Information on EC 1.13.11.5 - homogentisate 1,2-dioxygenase:

   PRINT
Please wait a moment until all data are loaded. This message will disappear when all data are loaded.
Mark a special word or phrase in this record:  
Select one or more organisms in this record:

The expected taxonomic range for this enzyme is: Eukaryota, Bacteria
The following organisms could not be found in the NCBI Taxonomy. Hence, they are not considered for the taxonomic range: Pigeon

Show additional data Do not include text mining results
Include (text mining) results (more...)
Include results (AMENDA + additional results, but less precise; more...)

Please login to have access to the AMENDA and FRENDA data

EC NUMBERCOMMENTARY
1.13.11.5-

RECOMMENDED NAMEGeneOntology No.
homogentisate 1,2-dioxygenaseGO:0004411

REACTIONREACTION DIAGRAMCOMMENTARYORGANISM UNIPROT ACCESSION NO.LITERATURE
homogentisate + O2 = 4-maleylacetoacetate
show the reaction diagram
catalytic mechanismHomo sapiens-439392
homogentisate + O2 = 4-maleylacetoacetate
show the reaction diagram
reaction mechanismPseudomonas putidaQ88E47726390
homogentisate + O2 = 4-maleylacetoacetate
show the reaction diagram
reaction mechanismPseudomonas putida KT2400--
homogentisate + O2 = 4-maleylacetoacetate
show the reaction diagram
----

REACTION TYPEORGANISM UNIPROT ACCESSION NO.COMMENTARYLITERATURE
oxidation----
redox reaction----
reduction----

PATHWAYKEGG LinkMetaCyc Link
Metabolic pathways01100 -
Microbial metabolism in diverse environments01120 -
Styrene degradation00643 -
tyrosine degradation I-TYRFUMCAT-PWY
Tyrosine metabolism00350 -

SYSTEMATIC NAMEIUBMB Comments
homogentisate:oxygen 1,2-oxidoreductase (decyclizing)Requires Fe2+.

SYNONYMSORGANISM UNIPROT ACCESSION NO.COMMENTARYLITERATURE
EC 1.13.1.5--formerly-
EC 1.99.2.5--formerly-
ElHDOExophiala lecanii-corniQ6JDV6-657627
HgDBos taurusB8YB76-712929, 712990
HgDBos taurus Chinese red cattleB8YB76--
HgDHomo sapiens--674157, 697403, 712909
HgDHomo sapiensQ93099-725601, 726475
HGDOPseudomonas putidaQ88E47-726390
HGDOPseudomonas putida KT2400Q88E47--
HGO----
HGOArabidopsis thalianaQ9ZRA2-670622
HGOHomo sapiens--657859
HGOPhanerochaete chrysosporium--670853
HGOaVitis vinifera x Vitis riparia, Vitis vinifera x Vitis vinifera--706809
HGObVitis vinifera x Vitis riparia, Vitis vinifera x Vitis vinifera--706809
HmgAPseudomonas aeruginosa--686387
HmgAPseudomonas putida--677068
HmgAPseudomonas putida KT 2440---
HmgAStreptomyces coelicolor--686802
homogentisate 1,2 dioxygenaseHomo sapiensQ93099-725601, 726475
homogentisate 1,2-dioxygenaseBurkholderia xenovorans--726271
homogentisate 1,2-dioxygenaseHomo sapiens--697403
homogentisate 1,2-dioxygenaseVitis vinifera x Vitis riparia, Vitis vinifera x Vitis vinifera--706809
homogentisate dioxygenase----
homogentisate dioxygenaseArabidopsis thalianaQ9ZRA2-670622
homogentisate dioxygenaseHomo sapiens--674157
homogentisate dioxygenasePhanerochaete chrysosporium--670853
homogentisate dioxygenasePseudomonas putidaQ88E47-726390
homogentisate dioxygenasePseudomonas putida KT2400Q88E47--
homogentisate oxidase----
homogentisate oxygenase----
homogentisate phytyl-transferaseCistus creticus-involved in isoprenoid biosynthetic pathway699799
homogentisic acid 1,2-dioxygenaseHomo sapiens--712909
homogentisic acid oxidase----
homogentisic acid oxygenase----
homogentisic oxygenase----
homogentisicase----
HPTCistus creticus--699799
HTO----

CAS REGISTRY NUMBERCOMMENTARY
9029-49-6-

ORGANISMCOMMENTARYLITERATURESEQUENCE CODESEQUENCE DB SOURCE
Agave toumeyana-439385--Manually annotated by BRENDA team
Agrostemma githago-439385--Manually annotated by BRENDA team
Arabidopsis thaliana-670622Q9ZRA2SwissProtManually annotated by BRENDA team
Aspergillus nigerUBC 814439386--Manually annotated by BRENDA team
Aspergillus niger UBC 814UBC 814439386--Manually annotated by BRENDA team
Bos taurus-396333, 439390, 439392--Manually annotated by BRENDA team
Bos taurus-712929B8YB76UniProtManually annotated by BRENDA team
Bos taurusgene HGD712990B8YB76UniProtManually annotated by BRENDA team
Bos taurus Chinese red cattle-712929B8YB76UniProtManually annotated by BRENDA team
Burkholderia xenovoransgenes hmgA1 and hmgA2726271--Manually annotated by BRENDA team
Cavia porcellus-439383--Manually annotated by BRENDA team
Cistus creticus-699799--Manually annotated by BRENDA team
Daucus carota-439385--Manually annotated by BRENDA team
Drosophyllum lusitanicum-439385--Manually annotated by BRENDA team
Emericella nidulansfilamentous ascomycete; strain biA1439391Q00667UniprotManually annotated by BRENDA team
Emericella nidulansfilamentous ascomycete; strains biA1 and veA1439389--Manually annotated by BRENDA team
Emericella nidulans BiA1strain biA1439391Q00667UniprotManually annotated by BRENDA team
Exophiala lecanii-corni-657627Q6JDV6SwissProtManually annotated by BRENDA team
Glycine max-439385--Manually annotated by BRENDA team
Homo sapiens-439387, 674157, 697403, 725601, 726475Q93099UniprotManually annotated by BRENDA team
Homo sapiens-439390, 439392, 657859, 712561, 712909, 712935--Manually annotated by BRENDA team
Melilotus albus-439385--Manually annotated by BRENDA team
Mus musculus-439388, 439392, 439393--Manually annotated by BRENDA team
Mus musculusnormal and alkaptonuric mice, which completely lack HTO439390--Manually annotated by BRENDA team
Nicotiana sylvestris-439385--Manually annotated by BRENDA team
Oryctolagus cuniculus-439383--Manually annotated by BRENDA team
Oryctolagus cuniculusmale rabbits439390--Manually annotated by BRENDA team
Phanerochaete chrysosporium-670853--Manually annotated by BRENDA team
Phaseolus vulgarisvar. nanus439385--Manually annotated by BRENDA team
Pigeon-439383--Manually annotated by BRENDA team
Pimpinella anisum-439385--Manually annotated by BRENDA team
Pseudomonas aeruginosasynthesis of homogentisate-1,2-dioxygenase (HmgA) is highly induced in anaerobic norCB bacteria, and not detected in wild-type extracts686387--Manually annotated by BRENDA team
Pseudomonas chlororaphisstrain O6686266--Manually annotated by BRENDA team
Pseudomonas chlororaphis O6strain O6686266--Manually annotated by BRENDA team
Pseudomonas fluorescens-396333, 439380--Manually annotated by BRENDA team
Pseudomonas putida-726390Q88E47UniProtManually annotated by BRENDA team
Pseudomonas putidastrain KT 2440677068--Manually annotated by BRENDA team
Pseudomonas putida KT 2440strain KT 2440677068--Manually annotated by BRENDA team
Pseudomonas putida KT2400-726390Q88E47UniProtManually annotated by BRENDA team
Rattus norvegicus-439381, 439382, 439383--Manually annotated by BRENDA team
Ruta graveolens-439385--Manually annotated by BRENDA team
Solenostemon scutellarioides-439385--Manually annotated by BRENDA team
Streptomyces coelicolor-686802--Manually annotated by BRENDA team
Vitis vinifera x Vitis riparia-706809--Manually annotated by BRENDA team
Vitis vinifera x Vitis vinifera-706809--Manually annotated by BRENDA team

