxalateBacillus subtilisO34714pH 4.0, recombinant mutant S161D/E162A678229 2D-image
10.1-oxalateBacillus subtilis-mutant enzyme E280Q, in 50 mM NaOAc (pH 4.2), 0.2% (v/v) Triton X-100, 0.5 mM o-phenylenediamine, at 22C702319 2D-image
11.2-oxalateBacillus subtilisO34714pH 4.0, 26C, recombinant mutant D297A678075 2D-image
11.6-oxalateBacillus subtilisO34714pH 4.0, 26C, recombinant mutant H299A678075 2D-image
13.5-oxalateBacillus subtilisO34714pH 4.0, 26C, recombinant mutant E162Q678075 2D-image
14-oxalateBacillus subtilis-pH 4, 26C, E162Q mutant OxdC652532 2D-image
15-oxalateBacillus subtilisO34714-650168 2D-image
15-oxalateBacillus subtilisO34767pH 5, 26C, recombinant YvrK652196 2D-image
15.46-oxalateBacillus subtilis-soluble enzyme, citrate buffer (0.05 M, pH 4.0), at 37C716726 2D-image
16.4-oxalateBacillus subtilis-pH 4, 26C, wild-type OxdC652532 2D-image
17.4-oxalateBacillus subtilisO34714pH 4.0, 26C, recombinant mutant E162D678075 2D-image
22.61-oxalateBacillus subtilis-Eupergit C-immobilized enzyme, citrate buffer (0.05 M, pH 4.0), at 37C716726 2D-image
25-oxalateBacillus subtilisO34714pH 4.0, 26C, recombinant mutant T165P678075 2D-image
31-oxalateBacillus subtilisO34714pH 4.0, 26C, recombinant mutant S164A678075 2D-image
71-oxalateBacillus subtilisO34714pH 4.0, 26C, recombinant mutant E161A678075 2D-image
97-oxalateBacillus subtilisO34714pH 4.0, recombinant mutant S161D/N163S/S164N678229 2D-image
5-oxalic acidBacillus subtilis-non-His-tagged recombinant enzyme705343 2D-image
7-oxalic acidBacillus subtilis-His-tagged recombinant enzyme705343 2D-image
additional information-additional informationBacillus subtilis-kinetic data, kinetic mechanism651590-
additional information-additional informationBacillus subtilis-steady-state kinetics of mutant enzyme, minimal kinetic model677825-
additional information-additional informationBacillus subtilisO34714kinetic analysis, different assay methods678075-
additional information-additional informationBacillus subtilis-Fourier transform infrared spectroscopy to monitor in real time both substrate consumption and product formation, the Km for oxalate determined using this assay is 3.8fold lower than that estimated from a stopped assay, overview, solvent deuterium kinetic isotope effect, overview678138-
additional information-additional informationBacillus subtilisO34714kinetics of recombinant wild-type and mutant enzymes, overview678229-

TURNOVER NUMBER [1/s] TURNOVER NUMBER MAXIMUM[1/s] SUBSTRATEORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE IMAGE
0.012-oxalateBacillus subtilis-mutant enzyme E101Q/E280Q, in 50 mM NaOAc (pH 4.2), 0.2% (v/v) Triton X-100, 0.5 mM o-phenylenediamine, at 22C702319 2D-image
0.019-oxalateBacillus subtilis-mutant enzyme E280A , in 50 mM NaOAc (pH 4.2), 0.2% (v/v) Triton X-100, 0.5 mM o-phenylenediamine, at 22C702319 2D-image
0.046-oxalateBacillus subtilis-mutant enzyme E101A , in 50 mM NaOAc (pH 4.2), 0.2% (v/v) Triton X-100, 0.5 mM o-phenylenediamine, at 22C702319 2D-image
0.14-oxalateBacillus subtilis-mutant enzyme E280D, in 50 mM NaOAc (pH 4.2), 0.2% (v/v) Triton X-100, 0.5 mM o-phenylenediamine, at 22C702319 2D-image
0.3-oxalateBacillus subtilis-pH 4.2, 23C, mutant E162Q677825 2D-image
0.49-oxalateBacillus subtilis-mutant enzyme E101D, in 50 mM NaOAc (pH 4.2), 0.2% (v/v) Triton X-100, 0.5 mM o-phenylenediamine, at 22C702319 2D-image
0.62-oxalateBacillus subtilis-mutant enzyme E101Q, in 50 mM NaOAc (pH 4.2), 0.2% (v/v) Triton X-100, 0.5 mM o-phenylenediamine, at 22C; mutant enzyme E280Q, in 50 mM NaOAc (pH 4.2), 0.2% (v/v) Triton X-100, 0.5 mM o-phenylenediamine, at 22C702319 2D-image
0.9-oxalateBacillus subtilis-pH 4.2, 23C, mutant R92K677825 2D-image
28oxalateBacillus subtilis-per manganese atom, at pH 4.2, 25C715299 2D-image
29-oxalateBacillus subtilis-pH 4.2, 23C, mutant E162D677825 2D-image
53-oxalateBacillus subtilis-wild type enzyme, in 50 mM NaOAc (pH 4.2), 0.2% (v/v) Triton X-100, 0.5 mM o-phenylenediamine, at 22C702319 2D-image
54-oxalateBacillus subtilisO34714-650168 2D-image
54-oxalateBacillus subtilisO34767pH 5, 26C, recombinant YvrK652196 2D-image
57-oxalateBacillus subtilis-pH 4.2, 23C, wild-type enzyme677825 2D-image

kcat/KM VALUE [1/mMs-1]kcat/KM VALUE [1/mMs-1] MaximumSUBSTRATEORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE IMAGE
0.004-oxalateBacillus subtilis-mutant enzyme E101Q/E280Q, in 50 mM NaOAc (pH 4.2), 0.2% (v/v) Triton X-100, 0.5 mM o-phenylenediamine, at 22C70231914855
0.006-oxalateBacillus subtilis-mutant enzyme E280A , in 50 mM NaOAc (pH 4.2), 0.2% (v/v) Triton X-100, 0.5 mM o-phenylenediamine, at 22C70231914855
0.016-oxalateBacillus subtilis-mutant enzyme E101A , in 50 mM NaOAc (pH 4.2), 0.2% (v/v) Triton X-100, 0.5 mM o-phenylenediamine, at 22C70231914855
0.026-oxalateBacillus subtilis-mutant enzyme E280D, in 50 mM NaOAc (pH 4.2), 0.2% (v/v) Triton X-100, 0.5 mM o-phenylenediamine, at 22C70231914855
0.061-oxalateBacillus subtilis-mutant enzyme E280Q, in 50 mM NaOAc (pH 4.2), 0.2% (v/v) Triton X-100, 0.5 mM o-phenylenediamine, at 22C70231914855
0.144-oxalateBacillus subtilis-mutant enzyme E101D, in 50 mM NaOAc (pH 4.2), 0.2% (v/v) Triton X-100, 0.5 mM o-phenylenediamine, at 22C70231914855
0.155-oxalateBacillus subtilis-mutant enzyme E101Q, in 50 mM NaOAc (pH 4.2), 0.2% (v/v) Triton X-100, 0.5 mM o-phenylenediamine, at 22C70231914855
6.309-oxalateBacillus subtilis-wild type enzyme, in 50 mM NaOAc (pH 4.2), 0.2% (v/v) Triton X-100, 0.5 mM o-phenylenediamine, at 22C70231914855
11-oxalic acidBacillus subtilis-His-tagged recombinant enzyme; non-His-tagged recombinant enzyme70534314856

Ki VALUE [mM]Ki VALUE [mM] MaximumINHIBITORORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE IMAGE
0.04-nitric oxideBacillus subtilis-apparent value, pH and temperature not specified in the publication714726 2D-image

IC50 VALUE [mM]IC50 VALUE [mM] MaximumINHIBITORORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE IMAGE
No entries in this field

SPECIFIC ACTIVITY [µmol/min/mg] SPECIFIC ACTIVITY MAXIMUM ORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE
0.4-Bacillus subtilis-purified recombinant mutants R92K/R270K, E162Q and E333Q677825
0.7-Bacillus subtilis-purified recombinant mutant E162Q/E333Q677825
1.3-Bacillus subtilis-purified recombinant mutant R92K677825
2.4-Bacillus subtilis-purified recombinant mutant R270K677825
4-Bacillus subtilis-purified recombinant mutant E333D677825
4.5-Bacillus subtilis-mutant enzyme T165V, in 50 mM sodium acetate, pH 4.2, temperature not specified in the publication715086
6.567-Agrobacterium tumefaciens-purified truncated AtuOXDC693597
9-Trametes ochracea-induced specific activity by 5 mM oxalic acid651021
14-Dichomitus squalens-non-induced specific activity, growth without oxalic acid651021
15-Phanerochaete sanguinea-induced specific activity by 5 mM oxalic acid651021
22-Bacillus subtilis-mutant enzyme T165S, in 50 mM sodium acetate, pH 4.2, temperature not specified in the publication715086
29-Bacillus subtilis-mutant enzyme S161T, in 50 mM sodium acetate, pH 4.2, temperature not specified in the publication715086
3072Bacillus subtilis-purified wild-type enzyme, dependent on purification procedure677825
40-Bacillus subtilis-purified recombinant mutant E162D677825
40-Bacillus subtilis-wild type enzyme, in 50 mM sodium acetate, pH 4.2, temperature not specified in the publication715086
41-Trametes versicolor-strain R/7, induced specific activity by 5 mM oxalic acid651021
48-Bacillus subtilis-mutant enzyme S161A, in 50 mM sodium acetate, pH 4.2, temperature not specified in the publication715086
65-Bacillus subtilisO34767pH 5, 26C, recombinant YvrK652196
86-Dichomitus squalens-induced specific activity by 5 mM oxalic acid651021
additional information-Aspergillus niger-maximal activity at a partial pressure of 0.04 atm of O24104
additional information-Phanerochaete sanguinea-very low activity without induction by oxalic acid651021
additional information-Trametes ochracea, Trametes versicolor-no activity detectable without induction by oxalic acid651021
additional information-Bacillus subtilis--651590, 651662
additional information-Bacillus subtilisO34714activity of recombinant wild-type and mutant enzymes, overview678075
additional information-Bacillus subtilis-two assay methods, stopped assay and Fourier transform infrared spectroscopy to monitor in real time both substrate consumption and product formation678138

pH OPTIMUMpH MAXIMUMORGANISM UNIPROT ACCESSION NO. COMMENTARYLITERATURE
3-Flammulina velutipes--4107
3.5-Bacillus subtilis-soluble and immobilized enzyme716726
3.6-Agaricus bisporus--653286
4-Cavia porcellus--4103
4-Bacillus subtilis-assay at652532
4-Bacillus subtilisO34714assay at678075
4-Bacillus subtilis-stopped assay at678138
4-Bacillus subtilisO34714assay at678229
4-Bacillus subtilis--681596
4.2-Bacillus subtilis-assay at677825
4.2-Bacillus subtilis-maximally active near pH 4.2715299
5-Bacillus subtilisO34714-650168
5-Bacillus subtilis--651662
5-Bacillus subtilisO34767assay at652196
5-Bacillus subtilis-Fourier transformation infrared spectroscopic assay at678138
additional information-Bacillus subtilis-pH-dependence of OxDC activity651590

pH RANGEpH RANGE MAXIMUMORGANISM UNIPROT ACCESSION NO.COMMENTARYLITERATURE
35Cavia porcellus-about 20% of maximal activity at pH 3.0 and 5.04103
35Bacillus subtilis-soluble and immobilized enzyme. When decreasing pH to 3.0, the soluble enzyme loses 76% of its original activity, but there is only 41% loss for the immobilized enzyme716726
37.5Bacillus subtilisO3471470% of maximum activity at pH 3, no activity at pH 7.5650168
37.5Bacillus subtilis-70% of maximum activity at pH 3, no activity at pH 7.5651662
4.26.7Bacillus subtilis--677825
7.5-Bacillus subtilis-not active above652532
additional information-Flammulina velutipesQ9UVK4active at low pH652089

TEMPERATURE OPTIMUMTEMPERATURE OPTIMUM MAXIMUMORGANISM UNIPROT ACCESSION NO.COMMENTARYLITERATURE
2122Bacillus subtilis-assay at651590
23-Bacillus subtilis-assay at677825
25-Bacillus subtilis-stopped assay at678138
26-Bacillus subtilisO34767assay at652196
26-Bacillus subtilis-assay at652532
26-Bacillus subtilisO34714assay at678075
26-Bacillus subtilis-Fourier transformation infrared spectroscopic assay at678138
35-Agaricus bisporus--653286
37-Bacillus subtilisO34714formate assay650168
37-Bacillus subtilis-assay at651732
50-Bacillus subtilis-soluble and immobilized enzyme716726
additional information-Bacillus subtilisO34714CO2 assay at room temperature650168