GENERAL INFORMATIONORGANISM UNIPROT ACCESSION NO.COMMENTARYLITERATURE
evolutionHomo sapiens-the G161R natural mutation in the HGD gene occurs in a Hungarian population, originating from Slovakia, resists over 300 years, alkaptonuria phenotype overview712909
evolutionPseudomonas putidaQ88E47despite different folds, active site architectures, and Fe2+ coordination, extradiol dioxygenases can proceed through the same principal reaction intermediatesto catalyze the O2-dependent cleavage of aromatic rings. Convergent evolution of nonhomologous enzymes using the 2-His-1-carboxylate facial triad motif developed different solutions to stabilize closely related intermediates in unlike environments726390
evolutionPseudomonas putida KT2400-despite different folds, active site architectures, and Fe2+ coordination, extradiol dioxygenases can proceed through the same principal reaction intermediatesto catalyze the O2-dependent cleavage of aromatic rings. Convergent evolution of nonhomologous enzymes using the 2-His-1-carboxylate facial triad motif developed different solutions to stabilize closely related intermediates in unlike environments-
malfunctionHomo sapiens-alkaptonuria is a rare autosomal recessive disease, associated with deficiency of homogentisate 1,2-dioxygenase activity in the liver. This leads to an accumulation of homogentisic acid and its oxidized derivatives in polymerized form in connective tissues, especially in joints. Homogentisic acid induces apoptosis in chondrocytes. N-acetylcysteine decreases apoptosis induced in chondrocytes by HGA, increases chondrocyte growth reduced by homogentisate, and partially restores proteoglycan release inhibited by homogentisate, the effect is improved by addition of ascorbic acid. Evaluation of antioxidant drugs for the treatment of ochronotic alkaptonuria, caused by homogentisate 1,2-dioxygenase activity mutation, in an in vitro human cell model, overview712561
malfunctionHomo sapiens-alkaptonuria results from defective homogentisate1,2-dioxygenase, causing degenerative arthropathy. The deposition of ochronotic pigment in joints is so far attributed to homogentisic acid produced by the liver, circulating in the blood and accumulating locally. Alkaptonuria osteoarticular cells produce the ochronotic pigment in loco and this may strongly contribute to induction of ochronotic arthropath725601
malfunctionHomo sapiens-enzyme mutations in the homogentisate 1,2 dioxygenase gene are responsible for alkaptonuria in patients among Jordanian population, genotyping, overview726475
physiological functionVitis vinifera x Vitis riparia, Vitis vinifera x Vitis vinifera-involved in aromatic amino acid metabolism706809
physiological functionPseudomonas putidaQ88E47homogentisate 1,2-dioxygenase uses a mononuclear nonheme Fe2+ to catalyze the oxidative ring cleavage in the degradation of Tyr and Phe by producing maleylacetoacetate from homogentisate, i.e 2,5-dihydroxyphenylacetate726390
physiological functionPseudomonas putida KT2400-homogentisate 1,2-dioxygenase uses a mononuclear nonheme Fe2+ to catalyze the oxidative ring cleavage in the degradation of Tyr and Phe by producing maleylacetoacetate from homogentisate, i.e 2,5-dihydroxyphenylacetate-
metabolismHomo sapiens-the enzyme is involved in tyrosine catabolism712935
additional informationBos taurusB8YB76HGD-BstXI genotypes show significant effects on cooking loss, drip loss, net meat weight, carcass weight, and eye muscle area. Also the HGD-HaeIII genotypes significantly affect cooking loss, muscle fibre diameter, shear force, drip loss, and carcass yield ratio. Phenotypes, overview712929
additional informationHomo sapiens-mutations in homogentisate 1,2-dioxygenase cause alkaptonuria and subsequent ochronosis, an uncommon cause of backache. The phenotype includes limited spine mobility and chronic disk degeneration, overview712935
additional informationPseudomonas putidaQ88E47the active site pocket with its Fe2+ ion is freely accessible from the outside through a wide opening. Homogentisate binds as a monodentate ligand to Fe2+, and its interaction with Tyr346 invokes the folding of a loop over the active site, effectively shielding it from solvent. Binding of homogentisate is driven by enthalpy and is entropically disfavored as shown by anoxic isothermal titration calorimetry. Three different reaction cycle intermediates, i.e. superoxo:semiquinone-, alkylperoxo-, and product-bound intermediates. central role of Y346 in substrate binding and turnover726390
additional informationBos taurus Chinese red cattle-HGD-BstXI genotypes show significant effects on cooking loss, drip loss, net meat weight, carcass weight, and eye muscle area. Also the HGD-HaeIII genotypes significantly affect cooking loss, muscle fibre diameter, shear force, drip loss, and carcass yield ratio. Phenotypes, overview-
additional informationPseudomonas putida KT2400-the active site pocket with its Fe2+ ion is freely accessible from the outside through a wide opening. Homogentisate binds as a monodentate ligand to Fe2+, and its interaction with Tyr346 invokes the folding of a loop over the active site, effectively shielding it from solvent. Binding of homogentisate is driven by enthalpy and is entropically disfavored as shown by anoxic isothermal titration calorimetry. Three different reaction cycle intermediates, i.e. superoxo:semiquinone-, alkylperoxo-, and product-bound intermediates. central role of Y346 in substrate binding and turnover-

SUBSTRATEPRODUCT                      REACTION DIAGRAMORGANISM UNIPROT ACCESSION NO. COMMENTARY
(Substrate)
LITERATURE
(Substrate)
COMMENTARY
(Product)
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
3-chlorohomogentisate + O23-chloro-4-maleylacetoacetate
show the reaction diagram
Homo sapiens-1% of activity with homogentisate657859--?
3-methylhomogentisate + O23-methyl-4-maleylacetoacetate
show the reaction diagram
Homo sapiens-10% of activity with homogentisate657859--?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Phaseolus vulgaris--439385-439385?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Mus musculus--439388-439388?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Mus musculus--439390-439390?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Mus musculus--439392-439392?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Mus musculus--439393-439393ir
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Homo sapiensQ93099-439387-439387?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Homo sapiens--439390-439390?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Homo sapiens--657859, 697403--?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Homo sapiens--674157--ir
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Oryctolagus cuniculus--439390-439390?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Emericella nidulansQ00667-439391-439391?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Glycine max--439385-439385?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Pseudomonas fluorescens--396333-396333?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Pseudomonas putida--677068--ir
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Daucus carota, Nicotiana sylvestris, Ruta graveolens--439385-439385?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Phanerochaete chrysosporium--670853--ir
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Melilotus albus, Solenostemon scutellarioides, Agrostemma githago, Agave toumeyana, Drosophyllum lusitanicum, Pimpinella anisum--439385-439385?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Burkholderia xenovorans--726271--?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Arabidopsis thalianaQ9ZRA2-670622--ir
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Homo sapiens--725601--?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Pseudomonas putidaQ88E47-726390--?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Rattus norvegicus--439382product is 4-maleylacetoacetate, which is converted by a specific cis-trans isomerase to 4-fumarylacetoacetate439382?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Homo sapiens-utilizes a nonheme iron to incorporate both atoms of molecular oxygen into homogentisate, identical with 2,5-dihydroxyphenylacetate439392-439392?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Emericella nidulans-highly specific for homogentisate439389-439389?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Aspergillus niger-specific for homogentisate439386-439386?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Pseudomonas fluorescens-specific for homogentisate439380-439380?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Mus musculus-homogentisate is the natural substrate, key reaction in the catabolic pathway of aromatic amino acids, oxidative cleavage of the aromatic ring439393-439393ir
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Homo sapiens-enzyme catalyzes an intermediate step in the catabolism of tyrosine and phenylalanine439390--?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Homo sapiens-enzyme cleaves the aromatic ring during the metabolic degradation of phenylalanine and tyrosine439392--?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Mus musculus-homogentisate catabolism439388--?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Phaseolus vulgaris, Glycine max, Daucus carota, Nicotiana sylvestris, Ruta graveolens, Melilotus albus, Solenostemon scutellarioides, Agrostemma githago, Agave toumeyana, Drosophyllum lusitanicum, Pimpinella anisum-homogentisate ring-cleavage pathway, key enzyme of the ring-cleavage reaction in the catabolic sequence of enzymes from L-tyrosine to acetoacetate and fumarate439385--?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Aspergillus niger-one of the key enzymes involved in catabolism of phenylalanine, tyrosine, phenylacetic acid and hydroxyphenylacetic acids439386--?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Emericella nidulans-one of the enzymes mediating phenylalanine catabolism439389--?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Emericella nidulansQ00667catalyzes an essential step in phenylalanine catabolism439391--?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Exophiala lecanii-corniQ6JDV6ElHDO expression is induced during growth on ethylbenzene657627--?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Streptomyces coelicolor-hmgA is necessary for tyrosine catabolism and the proper production of actinorhodin. Transcription of hmgA is activated by HpdA in the presence of tyrosine686802--?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Aspergillus niger UBC 814-specific for homogentisate439386-439386?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Aspergillus niger UBC 814-one of the key enzymes involved in catabolism of phenylalanine, tyrosine, phenylacetic acid and hydroxyphenylacetic acids439386--?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Pseudomonas putida KT 2440--677068--ir
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Pseudomonas putida KT2400Q88E47-726390--?
homogentisate + O24-fumarylacetoacetate
show the reaction diagram
Cavia porcellus, Rattus norvegicus, Oryctolagus cuniculus, Pigeon--439383-439383?
homogentisate + O24-fumarylacetoacetate
show the reaction diagram
Rattus norvegicus-homogentisic acid is oxidatively cleaved between carbons 1 and 2 to yield 4-fumarylacetoacetic acid, enzyme requires high oxygen tension for maximal activity439381-439381?
additional information?-Pseudomonas fluorescens-not as substrates: salicylic acid, catechol, 2,3-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, 2,6-dihydroxybenzoic acid, o-hydroxyphenylacetic acid, p-hydroxyphenylacetic acid, 3,4-dihydroxyphenylacetic acid439380---
additional information?-Rattus norvegicus-enzyme contains essential sulfhydryl groups439382---
additional information?-Emericella nidulans-not as substrates: phenylacetate, 2-hydroxyphenylacetate, 3-hydroxyphenylacetate, 4-hydroxyphenylacetate, phenylalanine, tyrosine, phenylpyruvate, gentisate439389---
additional information?-Homo sapiens-enzyme structure, conformation of the active site, enzyme contains a 280-residue N-terminal domain and a 140-residue C-terminal domain, associated as a hexamer arranged as a dimer of trimers439392---
additional information?-Arabidopsis thalianaQ9ZRA2gentisate is not a substrate670622---
additional information?-Pseudomonas chlororaphis-growth of the hmgA mutant on L-tyrosine as sole carbon and energy sources is impaired. Growth on L-tyrosine is restored and production of the brown melanin pigment is eliminated when the mutant is complemented with the wild-type hmgA gene. The change in aromatic amino acids metabolism caused by the deletion of the hmgA gene function does not impair production of phenazines and biological traits connected to these secondary compounds: inhibition of fungal growth and inhibition of barley seed germination686266---
additional information?-Burkholderia xenovorans-LB400 cells grown with 3-hydroxyphenylacetate degrade homogentisate and show homogentisate 1,2-dioxygenase, EC 1.13.11.5 activity726271---
additional information?-Pseudomonas chlororaphis O6-growth of the hmgA mutant on L-tyrosine as sole carbon and energy sources is impaired. Growth on L-tyrosine is restored and production of the brown melanin pigment is eliminated when the mutant is complemented with the wild-type hmgA gene. The change in aromatic amino acids metabolism caused by the deletion of the hmgA gene function does not impair production of phenazines and biological traits connected to these secondary compounds: inhibition of fungal growth and inhibition of barley seed germination686266---

NATURAL SUBSTRATESNATURAL PRODUCTSREACTION DIAGRAMORGANISM UNIPROT ACCESSION NO.COMMENTARY
(Substrate)
LITERATURE
(Substrate)
COMMENTARY
(Product)
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Mus musculus--439390, 439392--?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Homo sapiens--657859, 697403--?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Burkholderia xenovorans--726271--?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Homo sapiens--725601--?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Pseudomonas putidaQ88E47-726390--?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Mus musculus-homogentisate is the natural substrate, key reaction in the catabolic pathway of aromatic amino acids, oxidative cleavage of the aromatic ring439393-439393ir
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Homo sapiens-enzyme catalyzes an intermediate step in the catabolism of tyrosine and phenylalanine439390--?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Homo sapiens-enzyme cleaves the aromatic ring during the metabolic degradation of phenylalanine and tyrosine439392--?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Mus musculus-homogentisate catabolism439388--?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Phaseolus vulgaris, Glycine max, Daucus carota, Nicotiana sylvestris, Ruta graveolens, Melilotus albus, Solenostemon scutellarioides, Agrostemma githago, Agave toumeyana, Drosophyllum lusitanicum, Pimpinella anisum-homogentisate ring-cleavage pathway, key enzyme of the ring-cleavage reaction in the catabolic sequence of enzymes from L-tyrosine to acetoacetate and fumarate439385--?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Aspergillus niger-one of the key enzymes involved in catabolism of phenylalanine, tyrosine, phenylacetic acid and hydroxyphenylacetic acids439386--?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Emericella nidulans-one of the enzymes mediating phenylalanine catabolism439389--?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Emericella nidulansQ00667catalyzes an essential step in phenylalanine catabolism439391--?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Streptomyces coelicolor-hmgA is necessary for tyrosine catabolism and the proper production of actinorhodin. Transcription of hmgA is activated by HpdA in the presence of tyrosine686802--?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Aspergillus niger UBC 814-one of the key enzymes involved in catabolism of phenylalanine, tyrosine, phenylacetic acid and hydroxyphenylacetic acids439386--?
homogentisate + O24-maleylacetoacetate
show the reaction diagram
Pseudomonas putida KT2400Q88E47-726390--?
additional information?-Pseudomonas chlororaphis-growth of the hmgA mutant on L-tyrosine as sole carbon and energy sources is impaired. Growth on L-tyrosine is restored and production of the brown melanin pigment is eliminated when the mutant is complemented with the wild-type hmgA gene. The change in aromatic amino acids metabolism caused by the deletion of the hmgA gene function does not impair production of phenazines and biological traits connected to these secondary compounds: inhibition of fungal growth and inhibition of barley seed germination686266---
additional information?-Burkholderia xenovorans-LB400 cells grown with 3-hydroxyphenylacetate degrade homogentisate and show homogentisate 1,2-dioxygenase, EC 1.13.11.5 activity726271---
additional information?-Pseudomonas chlororaphis O6-growth of the hmgA mutant on L-tyrosine as sole carbon and energy sources is impaired. Growth on L-tyrosine is restored and production of the brown melanin pigment is eliminated when the mutant is complemented with the wild-type hmgA gene. The change in aromatic amino acids metabolism caused by the deletion of the hmgA gene function does not impair production of phenazines and biological traits connected to these secondary compounds: inhibition of fungal growth and inhibition of barley seed germination686266---

COFACTORORGANISM UNIPROT ACCESSION NO.COMMENTARYLITERATUREIMAGE
ascorbateArabidopsis thalianaQ9ZRA2-670622 2D-image

METALS and IONS ORGANISM UNIPROT ACCESSION NO.COMMENTARY LITERATURE
Fe2+Bos taurus-ferrous ion is required for maximal activity at pH 7 and pH 5.3; ferrous mercaptans at the active center396333
Fe2+Pseudomonas fluorescens-Fe2+ is required as cofactor396333, 439380
Fe2+Rattus norvegicus-contains non-porphyrin iron, valence change of enzymic iron during reaction: ferric and ferrous iron439382
Fe2+Aspergillus niger-requires Fe2+439386
Fe2+Emericella nidulans-dependent on the presence of Fe2+439389
Fe2+Emericella nidulansQ0066770% reduction of enzyme activity in crude extract in absence of Fe2+ and absolutely requirement for Fe2+ of the fusion protein of homogentisate dioxygenase and glutathione S-transferase, expressed in Escherichia coli439391
Fe2+Bos taurus--439392
Fe2+Homo sapiens-contains a nonheme Fe2+ at the active site, that is coordinated near the interface between subunits in the HGO trimer by Glu-341, His-335 and His-371439392
Fe2+Mus musculus--439392
Fe2+Mus musculus-Fe2+ is an absolutely obligate cofactor and cannot be replaced by other divalent cations, highest enzyme activity in vitro at 2 mM Fe2+439393
Fe2+Homo sapiens-required for activity657859
Fe2+Arabidopsis thalianaQ9ZRA2-670622
Fe2+Homo sapiens-required674157
Fe2+Pseudomonas putidaQ88E47required, ferrous ion content of 0.56 mol of iron per mol of protein, all twelve subunits in the a.u. contain fully occupied Fe sites, octahedral coordination for Fe2+ with two histidine residues (His331 and His367), the enzyme uses a mononuclear nonheme Fe2+ to catalyze the oxidative ring cleavage in the degradation of Tyr and Phe by producing maleylacetoacetate from homogentisate726390
additional informationPseudomonas fluorescens-other metallic ions, such as Fe3+, Co2+, Mn2+, Cu+ and Cu2+, cannot replace Fe2+439380
additional informationMus musculus-Fe3+ cannot replace Fe2+439393

INHIBITORSORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE IMAGE
1,10-phenanthrolineHomo sapiens-inactivation in the absence of O2 due to formation of a white precipitate corresponding to apoprotein657859 2D-image
2,2'-dipyridylRattus norvegicus-complete inhibition439382 2D-image
2,2'-dipyridylDrosophyllum lusitanicum-5 mM, complete inhibition439385 2D-image
2-hydroxyphenylacetateAspergillus niger-strong competitive inhibition with respect to homogentisate439386 2D-image
2-mercaptoethanolPseudomonas fluorescens--439380 2D-image
3,4-DihydroxyphenylacetateEmericella nidulans-1 mM, 48% inhibition, substrate analogue439389 2D-image
3-chlorohomogentisateHomo sapiens-inactivation in the presence of O2 due to formation of a white precipitate corresponding to apoprotein657859 2D-image
3-hydroxyphenylacetateAspergillus niger-competitive inhibition with respect to homogentisate439386 2D-image
ascorbateMus musculus-strong inhibitory effect, but stabilizes439393 2D-image
ascorbic acidHomo sapiens-38% inhibition at pH 6.2657859 2D-image
azideRattus norvegicus--439382 2D-image
benzoquinoneacetic acidRattus norvegicus--439382-
CaCl2Oryctolagus cuniculus-0.001 mM, 56% inhibition439390 2D-image
Co2+Mus musculus-incubation with Fe2+ plus Co2+ in equimolar concentrations inhibits439393 2D-image
Cu2+Mus musculus-incubation with Fe2+ plus Cu2+ in equimolar concentrations inhibits439393 2D-image
cyanideRattus norvegicus-3 mM inhibits439381 2D-image
cyanideRattus norvegicus--439382 2D-image
cysteic acidRattus norvegicus-weak inhibition439382 2D-image
cysteineRattus norvegicus-inhibition not reversed by glutathione439382 2D-image
cystineRattus norvegicus-inhibition not reversed by glutathione439382 2D-image
diphosphateRattus norvegicus--439382 2D-image
FeSO4Homo sapiens-0.25 mM, 42% inhibition657859 2D-image
glutathioneMus musculus-reduced glutathione slightly inhibits439393 2D-image
Hg2+Rattus norvegicus-inhibition reversed by glutathione439382 2D-image
HgCl2Oryctolagus cuniculus-20 mM, complete inhibition439390 2D-image
LewisiteBos taurus-inhibits by competing with Fe2+ for a common enzymic binding site396333 2D-image
NaClOryctolagus cuniculus-0.001 mM, 63% inhibition439390 2D-image
Ni2+Mus musculus-incubation with Fe2+ plus Ni2+ in equimolar concentrations inhibits439393 2D-image
p-chloromercuribenzoateBos taurus-inhibits by competing with Fe2+ for a common enzymic binding site396333 2D-image
p-chloromercuribenzoatePseudomonas fluorescens-competitive inhibition with respect to Fe2+ but not to homogentisate396333, 439380 2D-image
p-chloromercuribenzoateRattus norvegicus-inhibition reversed by glutathione439382 2D-image
p-hydroxyphenylacetic acidOryctolagus cuniculus-80 mM, complete inhibition, substrate analogue439390 2D-image
p-hydroxyphenylpyruvateEmericella nidulans-1 mM, 68% inhibition, substrate analogue439389 2D-image
phosphateRattus norvegicus--439382 2D-image
sulfhydryl reagentsAspergillus niger-strong inhibition439386 2D-image
Superoxide dismutaseAspergillus niger-inhibits the reaction indicating the involvement of superoxide anions in the dioxygenase reaction439386-
Zn2+Mus musculus-incubation with Fe2+ plus Zn2+ in equimolar concentrations inhibits439393 2D-image
Methylmercuric bromideBos taurus-inhibits by competing with Fe2+ for a common enzymic binding site396333 2D-image
additional informationMus musculus-not inhibited by Ca2+ and Mn2+439393-