TEMPERATURE RANGE TEMPERATURE MAXIMUM ORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE
3070Bacillus subtilis-the soluble enzyme shows at least more than 50% activity between 30 and 70C. The immobilized enzyme almost retains its full maximum activity at 70C (7% decrease of activity), while the soluble enzyme shows about 50% activity at 70C716726
additional information-Cavia porcellus-1.7fold stimulation after incubation at 50C for 10 min, may be due to inactivation of heat labile proteases4103

pI VALUEpI VALUE MAXIMUMORGANISM UNIPROT ACCESSION NO.COMMENTARYLITERATURE
2.3-Trametes versicolor-the enzyme has two pI-values of 2.3 and 3.0713879
2.5-Flammulina velutipes-the enzyme has two pI-values at 2.5 and 3.3713879
2.6-Dichomitus squalens-the enzyme has two pI-values at 2.6 and 4.2713879
3-Agaricus bisporus-one of 2 isoenzymes653286
3-Agaricus bisporus-the enzyme has two pI-values at 3.0 and 3.4713879
3-Trametes versicolor-the enzyme has two pI-values of 2.3 and 3.0713879
3.3-Flammulina velutipes-the enzyme has two pI-values at 2.5 and 3.3713879
3.4-Agaricus bisporus-one of 2 isoenzymes653286
3.4-Agaricus bisporus-the enzyme has two pI-values at 3.0 and 3.4713879
4.2-Dichomitus squalens-the enzyme has two pI-values at 2.6 and 4.2713879
5.1-Bacillus subtilisO34714predicted value650168
5.1-Bacillus subtilis-predicted value651662
6.1-Bacillus subtilisO34714experimentally determined value650168
6.1-Bacillus subtilis-determined using PhastSystem651662

SOURCE TISSUE ORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE SOURCE
bloodCavia porcellus--4103Manually annotated by BRENDA team
intestineCavia porcellus--4103Manually annotated by BRENDA team
kidneyCavia porcellus--4103Manually annotated by BRENDA team
liverCavia porcellus--4103Manually annotated by BRENDA team
myceliumSclerotinia sclerotiorum--4102Manually annotated by BRENDA team
myceliumFlammulina sp.Q870M8-682396Manually annotated by BRENDA team
myceliumTrametes versicolor--4106, 692203Manually annotated by BRENDA team
myceliumFlammulina sp. IJF 140502---Manually annotated by BRENDA team

LOCALIZATION ORGANISM UNIPROT ACCESSION NO. COMMENTARY GeneOntology No. LITERATURE SOURCE
cell wallBacillus subtilis-; the accumulation of OxdC in the cell wall proteome under acidic growth conditions is absolutely dependent on YvrI5618692903Manually annotated by BRENDA team
cell wallBacillus subtilis CU1065-; the accumulation of OxdC in the cell wall proteome under acidic growth conditions is absolutely dependent on YvrI5618-Manually annotated by BRENDA team
cytoplasmDichomitus squalens--5737651021Manually annotated by BRENDA team
cytoplasmBacillus subtilis--5737652532Manually annotated by BRENDA team
cytoplasmBacillus subtilis 168, Dichomitus squalens PO114--5737-Manually annotated by BRENDA team
cytosolBacillus subtilis--5829651662Manually annotated by BRENDA team
cytosolAgrobacterium tumefaciens-OXDC is most likely translocated from cytosol to the periplasm by a twin-arginine translocation system5829693597Manually annotated by BRENDA team
cytosolBacillus subtilis 168--5829-Manually annotated by BRENDA team
extracellularTrametes versicolor---4106Manually annotated by BRENDA team
intracellularTrametes versicolor-localized close to the plasma membrane and in intracellular vesicles56224106Manually annotated by BRENDA team
intracellularPhanerochaete sanguinea, Trametes ochracea, Trametes versicolor--5622651021Manually annotated by BRENDA team
intracellularPhanerochaete sanguinea T51, Trametes ochracea T7--5622-Manually annotated by BRENDA team
periplasmAgrobacterium tumefaciens-OXDC is most likely translocated from cytosol to the periplasm by a twin-arginine translocation system-693597Manually annotated by BRENDA team
solubleBacillus subtilisO34767recombinant YoaN; recombinant YvrK-652196Manually annotated by BRENDA team
solubleBacillus subtilis 168-recombinant YoaN; recombinant YvrK--Manually annotated by BRENDA team

PDBSCOPCATHORGANISM
1uw8, downloadSCOP (1uw8)CATH (1uw8)Bacillus subtilis (strain 168)
2uy8, downloadSCOP (2uy8)CATH (2uy8)Bacillus subtilis (strain 168)
2uy9, downloadSCOP (2uy9)CATH (2uy9)Bacillus subtilis (strain 168)
2uya, downloadSCOP (2uya)CATH (2uya)Bacillus subtilis (strain 168)
2uyb, downloadSCOP (2uyb)CATH (2uyb)Bacillus subtilis (strain 168)
2v09, downloadSCOP (2v09)CATH (2v09)Bacillus subtilis (strain 168)
3s0m, downloadSCOP (3s0m)CATH (3s0m)Bacillus subtilis (strain 168)

MOLECULAR WEIGHT MOLECULAR WEIGHT MAXIMUM ORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE
43000-Agrobacterium tumefaciens-SDS-PAGE693597
44000-Bacillus subtilis-SDS-PAGE691955
44700-Agrobacterium tumefaciens-estimated from amino acid sequence693597
48400-Trametes versicolor-calculated from amino acid sequence692203
104000110000Dichomitus squalens--713879
104000-Phanerochaete chrysosporium--713879
110000-Agaricus bisporus-deglycosylated protein713879
118000-Agaricus bisporus-glycosylated protein713879
118000-Trametes versicolor--713879
128000-Flammulina velutipes--713879
220000-Bacillus subtilis-gel filtration651662
222000-Bacillus subtilisO34767recombinant YvrK, nondenaturing PAGE652196
254000-Bacillus subtilisO34767recombinant YvrK, gel filtration652196
264000-Bacillus subtilisO34714-650168
560000-Flammulina velutipes-the high apparent MW obtained by gel filtration can be due to the tendency of certain glycoproteins to interact noncovalently in solution, gel filtration4107

SUBUNITS ORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE
?Trametes versicolor-x * 59000, SDS-PAGE4106
?Flammulina velutipes-x * 55000, enzyme decglycosylated by endo-beta-N-acetylglucosaminidase, SDS-PAGE; x * 64000, glycosylated enzyme, SDS-PAGE4107
?Bacillus subtilis-x * 43000, SDS-PAGE651732
?Flammulina velutipesQ9UVK4x * 50000, deglycosylated form, calculated from the amino acid sequence652089
?Agaricus bisporus-x * 64000, SDS-PAGE and Western blot analysis653286
hexamerBacillus subtilisO34767; 6 * 44000, recombinant YvrK, SDS-PAGE652196
hexamerBacillus subtilis-4 * 43000, crystal structure analysis669296
hexamerBacillus subtilisO34714homohexamer, each subunit contains two similar, but distinct, manganese sites, only site 1 is catalytically active and site 2 is purely structural678075
hexamerBacillus subtilis--705343
hexamerAgaricus bisporus, Aspergillus niger, Aspergillus sp., Bacillus subtilis, Dichomitus squalens, Flammulina sp., Flammulina velutipes, Pandorea sp., Phanerochaete chrysosporium, Trametes versicolor-functional ODC enzyme is a hexamer comprised of two trimers of the bicupin subunits713879
hexamerBacillus subtilis 168-; 6 * 44000, recombinant YvrK, SDS-PAGE-
hexamerFlammulina sp. IJF 140502, Pandorea sp. OXJ-11a-functional ODC enzyme is a hexamer comprised of two trimers of the bicupin subunits-
pentamerBacillus subtilis-5 * 44000, SDS-PAGE, 5 * 43407, calculated from the amino acid sequence, pentamer, but it is possible, that YvrK is actually a hexamer651662
pentamerBacillus subtilis 168-5 * 44000, SDS-PAGE, 5 * 43407, calculated from the amino acid sequence, pentamer, but it is possible, that YvrK is actually a hexamer-
homohexamerBacillus subtilisO34714monomeric and hexameric structure650168
additional informationBacillus subtilis-the enzyme is composed of two cupin domains677825
additional informationBacillus subtilis-the enzyme is composed of two cupin domains, each of which contains a Mn2+ ion coordinated by four identical conserved residues681596

POSTTRANSLATIONAL MODIFICATION ORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE
glycoproteinAgaricus bisporus--713879
glycoproteinFlammulina velutipes-15% neutral sugar content4107
glycoproteinFlammulina velutipesQ9UVK4recombinant enzyme, expressed in tobacco or tomato plants, is partially glycosylated, four potential N-linked glycosylation sites652089

Crystallization/COMMENTARY ORGANISM UNIPROT ACCESSION NO. LITERATURE
-Bacillus subtilis-651590
purified recombinant enzyme, hanging drop vapor diffusion method, 0.001 m1 of 10 mg ml protein in 50 mM Tris-HCl, pH 8.5, containing 500 mM NaCl mixed with 0.001 ml of precipitant containing 4.5% w/v PEG 2000, 100 mM Tris-HCl, pH 8.5, 100 mM glycine, 5 mM DTT, and 0.5 mM MnCl2, suspended over 1 ml of precipitant at 18 C, crystal cryoprotection by crystallization solution containing 25% w/v glycerol, X-ray diffraction structure determination and analysis at 1.80 A resolution, modellingBacillus subtilisO34714678229
purified recombinant mutants R92A, DELTA162-163, S161A, and E162A, hanging-drop vapour diffusion method at 18C, the mutants enzymes generally crystallize with 8-15% v/v PEG 8000, 0.1 M Tris, pH 8.5, and 0-15% xylitol, further method optimization for each mutant enzyme, X-ray diffraction structure determination and analysis at 2.0-3.1 A resolution, molecular modellingBacillus subtilisO34714678075
recombinant OXDC, 3-dimensional structures in absence of formate and complexed with formate, hanging drop vapor diffusion technique, X-ray analysisBacillus subtilisO34714650168
recombinant OxdC, hanging drop vapour diffusion method, X-ray analysisBacillus subtilis-652532

pH STABILITYpH STABILITY MAXIMUM ORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE
3-Bacillus subtilis-both the soluble and immobilized enzyme are stable after 6 h of treatment with buffer at a pH higher than 4.5, and no obvious activity decrease are observed. There is 36.9% activity preserved in the immobilized enzyme after 6 h of treatment with a pH 3.5 buffer, and 4.2% activity remains in the soluble enzyme716726

TEMPERATURE STABILITYTEMPERATURE STABILITY MAXIMUM ORGANISM UNIPROT ACCESSION NO. COMMENTARYLITERATURE
30-Flammulina velutipes-30 min, in presence of 10% SDS, retains 45% of its activity4107
6070Bacillus subtilis-both soluble and immobilized enzyme lose their activity continuously at 60C treatment (1 h at pH 4.0). After thermal treatment for 10 min, 46.07% activity remains for the immobilized enzyme an keep 13.86% activity after 1 h of thermal treatment, while the soluble one loses its activity completely716726
60-Flammulina velutipes-30 min, in presence of 10% SDS, complete inactivation4107
80-Flammulina velutipes-20 min, 22% loss of activity4107
96-Flammulina velutipes-10 min, complete inactivation4107

GENERAL STABILITYORGANISM UNIPROT ACCESSION NO.LITERATURE
albumin, gelatin or surface-active non-ionic substances protect against thermal inactivation or denaturation by airAspergillus niger-4104
O2 pressures higher than 0.04 atm of O2 accelerate the denaturation of the enzyme even in the presence of o-phenylenediamineAspergillus niger-4104
p-phenylenediamine, o-diphenols, p-diphenols and p-aromatic diamines protect against thermal inactivation or denaturation by airAspergillus niger-4104
under the condition of enzyme/support ratio at 1:20, pH 9, with 1.5 M (NH4)2SO4, 22C, and shaking at 30 rpm for 24 h, activity recovery of Eupergit C-immobilized enzyme reaches 90%Bacillus subtilis-716726
unstable enzyme, loses activity during purification, undergoes partial precipitation during assaysBacillus subtilisO34714650168
retains 45% of its activity after incubation with 10% SDS for 30 min at room temperature. Almost complete loss of activity after 30 min, in presence of 10% SDSFlammulina velutipes-4107
crystallization of OxDc noticeably increases the enzyme's specific activity and broadenes its pH-activity profile at both acidic pH 3.0 and neutral pH 7.0Mus musculus-690331

ORGANIC SOLVENT ORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE
No entries in this field

OXIDATION STABILITY ORGANISM UNIPROT ACCESSION NO. LITERATURE
YvrK is occasionally prone to oxidation during the latter stages of the purification resulting in its dimerization, which is prevented by dithiothreitolBacillus subtilisO34767652196

STORAGE STABILITY ORGANISM UNIPROT ACCESSION NO. LITERATURE
0-3C, 0.2 M acetate buffer, pH 5.6, stable for several monthsAspergillus niger-4104
-20C, frozen in liquid nitrogen, pH buffered at or near 7, stableBacillus subtilis-651662
4C, 1 mg/ml protein, 0.02 M potassium acetate, more than 70% of the initial activity is retained after 4 monthsFlammulina velutipes-4107