ACTIVATING COMPOUNDORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE IMAGE
4-Hydroxy-3-methoxybenzaldehydePhanerochaete chrysosporium-2 mM670853 2D-image
ascorbateBos taurus-required for maximal activity at pH 7396333 2D-image
ascorbatePseudomonas fluorescens-required for maximal activity at pH 6396333, 439380 2D-image
ascorbateRattus norvegicus-activates439382 2D-image
ascorbateEmericella nidulans-dependent on the presence of ascorbate, presumably to maintain iron in the reduced form439389 2D-image
cysteinePseudomonas fluorescens-activates439380 2D-image
cysteineRattus norvegicus-activates439382 2D-image
glutathioneBos taurus-reduced glutathione is required for maximal activity at pH 7396333 2D-image
glutathionePseudomonas fluorescens-required for maximal activity at pH 6 and 5.4396333, 439380 2D-image
glutathioneRattus norvegicus-activates439382 2D-image
additional informationBos taurus-pH 7.0: a combination of ascorbate, reduced glutathione and ferrous iron is required for activation, pH 5.3: ferrous iron alone fully activates396333-
additional informationEmericella nidulans-enzymes of phenylalanine catabolism including HGO are strongly induced by the presence of phenylalanine or phenylacetate439389-
additional informationEmericella nidulansQ00667fusion protein of homogentisate dioxygenase and glutathione S-transferase, expressed in Escherichia coli is fully active in absence of ascorbate439391-
additional informationCistus creticus-induced gene expression by water deficit699799-

KM VALUE [mM]KM VALUE [mM] MaximumSUBSTRATEORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE IMAGE
0.009-HomogentisateEmericella nidulans--439389 2D-image
0.009-HomogentisateHomo sapiens-25C, pH 8.0657859 2D-image
0.01-HomogentisateOryctolagus cuniculus--439390 2D-image
0.014-HomogentisateHomo sapiens-37C, pH 7.0657859 2D-image
0.015-HomogentisateHomo sapiens-37C, pH 6.2657859 2D-image
0.016-HomogentisateHomo sapiens-25C, pH 7.0657859 2D-image
0.022-HomogentisateHomo sapiens-25C, pH 6.2657859 2D-image
0.031-HomogentisateArabidopsis thalianaQ9ZRA2in the absence of ascorbate and Fe2+670622 2D-image
0.042-HomogentisateHomo sapiens-25C, pH 5.5657859 2D-image
0.0532-HomogentisatePseudomonas putidaQ88E47pH not specified in the publication, 25C, wild-type enzyme726390 2D-image
0.188-HomogentisateMus musculus--439393 2D-image
0.6-HomogentisatePseudomonas fluorescens-at pH 6396333, 439380 2D-image
0.6-HomogentisateAspergillus niger--439386 2D-image

TURNOVER NUMBER [1/s] TURNOVER NUMBER MAXIMUM[1/s] SUBSTRATEORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE IMAGE
0.53-3-chlorohomogentisateHomo sapiens-25C, pH 6.2657859 2D-image
5.3-3-methylhomogentisateHomo sapiens-25C, pH 6.2657859 2D-image
10.1-HomogentisateHomo sapiens-25C, pH 8.0657859 2D-image
32.2-HomogentisateHomo sapiens-25C, pH 7.0657859 2D-image
41.5-HomogentisateHomo sapiens-25C, pH 5.5657859 2D-image
43.4-HomogentisateHomo sapiens-37C, pH 7.0657859 2D-image
56-HomogentisateHomo sapiens-25C, pH 6.2657859 2D-image
64.3-HomogentisateHomo sapiens-37C, pH 6.2657859 2D-image
79.5-HomogentisatePseudomonas putidaQ88E47pH not specified in the publication, 25C, wild-type enzyme726390 2D-image

kcat/KM VALUE [1/mMs-1]kcat/KM VALUE [1/mMs-1] MaximumSUBSTRATEORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE IMAGE
4.6-HomogentisatePseudomonas putidaQ88E47pH not specified in the publication, 25C, mutant Y346F72639011457
5038-HomogentisatePseudomonas putidaQ88E47pH not specified in the publication, 25C, wild-type enzyme72639011457

Ki VALUE [mM]Ki VALUE [mM] MaximumINHIBITORORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE IMAGE
No entries in this field

IC50 VALUE [mM]IC50 VALUE [mM] MaximumINHIBITORORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE IMAGE
No entries in this field

SPECIFIC ACTIVITY [µmol/min/mg] SPECIFIC ACTIVITY MAXIMUM ORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE
0.125-Melilotus albus--439385
0.17-Pimpinella anisum--439385
0.25-Daucus carota--439385
0.39-Ruta graveolens--439385
0.405-Agrostemma githago--439385
0.495-Glycine max--439385
0.515-Phaseolus vulgaris--439385
0.625-Agave toumeyana--439385
0.751Emericella nidulans-value in crude lysates439389
1.16-Nicotiana sylvestris--439385
2.59-Solenostemon scutellarioides--439385
5.17-Aspergillus niger--439386
8.25-Pseudomonas fluorescens--439380
28.3-Homo sapiens-recombinant HGO657859
additional information-Drosophyllum lusitanicum--439385
additional information-Mus musculus, Oryctolagus cuniculus--439390
additional information-Mus musculus--439393

pH OPTIMUMpH MAXIMUMORGANISM UNIPROT ACCESSION NO. COMMENTARYLITERATURE
5-Oryctolagus cuniculus--439390
6-Pseudomonas fluorescens--439380
6.1-Mus musculus--439393
6.2-Homo sapiens-Good buffer657859
6.4-Aspergillus niger--439386
6.57Emericella nidulans--439389
7-Burkholderia xenovorans-assay at726271

pH RANGEpH RANGE MAXIMUMORGANISM UNIPROT ACCESSION NO.COMMENTARYLITERATURE
58Homo sapiens-approx. 15% of maximal activity at pH 5.0 and pH 8.0, respectively657859

TEMPERATURE OPTIMUMTEMPERATURE OPTIMUM MAXIMUMORGANISM UNIPROT ACCESSION NO.COMMENTARYLITERATURE
25-Pseudomonas putidaQ88E47assay at726390
30-Pseudomonas fluorescens-assay at439380
30-Oryctolagus cuniculus--439390
30-Burkholderia xenovorans-assay at726271
38-Rattus norvegicus-assay at439381

TEMPERATURE RANGE TEMPERATURE MAXIMUM ORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE
No entries in this field

pI VALUEpI VALUE MAXIMUMORGANISM UNIPROT ACCESSION NO.COMMENTARYLITERATURE
5.74-Pseudomonas putida-calculated value677068
6.7-Phanerochaete chrysosporium-theoretical value670853

SOURCE TISSUE ORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE SOURCE
boneHomo sapiens--712909, 712935Manually annotated by BRENDA team
brainMus musculus-expression of HGO gene439388Manually annotated by BRENDA team
chondrocyteHomo sapiens--712561Manually annotated by BRENDA team
chondrocyteHomo sapiens-primary culture, alkaptonuria chondrocytes show a 10% increase of the enzyme expression compared to normal ones725601Manually annotated by BRENDA team
colonHomo sapiens--439387Manually annotated by BRENDA team
culture condition:3-hydroxyphenylacetate-grown cellBurkholderia xenovorans--726271Manually annotated by BRENDA team
embryoHomo sapiens-liver from a 20 week old male embryo439390Manually annotated by BRENDA team
flowerArabidopsis thalianaQ9ZRA2-670622Manually annotated by BRENDA team
heartMus musculus-expression of HGO gene439388Manually annotated by BRENDA team
kidneyCavia porcellus, Oryctolagus cuniculus, Pigeon-less activity than in liver or in rat kidney439383Manually annotated by BRENDA team
kidneyRattus norvegicus-40% of enzyme activity in liver439383Manually annotated by BRENDA team
kidneyHomo sapiens--439387Manually annotated by BRENDA team
kidneyMus musculus-expression of HGO gene439388Manually annotated by BRENDA team
kidneyBos taurusB8YB76-712990Manually annotated by BRENDA team
leafArabidopsis thalianaQ9ZRA2-670622Manually annotated by BRENDA team
leafCistus creticus--699799Manually annotated by BRENDA team
leukocyteHomo sapiens--697403Manually annotated by BRENDA team
liverRattus norvegicus--439381, 439382Manually annotated by BRENDA team
liverCavia porcellus, Oryctolagus cuniculus, Pigeon, Rattus norvegicus-higher activity than in kidney439383Manually annotated by BRENDA team
liverHomo sapiens--439387Manually annotated by BRENDA team
liverHomo sapiens-embryonal liver439390Manually annotated by BRENDA team
liverOryctolagus cuniculus--439390Manually annotated by BRENDA team
liverMus musculus--439388, 439390, 439393Manually annotated by BRENDA team
liverBos taurus--439390, 712990Manually annotated by BRENDA team
muscleMus musculus-expression of HGO gene439388Manually annotated by BRENDA team
myceliumPhanerochaete chrysosporium--670853Manually annotated by BRENDA team
osteoarticular cellHomo sapiens--725601Manually annotated by BRENDA team
osteoblastHomo sapiens--725601Manually annotated by BRENDA team
pancreasMus musculus-expression of HGO gene439388Manually annotated by BRENDA team
placentaMus musculus-expression of HGO gene439388Manually annotated by BRENDA team
prostate glandHomo sapiens--439387Manually annotated by BRENDA team
rootArabidopsis thalianaQ9ZRA2-670622Manually annotated by BRENDA team
small intestineHomo sapiens--439387Manually annotated by BRENDA team
spinal cordHomo sapiens--712935Manually annotated by BRENDA team
synoviocyteHomo sapiens--725601Manually annotated by BRENDA team
lungMus musculus-expression of HGO gene439388Manually annotated by BRENDA team
additional informationCavia porcellus-not in heart439383Manually annotated by BRENDA team
additional informationRattus norvegicus-not in cardiac and skeletal muscle, brain, spleen, intestine, pancreas, salivary gland, germinal epithelium, blood439383Manually annotated by BRENDA team
additional informationBos taurusB8YB76tissue distribution of HGD, semi-quantitative RT-PCR analysis, overview712990Manually annotated by BRENDA team
additional informationHomo sapiens-enzyme expression analysis in human normal and alkaptonuria chondrocytes, synoviocytes, osteoblasts as well as in human osteosarcoma cells, overview725601Manually annotated by BRENDA team

LOCALIZATION ORGANISM UNIPROT ACCESSION NO. COMMENTARY GeneOntology No. LITERATURE SOURCE
cytosolMus musculus--5829439393Manually annotated by BRENDA team
solubleBos taurus---396333Manually annotated by BRENDA team

PDBSCOPCATHORGANISM
1ey2, downloadSCOP (1ey2)CATH (1ey2)Homo sapiens
1eyb, downloadSCOP (1eyb)CATH (1eyb)Homo sapiens
3zds, downloadSCOP (3zds)CATH (3zds)Pseudomonas putida (strain KT2440)
4aq2, downloadSCOP (4aq2)CATH (4aq2)Pseudomonas putida (strain KT2440)
4aq6, downloadSCOP (4aq6)CATH (4aq6)Pseudomonas putida (strain KT2440)

MOLECULAR WEIGHT MOLECULAR WEIGHT MAXIMUM ORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE
48000-Pseudomonas putida-SDS-PAGE677068
52900-Phanerochaete chrysosporium-theoretical value670853
149000-Mus musculus-gel filtration439393
150000-Mus musculus--439392
199000-Arabidopsis thalianaQ9ZRA2gel filtration670622
200000-Aspergillus niger-gel filtration439386
254000-Bos taurus--439392
380000-Pseudomonas fluorescens-ultracentrifugal analysis396333, 439380
424000478000Homo sapiens-equilibrium sedimentation studies439392
450000480000Homo sapiens, Mus musculus, Oryctolagus cuniculus-sucrose density gradient centrifugation, can be degraded in two proteins of 200 and 230 kDa, probably due to inactivation by air439390

SUBUNITS ORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE
?Mus musculus-x * 49000, SDS-PAGE439388
?Emericella nidulansQ00667x * 50168, calculated from the amino acid sequence439391
hexamerHomo sapiens-hexamer arranged as a dimer of trimers, subunit structure, functional importance of the hexamer in vivo439392
hexamerHomo sapiens-6 * 50150, mass spectrometry657859
homohexamerHomo sapiens-or dimer of trimer, X-ray crystallography674157
monomerHomo sapiens, Mus musculus, Oryctolagus cuniculus-1 * 450000-480000, SDS-PAGE439390
tetramerArabidopsis thalianaQ9ZRA24 * 49750, gel filtration670622
trimerMus musculus-3 * 49000, SDS-PAGE439393

POSTTRANSLATIONAL MODIFICATION ORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE
no glycoproteinOryctolagus cuniculus-enzyme is not glycosylated439390

Crystallization/COMMENTARY ORGANISM UNIPROT ACCESSION NO. LITERATURE
crystal structures of apo-HGO and HGO containing an ironHomo sapiens-439392
-Pseudomonas fluorescens-396333, 439380
three crystal structures of the enzyme, revealing five different steps in its reaction cycle, crystallization of purifed recombinant wild-type aand mutant enzymes, mixing of 15 mg/ml protein solution with an equal volume of reservoir solution containing 16-17% PEG 3350, 0.02 M Na,K phosphate, and 0.1 M Bis-Tris propane, pH 8.0, with or without 2 mM homogentisate, vapour diffusion method, X-ray diffraction structure determination and analysis at 1.7-1.98 A resolutionPseudomonas putidaQ88E47726390

pH STABILITYpH STABILITY MAXIMUM ORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE
67.2Pseudomonas fluorescens--20C, stable for several weeks439380

TEMPERATURE STABILITYTEMPERATURE STABILITY MAXIMUM ORGANISM UNIPROT ACCESSION NO. COMMENTARYLITERATURE
2555Mus musculus-almost linear decrease of activity439393
37-Homo sapiens-50% loss of activity after 17 s, pH 7.0; 50% loss of activity after 28 s, pH 6.2657859
45-Mus musculus-65% loss of activity439393

GENERAL STABILITYORGANISM UNIPROT ACCESSION NO.LITERATURE
10% acetone stabilizesBos taurus-396333
rather stable enzyme, can be repeatedly thawed and frozen without significant loss of activityEmericella nidulans-439389
ascorbate stabilizes, it probably protects Fe2+ from spontaneous oxidationMus musculus-439393
unlike the mammalian enzyme, the bacterial enzyme is fairly stable on aging or during storagePseudomonas fluorescens-396333, 439380

ORGANIC SOLVENT ORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE
No entries in this field

OXIDATION STABILITY ORGANISM UNIPROT ACCESSION NO. LITERATURE
Fe2+, organic mercurials and reducing agents protect the enzyme from irreversible aerobic oxidationBos taurus-396333
inactivation by air probably causes degradation of enzyme in two proteinsOryctolagus cuniculus-439390
sensitive to O2, easily inactivated by aerationPseudomonas fluorescens-439380

STORAGE STABILITY ORGANISM UNIPROT ACCESSION NO. LITERATURE
4C, 20 mM Tris-Cl pH 7.8, 0.5 M NaCl, 0.3 M imidazole, 24 h, loses two third of its activityArabidopsis thalianaQ9ZRA2670622
-20C, in absence of Fe2+, about 3 days, stableAspergillus niger-439386
-20C, 50 mM potassium phosphate buffer, pH 7.0, crude extracts, 5 months, 25% loss of activityEmericella nidulans-439389
-80, 20 mM Hepps, pH 8.0, 100 mM NaCl, 4 months, no loss of activityHomo sapiens-657859
-20C, pH 6.0-7.2, in absence of Fe2+, several weeks, stablePseudomonas fluorescens-439380

Purification/COMMENTARY ORGANISM UNIPROT ACCESSION NO. LITERATURE
partial purificationAgave toumeyana, Agrostemma githago-439385
nickel chelate affinity chromatographyArabidopsis thalianaQ9ZRA2670622
19.2fold purificationAspergillus niger-439386
-Bos taurus-439390
partial purificationBos taurus-396333
partial purificationDaucus carota-439385
190fold purificationDrosophyllum lusitanicum-439385
purification of a fusion protein of homogentisate dioxygenase and glutathione S-transferase, expressed in Escherichia coliEmericella nidulansQ00667439391
partial purificationGlycine max-439385
-Homo sapiens-439390, 439392
recombinant His-tagged HGO, Ni-affinity, Mono QHomo sapiens-657859
partial purificationMelilotus albus-439385
-Mus musculus-439388, 439390
330fold purificationMus musculus-439393
partial purificationNicotiana sylvestris-439385
54.1fold purificationOryctolagus cuniculus-439390
partial purificationPhaseolus vulgaris, Pimpinella anisum-439385
-Pseudomonas fluorescens-439380
recombinant wild-type and mutant enzymes from Escherichia coli strain BL21(DE3) by anion exchange and hydroxyapatite chromatographyPseudomonas putidaQ88E47726390
Superdex gel filtration and Q-Sepharose column chromatographyPseudomonas putida-677068
partial purificationRattus norvegicus-439382
partial purificationRuta graveolens, Solenostemon scutellarioides-439385