Purification/COMMENTARY ORGANISM UNIPROT ACCESSION NO. LITERATURE
partialAgaricus bisporus-653286
Ni-NTA resin chromatographyAgrobacterium tumefaciens-693597
-Aspergillus niger-4104
-Bacillus subtilis-669296
1000foldBacillus subtilis-651662
DEAE-Sepharose column chromatography and Phenyl-Sepharose column chromatographyBacillus subtilis-702319
Ni-NTA column chromatographyBacillus subtilis-691955
Ni-NTA column chromatography, gel filtrationBacillus subtilis-715086
nickel affinity column chromatographyBacillus subtilis-705343
recombinant C-terminally His-tagged OxdC from Escherichia coli strain BL21(DE3)Bacillus subtilis-678138
recombinant C-terminally His-tagged wild-type and mutant enzymes from Escherichia coli strain BL21(DE3) by nickel affinity chromatographyBacillus subtilisO34714678229
recombinant His-tagged enzyme from Escherichia coli strain BL21(DE3) by nickel affinity chromatography and gel filtrationBacillus subtilisO34714678075
recombinant OXDCBacillus subtilis-650168, 651590, 652532
recombinant wild-type and mutant enzymes from Escherichia coli strain BL21(DE3) by hydrophobic interaction and anion exchange chromatographyBacillus subtilis-677825
recombinant YvrK, 20.7foldBacillus subtilisO34767652196
-Flammulina velutipes-4107
-Trametes versicolor-4106

Cloned/COMMENTARY ORGANISM UNIPROT ACCESSION NO. LITERATURE
expressed in Escherichia coli BL21 (DE3) cellsAgrobacterium tumefaciens-693597
expressed in Escherichia coliBacillus subtilis-669296, 705343
expressed in Escherichia coli BL21(DE3) cellsBacillus subtilisO34714702319, 715086
expressed in Lactobacillus plantarum strain NC8Bacillus subtilis-691955
expression in Escherichia coli BL21(DE3)Bacillus subtilis-652532
gene oxdC, expression of C-terminally His-tagged OxdC in Escherichia coli strain BL21(DE3)Bacillus subtilis-678138
gene oxdC, expression of the C-terminally His-tagged wild-type and mutant enzymes in Escherichia coli strain BL21(DE3)Bacillus subtilisO34714678229
gene oxdC, expression of the C-terminally His6-tagged protein in Escherichia coli strain BL21(DE3)Bacillus subtilisO34714678075
gene oxdC, expression of wild-type and mutant enzymes in Escherichia coli strain BL21(DE3)Bacillus subtilis-677825
oxdD gene, expression in Escherichia coli, genetic organization of the oxdD locusBacillus subtilis-651732
yoaN gene, overexpression in Escherichia coli BL21(DE3)pLysS; yvrK gene, overexpression in Escherichia coli BL21(DE3)pLysSBacillus subtilisO34767652196
yvrK gene, expression in Escherichia coli B834 (DE3)Bacillus subtilisO34714650168
yvrk gene, expression in Escherichia coli BL21(DE3)Bacillus subtilis-651590
gene oxdC, DNA and amino acid sequence determination and analysis, expression of the enzyme in transgenic lettuce, Lactuca sativa cv. Veronica, plants using Agrobacterium tumefaciens strain EHA 105-mediated transformationFlammulina sp.Q870M8682396
-Flammulina velutipes-4107
expression of functionally inactive OXDC in Escherichia coli, expression of active OXDC in Nicotiana tabaccum var. Petite Havanna and tomato plants var. Pusa Ruby in cytosol and vacuoleFlammulina velutipesQ9UVK4652089
expressed in Nicotiana tabacumTrametes versicolor-692203

EXPRESSION ORGANISM UNIPROT ACCESSION NO. LITERATURE
YvrI is essential for acid stress induction of oxdC transcription, YvrI and YvrL regulate OxdC accumulation in response to acid stressBacillus subtilis-692903
YvrI is essential for acid stress induction of oxdC transcription, YvrI and YvrL regulate OxdC accumulation in response to acid stressBacillus subtilis CU1065--
OxDC expression is induced by addition of inorganic acids including hydrochloric acid, sulfuric acid, and phosphoric acid to culture mediaTrametes versicolor-701766
OxDC expression is induced by addition of inorganic acids including hydrochloric acid, sulfuric acid, and phosphoric acid to culture mediaTrametes versicolor PRL572--