Cloned/COMMENTARY ORGANISM UNIPROT ACCESSION NO. LITERATURE
expressed in Escherichia coliArabidopsis thalianaQ9ZRA2670622
DNA and amino acid sequence determination and analysis, genotyping, polymorphism of the HGD gene in the exon 1 and intron 1Bos taurusB8YB76712929
gene HGD, DNA and amino acid sequence determination and analysis, genotyping, semi-quantitative RT-PCR analysis. Identification of nine single nucleotide polymorphisms, five in the coding region and four intronicBos taurusB8YB76712990
genes hmgA1 and hmgA2, the gene cluster hmgABC is located at C1 in strain LB400 genome, quantitative expression analysisBurkholderia xenovorans-726271
hmgA gene encoding homogentisate dioxygenase, a 448 residue polypeptide, is cloned, sequenced and characterized, gene is expressed in Escherichia coli as a fusion to glutathione S-transferaseEmericella nidulansQ00667439391
-Exophiala lecanii-corniQ6JDV6657627
DNA and ammino acid sequence determinaation and analysis, located on chromosome 3(q23-3q21), genotyping and identification of narurally occuring mutations involved in alkaptonuria, overviewHomo sapiens-726475
expression of His-tagged HGO in Escherichia coliHomo sapiens-657859
genotypingHomo sapiens-712909
HGO gene on chromosome 3 is cloned, completely sequenced and characterized, identification of its promoter region, transcriptional control of the geneHomo sapiens-439387
PCR of coding region of DNA extracted from EDTA blood sampleHomo sapiens-697403
complete HGO cDNA, encoding for a 50 kDa protein, is cloned and sequencedMus musculus-439388
expression of wild-type and mutant enzymes in Escherichia coli strain BL21(DE3)Pseudomonas putidaQ88E47726390

EXPRESSION ORGANISM UNIPROT ACCESSION NO. LITERATURE
induction of fumarylacetoacetate hydrolase HmgB in Burkholderia xenovorans LB400 during growth on hydroxyphenylacetatesBurkholderia xenovorans-726271
LB400 cells grown with 3-hydroxyphenylacetate degrade homogentisate and show homogentisate 1,2-dioxygenase activity. The hmgA1 gene is upregulated by 3-hydroxyphenylacetate in strain LB400. The expression of the hmgA2 gene is induced in 3-hydroxyphenylacetategrown-cellsBurkholderia xenovorans-726271

ENGINEERINGORGANISM UNIPROT ACCESSION NO.COMMENTARYLITERATURE
C1273AHomo sapiens-naturally occuring mutation, the mutation is involved in alkaptonuria726475
G161RHomo sapiens-naturally occuring mutation in the HGD gene, resulting in a specific genotype appearing in a Hungarian population, originating from Slovakia, with alkaptonuria, phenotype overview712909
G360RHomo sapiens-active site mutation in exon 13697403
T1046GHomo sapiens-naturally occuring mutation, the mutation is involved in alkaptonuria726475
T533GHomo sapiens-naturally occuring mutation, the mutation is involved in alkaptonuria726475
H288QPseudomonas putidaQ88E47site-directed mutagenesis, the mutant shows a 75fold reduction in kcat compared to the wild-type enzyme726390
Y346FPseudomonas putidaQ88E47site-directed mutagenesis, replacement of Y346 by phenylalanine decreases the affinity for homogentisate more than 60fold and reduces the apparent kcat 20fold resulting in a decrease of the specificity constant by three orders of magnitude compared to the wild-type enzyme726390
H288QPseudomonas putida KT2400-site-directed mutagenesis, the mutant shows a 75fold reduction in kcat compared to the wild-type enzyme-
Y346FPseudomonas putida KT2400-site-directed mutagenesis, replacement of Y346 by phenylalanine decreases the affinity for homogentisate more than 60fold and reduces the apparent kcat 20fold resulting in a decrease of the specificity constant by three orders of magnitude compared to the wild-type enzyme-
additional informationEmericella nidulans-strain carrying an homogentisate dioxygenase gene disruption with full genotype biA1, methG1, deltahmgA without enzyme activity439389
additional informationEmericella nidulansQ00667mutant strain biA1, methG1, argB2 with homogentisate dioxygenase gene disruption has no homogentisate dioxygenase activity and accumulates homogentisate439391
K57NHomo sapiens-active site mutation in exon 3697403
additional informationHomo sapiens-alkaptonuric humans are deficient for homogentisate 1,2-dioxygenase and carry two copies of a loss-of-function allele of HGO gene439387
additional informationHomo sapiens-human gene for alkaptonuria is mapped to chromosome 3q2439390
additional informationHomo sapiens-20 missence mutations in HGO from alkaptonuria patients439392
additional informationHomo sapiens-the 551-552insG mutation is involved in alkaptonuria726475
T847CHomo sapiens-naturally occuring mutation, the mutation is involved in alkaptonuria726475
additional informationMus musculus-alkaptonuric mouse lacks enzyme activity and have recessive mutation aku, mapped to chromosome 16, inbred strain C57BLG/J is heterozygous for the aku mutation439390
additional informationMus musculus--439392

Renatured/COMMENTARYORGANISM UNIPROT ACCESSION NO.LITERATURE
No entries in this field

APPLICATIONORGANISM UNIPROT ACCESSION NO.COMMENTARYLITERATURE
diagnosticsEmericella nidulans-crude enzyme preparations can be used for a spectrophotometric method for routine, sensitive determination of homogentisate in human urine439389
medicineHomo sapiens-alkaptonuria: rare hereditary disorder of the phenylalanine catabolism, patients are deficient in homogentisate 1,2-dioxygenase and carry two copies of a loss-of-function allele of HGO gene, disease causes homogentisic aciduria, ochronosis and arthritis439387
medicineHomo sapiens-inactivation of enzyme in kidney and liver causes the basic defect of alkaptonuria439390
medicineHomo sapiens-HGO deficiency causes alkaptonuria, inherited as a recessive Mendelian trait, HGO inhibitors may be useful in the treatment of hereditary tyrosinemia type I, HT1439392
medicineHomo sapiens-missense mutation in exon 13 (G360R) and exon 3 (K57N) affecting homogentisate 1,2-dioxygenase function by interfering with substrate traffic at active site causing alkaptonuria, a rare recessive phanylalanine/tyrosine metabolism disorder697403
medicineMus musculus-HGO gene is responsible for alkaptonuria439388
medicineMus musculus--439390, 439392

DISEASETITLE OF PUBLICATIONLINK TO PUBMED
AlkaptonuriaA late and difficult diagnosis of ochronosis. PubMed
AlkaptonuriaA metabolic cause of spinal deformity. PubMed
AlkaptonuriaA novel missense HGD gene mutation, K57N, in a patient with alkaptonuria. PubMed
AlkaptonuriaA quantitative assessment of alkaptonuria: testing the reliability of two disease severity scoring systems. PubMed
AlkaptonuriaAlkaptonuria and intramedullary calcification. PubMed
AlkaptonuriaAlkaptonuria and lumbar disc herniation. Report of three cases. PubMed
AlkaptonuriaAlkaptonuria and ochronosis in three siblings. Ascorbic acid treatment monitored by urinary HGA excretion. PubMed
AlkaptonuriaAlkaptonuria and ochronosis: case report and review. PubMed
AlkaptonuriaAlkaptonuria and pompe disease in one patient: metabolic and molecular analysis. PubMed
AlkaptonuriaAlkaptonuria and renal failure: a case report. PubMed
AlkaptonuriaAlkaptonuria in a middle-aged female. PubMed
AlkaptonuriaAlkaptonuria in France: past experience and lessons for the future. PubMed
AlkaptonuriaAlkaptonuria in Italy: polymorphic haplotype background, mutational profile, and description of four novel mutations in the homogentisate 1,2-dioxygenase gene. PubMed
AlkaptonuriaAlkaptonuria is a novel human secondary amyloidogenic disease. PubMed
AlkaptonuriaAlkaptonuria presenting as lumbar disc prolapse: case report and review of literature. PubMed
AlkaptonuriaAlkaptonuria, ochronosis, and ochronotic arthropathy. PubMed
AlkaptonuriaAlkaptonuria--a review of surgical and autopsy pathology. PubMed
AlkaptonuriaAlkaptonuria. PubMed,  PubMed
AlkaptonuriaAlkaptonuria: a case report. PubMed
AlkaptonuriaAlkaptonuric ochronosis with aortic valve and joint replacements and femoral fracture: a case report and literature review. PubMed
AlkaptonuriaAlkaptonuric ochronosis: a clinical study from Ardabil, Iran. PubMed
AlkaptonuriaAllelic heterogeneity of alkaptonuria in Central Europe. PubMed
AlkaptonuriaAn update on molecular genetics of Alkaptonuria (AKU). PubMed
AlkaptonuriaAnalysis of alkaptonuria (AKU) mutations and polymorphisms reveals that the CCC sequence motif is a mutational hot spot in the homogentisate 1,2 dioxygenase gene (HGO). PubMed
AlkaptonuriaAortic stenosis in cardiovascular ochronosis. PubMed
AlkaptonuriaAshy ears. PubMed
AlkaptonuriaBilateral hip arthroplasty for ochronotic arthropathy. PubMed
AlkaptonuriaCalculi and intracellular ochronosis in the submandibular tissues from a patient with alkaptonuria. PubMed
AlkaptonuriaCementless total knee arthroplasty in ochronotic arthropathy: a case report with a 4-year follow-up. PubMed
AlkaptonuriaCerebro-spinal and renal ochronosis: A rare case report. PubMed
AlkaptonuriaCloning of the homogentisate 1,2-dioxygenase gene, the key enzyme of alkaptonuria in mouse. PubMed
AlkaptonuriaDetection of novel visible-light region absorbance peaks in the urine after alkalization in patients with alkaptonuria. PubMed
AlkaptonuriaDevastating ochronotic arthropathy with successful bilateral hip and knee arthroplasties. PubMed
AlkaptonuriaEarly detection of alkaptonuria. PubMed
AlkaptonuriaEarly-onset ocular ochronosis in a girl with alkaptonuria (AKU) and a novel mutation in homogentisate 1,2-dioxygenase (HGD). PubMed
AlkaptonuriaEndogenous ochronosis. PubMed
AlkaptonuriaEvaluation of anti-oxidant treatments in an in vitro model of alkaptonuric ochronosis. PubMed
AlkaptonuriaEvaluation of antioxidant drugs for the treatment of ochronotic alkaptonuria in an in vitro human cell model. PubMed
AlkaptonuriaExacerbation of the ochronosis of alkaptonuria due to renal insufficiency and improvement after renal transplantation. PubMed
AlkaptonuriaFrom darkening urine to early diagnosis of alkaptonuria. PubMed
AlkaptonuriaFungal metabolic model for human type I hereditary tyrosinaemia. PubMed
AlkaptonuriaHemolysis in a patient with alkaptonuria and chronic kidney failure. PubMed
AlkaptonuriaHereditary ochronosis: hyperpigmented skin overlying cartilaginous structures. PubMed
AlkaptonuriaHigh frequency of alkaptonuria in Slovakia: evidence for the appearance of multiple mutations in HGO involving different mutational hot spots. PubMed
AlkaptonuriaHip arthroplasty for ochronosis. PubMed
AlkaptonuriaHomogentisate 1,2 dioxygenase is expressed in human osteoarticular cells: implications in alkaptonuria. PubMed
AlkaptonuriaIdentification of 11 Novel Homogentisate 1,2 Dioxygenase Variants in Alkaptonuria Patients and Establishment of a Novel LOVD-Based HGD Mutation Database. PubMed
AlkaptonuriaIdentification of the mutation in the alkaptonuria mouse model. Mutations in brief no. 216. Online. PubMed
AlkaptonuriaMinocycline-induced hyperpigmentation masquerading as alkaptonuria in individuals with joint pain. PubMed
AlkaptonuriaMolecular defects in alkaptonuria. PubMed
AlkaptonuriaMolecular diagnosis of alkaptonuria mutation by analysis of homogentisate 1,2 dioxygenase mRNA from urine and blood. PubMed
AlkaptonuriaMutation spectrum of homogentisic acid oxidase (HGD) in alkaptonuria. PubMed
AlkaptonuriaNatural history of alkaptonuria revisited: analyses based on scoring systems. PubMed
AlkaptonuriaNatural history of alkaptonuria. PubMed
AlkaptonuriaNeonatal severe primary hyperparathyroidism and alkaptonuria in a boy born to related parents with familial hypocalciuric hypercalcemia. PubMed
AlkaptonuriaNine cases of Alkaptonuria in one family in southern Jordan. PubMed
AlkaptonuriaNovel mutations in the homogentisate 1,2 dioxygenase gene identified in Jordanian patients with alkaptonuria. PubMed
AlkaptonuriaNuclear medicine techniques in the assessment of alkaptonuria. PubMed
AlkaptonuriaOchronosis and lumbar disc herniation. PubMed
AlkaptonuriaOchronosis of the hip joint: differential diagnosis of inflammatory arthropathy with lytic lesion. PubMed
AlkaptonuriaOchronosis: a report of a case and a review of literature. PubMed
AlkaptonuriaOchronotic arthropathy as a paradigm of metabolically induced degenerative joint disease. A case-based review. PubMed
AlkaptonuriaOchronotic arthropathy: diagnosis and management: a critical review. PubMed
AlkaptonuriaOchronotic arthropathy: disappearance of alkaptonuria after liver transplantation for hepatitis B-related cirrhosis. PubMed
AlkaptonuriaOchronotic osteoarthropathy in a mouse model of alkaptonuria, and its inhibition by nitisinone. PubMed
AlkaptonuriaOchronotic rheumatism in Algeria: clinical, radiological, biological and molecular studies--a case study of 14 patients in 11 families. PubMed
AlkaptonuriaOcular ochronosis from alkaptonuria. PubMed
AlkaptonuriaOcular ochronosis in alkaptonuria patients carrying mutations in the homogentisate 1,2-dioxygenase gene. PubMed
AlkaptonuriaOsteoarthritis? Ochronotic arthritis! A case study and review of the literature. PubMed
AlkaptonuriaRapid detection methods for five HGO gene mutations causing alkaptonuria. PubMed
AlkaptonuriaRecent advances in management of alkaptonuria (invited review; best practice article). PubMed
AlkaptonuriaRedox-proteomics of the effects of homogentisic acid in an in vitro human serum model of alkaptonuric ochronosis. PubMed
AlkaptonuriaSequence analysis of the homogentisate 1,2 dioxygenase gene in a family affected by alkaptonuria. PubMed
AlkaptonuriaShoulder arthroplasty in alkaptonuric arthropathy: a clinical case report and literature review. PubMed
AlkaptonuriaThe molecular basis of alkaptonuria. PubMed
AlkaptonuriaThree-generational alkaptonuria in a non-consanguineous family. PubMed
AlkaptonuriaUnrecognized ochronosis--a case report. PubMed
AlkaptonuriaUse of nitisinone in patients with alkaptonuria. PubMed
Alkaptonuria[A child with dark discoloration of urine]. PubMed
Alkaptonuria[Alkaptonuria: a rare cause of urine discoloration. Report of a case in a newborn]. PubMed
Alkaptonuria[Alkaptonuria: a rare metabolic disorder. A report of two cases in siblings]. PubMed
Alkaptonuria[Black urine or black sclera of the eyes? Consider alkaptonuria]. PubMed
Alkaptonuria[Case report of a patient with ochronosis and arthroplasty of the hip and both knees]. PubMed
Alkaptonuria[Endogenous ochronosis: a case description]. PubMed
Alkaptonuria[Important bilateral corneal astigmatism in a case of ocular ochronosis]. PubMed
Alkaptonuria[Knee ochronotic arthropathy and arthroscopic findings]. PubMed
Alkaptonuria[Ochronosis: report of two familial cases]. PubMed
Alkaptonuria[Ochronotic arthropathy in alkaptonuria. Radiological manifestations and physiopathological signs]. PubMed
Alkaptonuria[Ochronotic changes in alkaptonuria: a case report]. PubMed
Aortic Valve StenosisAortic stenosis in endogenous ochronosis. PubMed
ArthritisAlkaptonuria and intramedullary calcification. PubMed
ArthritisAn update on molecular genetics of Alkaptonuria (AKU). PubMed
ArthritisMolecular analyses of the HGO gene mutations in Turkish alkaptonuria patients suggest that the R58fs mutation originated from central Asia and was spread throughout Europe and Anatolia by human migrations. PubMed
ArthritisMutation and polymorphism analysis of the human homogentisate 1, 2-dioxygenase gene in alkaptonuria patients. PubMed
ArthritisUse of nitisinone in patients with alkaptonuria. PubMed
Back PainA metabolic cause of spinal deformity. PubMed
Genetic Diseases, InbornAlkaptonuria. PubMed
Genetic Diseases, Inborn[Alkaptonuria: a rare cause of urine discoloration. Report of a case in a newborn]. PubMed
homogentisate 1,2-dioxygenase deficiencyExacerbation of the ochronosis of alkaptonuria due to renal insufficiency and improvement after renal transplantation. PubMed
homogentisate 1,2-dioxygenase deficiencyNatural history of alkaptonuria. PubMed
homogentisate 1,2-dioxygenase deficiency[Alkaptonuria: a rare metabolic disorder. A report of two cases in siblings]. PubMed
homogentisate 1,2-dioxygenase deficiency[Knee ochronotic arthropathy and arthroscopic findings]. PubMed
homogentisate 1,2-dioxygenase deficiency[Ochronotic changes in alkaptonuria: a case report]. PubMed
Joint DiseasesMinocycline-induced hyperpigmentation masquerading as alkaptonuria in individuals with joint pain. PubMed
Metabolic DiseasesAlkaptonuria and lumbar disc herniation. Report of three cases. PubMed
Metabolic DiseasesFungal metabolic model for human type I hereditary tyrosinaemia. PubMed
Metabolic DiseasesOchronotic osteoarthropathy in a mouse model of alkaptonuria, and its inhibition by nitisinone. PubMed
Metabolic DiseasesShoulder arthroplasty in alkaptonuric arthropathy: a clinical case report and literature review. PubMed
Metabolic Diseases[A child with dark discoloration of urine]. PubMed
Metabolic Diseases[Arthroplasty for the treatment of joint degeneration caused by ochronosis in two cases]. PubMed
Metabolic Diseases[Important bilateral corneal astigmatism in a case of ocular ochronosis]. PubMed
Metabolic Diseases[Knee ochronotic arthropathy and arthroscopic findings]. PubMed
Metabolic Diseases[Ochronotic arthropathy in alkaptonuria. Radiological manifestations and physiopathological signs]. PubMed
NeoplasmsD-Aminoacid oxidase and homogentisate oxygenase activities in the tumor bearing rats. PubMed
OsteoarthritisOchronosis: a report of a case and a review of literature. PubMed
TyrosinemiasTissue distribution of 2-(2-nitro-4-trifluoromethylbenzoyl)cyclohexane-1-3-dione (NTBC): effect on enzymes involved in tyrosine catabolism and relevance to ocular toxicity in the rat. PubMed