ENGINEERINGORGANISM UNIPROT ACCESSION NO.COMMENTARYLITERATURE
D297ABacillus subtilisO34714site-directed mutagenesis, the mutant shows reduced activity and altered kinetics compared to the wild-type enzyme678075
E101ABacillus subtilis-the mutant shows strongly decreased activity702319
E101DBacillus subtilis-the mutant shows strongly decreased activity702319
E101QBacillus subtilis-the mutant shows strongly decreased activity702319
E101Q/E280QBacillus subtilis-the mutant shows strongly decreased activity702319
E162ABacillus subtilis-Mn2+-binding site 1 mutant, inactive652532
E162ABacillus subtilisO34714site-directed mutagenesis, the mutant lacks both oxalate decarboxylase and oxalate oxidase activities, structure analysis678075
E162A/N163S/S164NBacillus subtilisO34714site-directed mutagenesis, the mutant shows highly reduced activity compared to the wild-type enzyme678229
E162DBacillus subtilis-site-directed mutagenesis, the mutant enzyme shows altered kinetics and slightly reduced activity compared to the wild-type enzyme677825
E162DBacillus subtilisO34714site-directed mutagenesis, E162D mutant retains 29% of the decarboxylase activity compared to the wild-type enzyme678075
E162QBacillus subtilis-Mn2+-binding site 1 mutant, Vmax and kcat/Km is 1% that of wild-type652532
E162QBacillus subtilis-site-directed mutagenesis, the mutant enzyme shows altered kinetics and reduced activity compared to the wild-type enzyme677825
E162QBacillus subtilisO34714site-directed mutagenesis, E162Q mutant retains only 1% of the decarboxylase activity compared to the wild-type enzyme678075
E162Q/E333QBacillus subtilis-site-directed mutagenesis, the mutant enzyme shows altered kinetics and reduced activity compared to the wild-type enzyme677825
E280ABacillus subtilis-the mutant shows strongly decreased activity702319
E280DBacillus subtilis-the mutant shows strongly decreased activity702319
E280QBacillus subtilis-the mutant shows strongly decreased activity702319
E333ABacillus subtilisO34714mutant of the Mn-binding site in domain II, 25fold reduced formate production, 4fold reduced CO2 production650168
E333ABacillus subtilis-Mn2+-binding site 2 mutant, 4-6% of wild-type activity at pH 4, lower Km for oxalate, kcat/Km is 25% that of wild-type652532
E333ABacillus subtilisO34714site-directed mutagenesis, the mutant shows reduced oxalate decarboxylase and oxalate oxidase activities compared to the wild-type enzyme678075
E333DBacillus subtilis-site-directed mutagenesis, the mutant enzyme shows altered kinetics and reduced activity compared to the wild-type enzyme677825
E333QBacillus subtilis-Mn2+-binding site 2 mutant, inactive652532
E333QBacillus subtilis-site-directed mutagenesis, the mutant enzyme shows altered kinetics and reduced activity compared to the wild-type enzyme677825
E333QBacillus subtilisO34714site-directed mutagenesis, the mutant lacks both oxalate decarboxylase and oxalate oxidase activities678075
E33DBacillus subtilisO34714site-directed mutagenesis, the mutant shows reduced activity and altered kinetics compared to the wild-type enzyme678075
R270ABacillus subtilis-Mn2+-binding site 2 mutant, kcat/Km is 3% that of wild-type652532
R270ABacillus subtilisO34714site-directed mutagenesis, the mutant shows altered kinetics compared to the wild-type enzyme678075
R270EBacillus subtilisO34714mutant with 20fold reduced CO2 production650168
R270KBacillus subtilis-Mn2+-binding site 2 mutant, kcat/Km is 43% that of wild-type652532
R270KBacillus subtilis-site-directed mutagenesis, the mutant enzyme shows altered kinetics and reduced activity compared to the wild-type enzyme677825
R270QBacillus subtilisO34714site-directed mutagenesis, the mutant shows altered kinetics compared to the wild-type enzyme678075
R92ABacillus subtilis-Mn2+-binding site 1 mutant, inactive652532
R92ABacillus subtilisO34714site-directed mutagenesis, the mutant lacks both oxalate decarboxylase and oxalate oxidase activities, structure analysis678075
R92KBacillus subtilis-Mn2+-binding site 1 mutant, kcat/Km is 7% that of wild-type652532
R92KBacillus subtilis-site-directed mutagenesis, the mutant enzyme shows altered kinetics and reduced activity compared to the wild-type enzyme677825
R92KBacillus subtilisO34714site-directed mutagenesis, the mutant lacks both oxalate decarboxylase and oxalate oxidase activities678075
R92K/R270KBacillus subtilis-site-directed mutagenesis, the mutant enzyme shows altered kinetics and reduced activity compared to the wild-type enzyme677825
S161ABacillus subtilisO34714site-directed mutagenesis, the mutant shows reduced activity and altered kinetics compared to the wild-type enzyme, structure analysis678075
S161ABacillus subtilis-the mutant shows increased specific activity compared to the wild type enzyme715086
S161D/E162ABacillus subtilisO34714site-directed mutagenesis, the mutant shows highly reduced activity compared to the wild-type enzyme678229
S161D/E162A/N163SBacillus subtilisO34714site-directed mutagenesis, almost inactive mutant678229
S161D/E162A/N163S/S164NBacillus subtilisO34714site-directed mutagenesis, almost inactive mutant678229
S161D/E162A/N163S/S164N/T165QBacillus subtilisO34714site-directed mutagenesis, almost inactive mutant678229
S161D/E162S/N163S/S164NBacillus subtilisO34714site-directed mutagenesis, almost inactive mutant678229
S161D/N163S/S164NBacillus subtilisO34714site-directed mutagenesis, the mutant shows about 60% reduced activity compared to the wild-type enzyme678229
S161TBacillus subtilis-the mutant shows reduced specific activity compared to the wild type enzyme715086
S164ABacillus subtilisO34714site-directed mutagenesis, the mutant shows reduced activity and altered kinetics compared to the wild-type enzyme678075
T165PBacillus subtilisO34714site-directed mutagenesis, altered comformation with dominant conformation of the lid compared to the wild-type enzyme678075
T165SBacillus subtilis-the mutant shows reduced specific activity compared to the wild type enzyme715086
T165VBacillus subtilis-the mutant shows strongly reduced specific activity compared to the wild type enzyme715086
Y340FBacillus subtilisO34714mutant with 13fold reduced CO2 production650168
E162ABacillus subtilis 168-Mn2+-binding site 1 mutant, inactive-
E333ABacillus subtilis 168-Mn2+-binding site 2 mutant, 4-6% of wild-type activity at pH 4, lower Km for oxalate, kcat/Km is 25% that of wild-type-
E333QBacillus subtilis 168-Mn2+-binding site 2 mutant, inactive-
R270KBacillus subtilis 168-Mn2+-binding site 2 mutant, kcat/Km is 43% that of wild-type-
H299ABacillus subtilisO34714site-directed mutagenesis, the mutant shows reduced activity and altered kinetics compared to the wild-type enzyme678075
additional informationBacillus subtilis-oxdD insertional mutant AH2898 missing OxdD protein651732
additional informationBacillus subtilisO34714construction of deletion mutant DELTA162-163 or inactive deletion mutant DELTA162-164, structure analysis, manganese content of mutant enzymes, overview678075
additional informationBacillus subtilisO34714the decarboxylase can be converted into an oxidase by mutating amino acids of the Mn2+-binding lid that include Glu162 with specificity switches, Mn2+ content of mutant enzymes, overview678229
R92ABacillus subtilis 168-Mn2+-binding site 1 mutant, inactive-
additional informationFlammulina sp.Q870M8expression of the enzyme in transgenic lettuce, Lactuca sativa, plants confers resistance to Sclerotinia sclerotiorum, overview682396
additional informationFlammulina sp. IJF 140502-expression of the enzyme in transgenic lettuce, Lactuca sativa, plants confers resistance to Sclerotinia sclerotiorum, overview-

Renatured/COMMENTARYORGANISM UNIPROT ACCESSION NO.LITERATURE
No entries in this field

APPLICATIONORGANISM UNIPROT ACCESSION NO.COMMENTARYLITERATURE
degradationAspergillus niger-oxalic acid removal in industrial bleaching plant filtrates containing oxalic acid695712
industryAspergillus niger-prevention of scaling in pulp and paper industry, depletion of oxalate from beverage713879
synthesisAspergillus phoenicis-biomimetic dyes may prove to be useful technological tools, suitable for the purification4105
industryAspergillus sp.-prevention of scaling in pulp and paper industry, depletion of oxalate from beverage713879
medicineBacillus subtilis-treatment of hyperoxaluria, urolithiasis, nephrocalcinosis, and depletion of dietary oxalate with enzyme formulation713879
biotechnologyFlammulina sp.-determination of oxalic acid in food and biological samples like urine, plasma, serum, wort and beer713879
biotechnologyFlammulina sp. IJF 140502-determination of oxalic acid in food and biological samples like urine, plasma, serum, wort and beer-
agricultureFlammulina velutipesQ9UVK4development of transgenic plants resistant to fungal infection, transgenic tobacco and tomato plants expressing oxalate decarboxylase show remarkable resistance to phytopathogenic fungus Sclerotinia sclerotiorum that utilizes oxalic acid during infestation652089
biotechnologyFlammulina velutipes-determination of oxalic acid in food and biological samples like urine, plasma, serum, wort and beer713879
medicineMus musculus-OxDc-CLEC reduces hyperoxaluria and ameliorates nephrocalcinosis and urolithiasis690331
agriculturePandorea sp.-control of fungal plant pathogen713879
agriculturePandorea sp. OXJ-11a-control of fungal plant pathogen-

REF. AUTHORS TITLE JOURNAL VOL. PAGES YEAR ORGANISM (UNIPROT ACCESSION NO.)LINK TO PUBMEDSOURCE
4102Magro, P.; Marciano, P.; Di Lenna, P.Enzymatic oxalate decarboxylase isolates of Sclerotinia sclerotiumFEMS Microbiol. Lett.4949-521988Sclerotinia sclerotiorum-
4103Murthy, M.S.R.; Talwar, H.S.; Nath, R.; Thind, S.K.Oxalate decarboxylase from guinea pig liverIRCS Med. Sci. Libr. Compend.9683-6841981Cavia porcellus-
4104Emiliani, E.; Riera, B.Enzymatic oxalate dcarboxylase in Aspergillus niger. II. Hydrogen peroxide formation and other characteristics of the oxalate decarboxylaseBiochim. Biophys. Acta167414-4211968Aspergillus niger PubMed
4105Labrou, N.E.; Clonis, Y.D.Biomimetic dye-ligands for oxalate-recognizing enzymes. Studies with oxalate oxidase and oxalate decarboxylaseJ. Biotechnol.4059-701995Aspergillus phoenicis-
4106Dutton, M.V.; Kathiara, M.; Gallagher, I.M.; Evans, C.S.Purification and characterization of oxalate decarboxylase from Coriolus versicolorFEMS Microbiol. Lett.116321-3261994Trametes versicolor-
4107Mehta, A.; Datta, A.Oxalate decarboxylase from Collybia velutipes. Purification, characterization, and cDNA cloningJ. Biol. Chem.26623548-235531991Flammulina velutipes PubMed
650168Anand, R.; Dorrestein, P.C.; Kinsland, C.; Begley, T.P.; Ealick, S.E.Structure of oxalate decarboxylase from Bacillus subtilis at 1.75 A resolutionBiochemistry417659-76692002Bacillus subtilis, Bacillus subtilis (O34714), Bacillus subtilis CU1065 (O34714) PubMed
651021Makela, M.; Galkin, S.; Hatakka, A.; Lundell, T.Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungiEnzyme Microb. Technol.30542-5492002Dichomitus squalens, Dichomitus squalens PO114, no activity in Ceriporiopsis subvermispora, no activity in Ceriporiopsis subvermispora CZ-3, no activity in Haploporus odorus strain T154, no activity in Nematoloma frowardii, no activity in Nematoloma frowardii b19, no activity in Phanerochaete chrysosporium, no activity in Phanerochaete chrysosporium F1767, no activity in Phlebiopsis gigantea, no activity in Phlebiopsis gigantea T55, no activity in Radulodon erikssonii, no activity in Radulodon erikssonii T84, no activity in Trichaptum fusco-violaceum, no activity in Trichaptum fusco-violaceum T21, Phanerochaete sanguinea, Phanerochaete sanguinea T51, Trametes ochracea, Trametes ochracea T7, Trametes versicolor-
651590Reinhardt, L.A.; Svedruzic, D.; Chang, C.H.; Cleland, W.W.; Richards, N.G.J.Heavy atom isotope effects on the reaction catalyzed by the oxalate decarboxylase from Bacillus subtilisJ. Am. Chem. Soc.1251244-12522003Bacillus subtilis, Bacillus subtilis 168 PubMed
651662Tanner, A.; Bornemann, S.Bacillus subtilis YvrK is an acid-induced oxalate decarboxylaseJ. Bacteriol.1825271-52732000Bacillus subtilis, Bacillus subtilis 168 PubMed
651732Costa, T.; Steil, L.; Martins, L.O.; Volker, U.; Henriques, A.O.Assembly of an oxalate decarboxylase produced under sigmaK control into the Bacillus subtilis spore coatJ. Bacteriol.1861462-14742004Bacillus subtilis PubMed
652089Kesarwani, M.; Azam, M.; Natarajan, K.; Mehta, A.; Datta, A.Oxalate decarboxylase from Collybia velutipes. Molecular cloning and its overexpression to confer resistance to fungal infection in transgenic tobacco and tomatoJ. Biol. Chem.2757230-72382000Flammulina velutipes, Flammulina velutipes (Q9UVK4) PubMed
652196Tanner, A.; Bowater, L.; Fairhurst, S.A.; Bornemann, S.Oxalate decarboxylase requires manganese and dioxygen for activity. Overexpression and characterization of Bacillus subtilis YvrK and YoaNJ. Biol. Chem.27643627-436342001Bacillus subtilis, Bacillus subtilis (O34714), Bacillus subtilis (O34767), Bacillus subtilis 168 (O34714), Bacillus subtilis 168 (O34767) PubMed
652532Just, V.J.; Stevenson, C.E.M.; Bowater, L.; Tanner, A.; Lawson, D.M.; Bornemann, S.A closed conformation of Bacillus subtilis oxalate decarboxylase OxdC provides evidence for the true identity of the active siteJ. Biol. Chem.27919867-198742004Bacillus subtilis, Bacillus subtilis (O34714), Bacillus subtilis 168 (O34714) PubMed
653286Kathiara, M.; Wood, D.A.; Evans, C.S.Detection and partial characterization of oxalate decarboxylase from Agaricus bisporusMycol. Res.104345-3502000Agaricus bisporus-
669296Chang, C.H.; Svedruzic, D.; Ozarowski, A.; Walker, L.; Yeagle, G.; Britt, R.D.; Angerhofer, A.; Richards, N.G.EPR spectroscopic characterization of the manganese center and a free radical in the oxalate decarboxylase reaction: identification of a tyrosyl radical during turnoverJ. Biol. Chem.27952840-528492004Bacillus subtilis PubMed
677825Svedruzic, D.; Liu, Y.; Reinhardt, L.A.; Wroclawska, E.; Cleland, W.W.; Richards, N.G.Investigating the roles of putative active site residues in the oxalate decarboxylase from Bacillus subtilisArch. Biochem. Biophys.46436-472007Bacillus subtilis PubMed
678075Just, V.J.; Burrell, M.R.; Bowater, L.; McRobbie, I.; Stevenson, C.E.; Lawson, D.M.; Bornemann, S.The identity of the active site of oxalate decarboxylase and the importance of the stability of active-site lid conformationsBiochem. J.407397-4062007Bacillus subtilis 168 (O34714), Bacillus subtilis (O34714) PubMed
678138Muthusamy, M.; Burrell, M.R.; Thorneley, R.N.; Bornemann, S.Real-time monitoring of the oxalate decarboxylase reaction and probing hydron exchange in the product, formate, using fourier transform infrared spectroscopyBiochemistry4510667-106732006Bacillus subtilis PubMed
678229Burrell, M.R.; Just, V.J.; Bowater, L.; Fairhurst, S.A.; Requena, L.; Lawson, D.M.; Bornemann, S.Oxalate decarboxylase and oxalate oxidase activities can be interchanged with a specificity switch of up to 282,000 by mutating an active site lidBiochemistry4612327-123362007Bacillus subtilis, Bacillus subtilis (O34714) PubMed
681596Angerhofer, A.; Moomaw, E.W.; Garcia-Rubio, I.; Ozarowski, A.; Krzystek, J.; Weber, R.T.; Richards, N.G.Multifrequency EPR studies on the Mn(II) centers of oxalate decarboxylaseJ. Phys. Chem. B1115043-50462007Bacillus subtilis PubMed
682396Dias, B.B.; Cunha, W.G.; Morais, L.S.; Vianna, G.R.; Rech, E.L.; de Capdeville, G.; Aragao, F.J.Expression of an oxalate decarboxylase gene from Flammulina sp. in transgenic lettuce (Lactuca sativa) plants and resistance to Sclerotinia sclerotiorumPlant Pathol.55187-1932006Flammulina sp. (Q870M8), Flammulina sp. IJF 140502 (Q870M8)-
687082Scarpellini, M.; Gaetjens, J.; Martin, O.J.; Kampf, J.W.; Sherman, S.E.; Pecoraro, V.L.Modeling the resting state of oxalate oxidase and oxalate decarboxylase enzymesInorg. Chem.473584-35932008Bacillus subtilis, Thermotoga maritima PubMed
690331Grujic, D.; Salido, E.C.; Shenoy, B.C.; Langman, C.B.; McGrath, M.E.; Patel, R.J.; Rashid, A.; Mandapati, S.; Jung, C.W.; Margolin, A.L.Hyperoxaluria is reduced and nephrocalcinosis prevented with an oxalate-degrading enzyme in mice with hyperoxaluriaAm. J. Nephrol.2986-932009Mus musculus PubMed
691955Kolandaswamy, A.; George, L.; Sadasivam, S.Heterologous expression of oxalate decarboxylase in Lactobacillus plantarum NC8Curr. Microbiol.58117-1212009Bacillus subtilis PubMed
692203Walz, A.; Zingen-Sell, I.; Theisen, S.; Kortekamp, A.Reactive oxygen intermediates and oxalic acid in the pathogenesis of the necrotrophic fungus Sclerotinia sclerotiorumEur. J. Plant Pathol.120317-3302008Trametes versicolor-
692903MacLellan, S.R.; Helmann, J.D.; Antelmann, H.The YvrI alternative sigma factor is essential for acid stress induction of oxalate decarboxylase in Bacillus subtilisJ. Bacteriol.191931-9392009Bacillus subtilis, Bacillus subtilis CU1065 PubMed
693597Shen, Y.H.; Liu, R.J.; Wang, H.Q.Oxalate decarboxylase from Agrobacterium tumefaciens C58 is translocated by a twin arginine translocation systemJ. Microbiol. Biotechnol.181245-12512008Agrobacterium tumefaciens PubMed
694237MacLellan, S.R.; Wecke, T.; Helmann, J.D.A previously unidentified sigma factor and two accessory proteins regulate oxalate decarboxylase expression in Bacillus subtilisMol. Microbiol.69954-9672008Bacillus subtilis, Bacillus subtilis CU1065 PubMed
695712Cassland, P.; Sjoede, A.; Winestrand, S.; Joensson, L.J.; Nilvebrant, N.O.Evaluation of oxalate decarboxylase and oxalate oxidase for industrial applicationsAppl. Biochem. Biotechnol.161255-2632010Aspergillus niger PubMed
701766Zhu, C.X.; Hong, F.Induction of an oxalate decarboxylase in the filamentous fungus Trametes versicolor by addition of inorganic acidsAppl. Biochem. Biotechnol.160655-6642010Trametes versicolor, Trametes versicolor PRL572 PubMed
702319Moomaw, E.W.; Angerhofer, A.; Moussatche, P.; Ozarowski, A.; Garcia-Rubio, I.; Richards, N.G.Metal dependence of oxalate decarboxylase activityBiochemistry486116-61252009Bacillus subtilis, Bacillus subtilis (O34714) PubMed
704104Cowley, A.B.; Poage, D.W.; Dean, R.R.; Meschter, C.L.; Ghoddusi, M.; Li, Q.S.; Sidhu, H.14-day repeat-dose oral toxicity evaluation of oxazyme in rats and dogsInt. J. Toxicol.2920-312010Bacillus subtilis PubMed
705343Tabares, L.C.; Gaetjens, J.; Hureau, C.; Burrell, M.R.; Bowater, L.; Pecoraro, V.L.; Bornemann, S.; Un, S.pH-Dependent structures of the manganese binding sites in oxalate decarboxylase as revealed by high-field electron paramagnetic resonanceJ. Phys. Chem. B1139016-90252009Bacillus subtilis PubMed
713879Maekelae, M.R.; Hilden, K.; Lundell, T.K.Oxalate decarboxylase: biotechnological update and prevalence of the enzyme in filamentous fungiAppl. Microbiol. Biotechnol.87801-8142010Agaricus bisporus, Aspergillus niger, Aspergillus sp., Bacillus subtilis, Dichomitus squalens, Flammulina sp., Flammulina sp. IJF 140502, Flammulina velutipes, Pandorea sp., Pandorea sp. OXJ-11a, Phanerochaete chrysosporium, Trametes versicolor PubMed
714726Moral, M.E.; Tu, C.; Imaram, W.; Angerhofer, A.; Silverman, D.N.; Richards, N.G.Nitric oxide reversibly inhibits Bacillus subtilis oxalate decarboxylaseChem. Commun. (Camb.)473111-31132011Bacillus subtilis PubMed
715086Imaram, W.; Saylor, B.T.; Centonze, C.P.; Richards, N.G.; Angerhofer, A.EPR spin trapping of an oxalate-derived free radical in the oxalate decarboxylase reactionFree Radic. Biol. Med.501009-10152011Bacillus subtilis, Bacillus subtilis (O34714) PubMed
715299Wolfenden, R.; Lewis, C.A.; Yuan, Y.Kinetic challenges facing oxalate, malonate, acetoacetate, and oxaloacetate decarboxylasesJ. Am. Chem. Soc.1335683-56852011Bacillus subtilis PubMed
716726Lin, R.; Wu, R.; Huang, X.; Xie, T.Immobilization of oxalate decarboxylase to Eupergit and properties of the immobilized enzymePrep. Biochem. Biotechnol.41154-1652011Bacillus subtilis PubMed

LINKS TO OTHER DATABASES (specific for EC-Number 4.1.1.2)
ExplorEnz
ExPASy
KEGG
MetaCyc
NCBI: PubMed, Protein, Nucleotide, Structure, Genome, OMIM
IUBMB Enzyme Nomenclature
PROSITE Database of protein families and domains
SYSTERS
Protein Mutant Database
InterPro (database of protein families, domains and functional sites)