REF. AUTHORS TITLE JOURNAL VOL. PAGES YEAR ORGANISM (UNIPROT ACCESSION NO.)LINK TO PUBMEDSOURCE
396333Nozaki, M.Nonheme iron dioxygenaseMol. Mech. Oxygen Activ. (Hayaishi, O., ed.) Academic Press, New York135-1651974Bos taurus, Pseudomonas fluorescens-
439380Adachi, K.; Iwayama, Y.; Tanioka, H.; Takeda, Y.Purification and properties of homogentisate oxygenase from Pseudomonas fluorescensBiochim. Biophys. Acta11888-971966Pseudomonas fluorescens PubMed
439381Ravdin, R.G.; Crandall, D.I.The enzymatic conversion of homogentisic acid to 4-fumarylacetoacetic acidJ. Biol. Chem.189137-1491951Rattus norvegicus PubMed
439382Knox, W.E.; Edwards, S.W.Homogentisate oxidase of liverJ. Biol. Chem.216479-4871955Rattus norvegicus PubMed
439383Crandall, D.I.; Halikis, D.N.Homogentisic acid oxidase. I. Distribution in animal tissues and relation to tyrosine metabolism in rat kidneyJ. Biol. Chem.208629-6381954Cavia porcellus, Oryctolagus cuniculus, Pigeon, Rattus norvegicus PubMed
439385Durand, R.; Zenk, M.H.Enzymes of the homogentisate ring-cleavage pathway in cell suspension cultures of higher plantsFEBS Lett.39218-2201974Agave toumeyana, Agrostemma githago, Daucus carota, Drosophyllum lusitanicum, Glycine max, Melilotus albus, Nicotiana sylvestris, Phaseolus vulgaris, Pimpinella anisum, Ruta graveolens, Solenostemon scutellarioides PubMed
439386Sugumaran, M.; Vaidyanathan, C.S.Affinity chromatography of homogentisate-1,2-dioxygenase from Aspergillus nigerFEMS Microbiol. Lett.4343-3471978Aspergillus niger, Aspergillus niger UBC 814-
439387Granadino, B.; Beltran-Valero de Bernabe, D.; Fernandez-Canon, J.M.; Penalva, M.A.; Rodriguez de Cordoba, S.The human homogentisate 1,2-dioxygenase (HGO) geneGenomics43115-1221997Homo sapiens, Homo sapiens (Q93099) PubMed
439388Schmidt, S.R.; Gehrig, A.; Koehler, M.R.; Schmid, M.; Muller, C.R.; Kress, W.Cloning of the homogentisate 1,2-dioxygenase gene, the key enzyme of alkaptonuria in mouseMamm. Genome8168-1711997Mus musculus PubMed
439389Fernandez-Canon, J.M.; Penalva, M.A.Spectrophotometric determination of homogentisate using Aspergillus nidulans homogentisate dioxygenaseAnal. Biochem.245218-2211997Emericella nidulans PubMed
439390Hudecova, S.; Strakova, Z.; Krizanova, O.Purification of the homogentisic acid oxidase from mammalian liverInt. J. Biochem. Cell Biol.271357-13631995Bos taurus, Homo sapiens, Mus musculus, Oryctolagus cuniculus PubMed
439391Fernandez-Canon, J.M.; Penalva, M.A.Molecular characterization of a gene encoding a homogentisate dioxygenase from Aspergillus nidulans and identification of its human and plant homologuesJ. Biol. Chem.27021199-212051995Emericella nidulans, Emericella nidulans (Q00667), Emericella nidulans BiA1 (Q00667) PubMed
439392Titus, G.P.; Mueller, H.A.; Burgner, J.; Rodriguez de Cordoba, S.; Penalva, M.A.; Timm, D.E.Crystal structure of human homogentisate dioxygenaseNat. Struct. Biol.7542-5462000Bos taurus, Homo sapiens, Mus musculus PubMed
439393Schmidt, S.R.; Muller, C.R.; Kress, W.Murine liver homogentisate 1,2-dioxygenase. Purification to homogeneity and novel biochemical propertiesEur. J. Biochem.228425-4301995Mus musculus PubMed
657627Gunsch, C.K.; Cheng, Q.; Kinney, K.A.; Szaniszlo, P.J.; Whitman, C.P.Identification of a homogentisate-1,2-dioxygenase gene in the fungus Exophiala lecanii-corni: analysis and implicationsAppl. Microbiol. Biotechnol.68405-4112005Exophiala lecanii-corni, Exophiala lecanii-corni (Q6JDV6) PubMed
657859Veldhuizen, E.J.; Vaillancourt, F.H.; Whiting, C.J.; Hsiao, M.M.; Gingras, G.; Xiao, Y.; Tanguay, R.M.; Boukouvalas, J.; Eltis, L.D.Steady-state kinetics and inhibition of anaerobically purified human homogentisate 1,2-dioxygenaseBiochem. J.386305-3142005Homo sapiens PubMed
670622Dixon, D.P.; Edwards, R.Enzymes of tyrosine catabolism in Arabidopsis thalianaPlant Sci.171360-3662006Arabidopsis thaliana (Q9ZRA2), Arabidopsis thaliana, Arabidopsis thaliana (Q9ZVQ3) PubMed
670853Shimizu, M.; Yuda, N.; Nakamura, T.; Tanaka, H.; Wariishi, H.Metabolic regulation at the tricarboxylic acid and glyoxylate cycles of the lignin-degrading basidiomycete Phanerochaete chrysosporium against exogenous addition of vanillinProteomics53919-39312005Phanerochaete chrysosporium PubMed
674157Borowski, T.; Georgiev, V.; Siegbahn, P.E.Catalytic reaction mechanism of homogentisate dioxygenase: a hybrid DFT studyJ. Am. Chem. Soc.12717303-173142005Homo sapiens, Homo sapiens (Q93099) PubMed
677068Kim, Y.H.; Cho, K.; Yun, S.H.; Kim, J.Y.; Kwon, K.H.; Yoo, J.S.; Kim, S.I.Analysis of aromatic catabolic pathways in Pseudomonas putida KT 2440 using a combined proteomic approach: 2-DE/MS and cleavable isotope-coded affinity tag analysisProteomics61301-13182006Pseudomonas putida, Pseudomonas putida KT 2440 PubMed
686266Kang, B.R.; Han, S.H.; Cho, S.M.; Anderson, A.J.; Kim, I.S.; Park, S.K.; Kim, Y.C.Characterization of a homogentisate dioxygenase mutant in Pseudomonas chlororaphis O6Curr. Microbiol.56145-1492008Pseudomonas chlororaphis, Pseudomonas chlororaphis O6 PubMed
686387Yoon, S.S.; Karabulut, A.C.; Lipscomb, J.D.; Hennigan, R.F.; Lymar, S.V.; Groce, S.L.; Herr, A.B.; Howell, M.L.; Kiley, P.J.; Schurr, M.J.; Gaston, B.; Choi, K.H.; Schweizer, H.P.; Hassett, D.J.Two-pronged survival strategy for the major cystic fibrosis pathogen, Pseudomonas aeruginosa, lacking the capacity to degrade nitric oxide during anaerobic respirationEMBO J.263662-36722007Pseudomonas aeruginosa PubMed
686802Zhang, Y.; Wang, L.; Zhang, S.; Yang, H.; Tan, H.hmgA, transcriptionally activated by HpdA, influences the biosynthesis of actinorhodin in Streptomyces coelicolorFEMS Microbiol. Lett.280219-2252008Streptomyces coelicolor PubMed
697403Grasko, J.M.; Hooper, A.J.; Brown, J.W.; McKnight, C.J.; Burnett, J.R.A novel missense HGD gene mutation, K57N, in a patient with alkaptonuriaClin. Chim. Acta403254-2562009Homo sapiens (Q93099) PubMed
699799Munne-Bosch, S.; Falara, V.; Pateraki, I.; Lopez-Carbonell, M.; Cela, J.; Kanellis, A.K.Physiological and molecular responses of the isoprenoid biosynthetic pathway in a drought-resistant Mediterranean shrub, Cistus creticus exposed to water deficitJ. Plant Physiol.166136-1452009Cistus creticus, Cistus creticus (A9LM96) PubMed
706809Battilana, J.; Costantini, L.; Emanuelli, F.; Sevini, F.; Segala, C.; Moser, S.; Velasco, R.; Versini, G.; Stella Grando, M.The 1-deoxy-D: -xylulose 5-phosphate synthase gene co-localizes with a major QTL affecting monoterpene content in grapevineTheor. Appl. Genet.118653-6692009Vitis vinifera x Vitis riparia, Vitis vinifera x Vitis vinifera PubMed
712561Tinti, L.; Spreafico, A.; Braconi, D.; Millucci, L.; Bernardini, G.; Chellini, F.; Cavallo, G.; Selvi, E.; Galeazzi, M.; Marcolongo, R.; Gallagher, J.A.; Santucci, A.Evaluation of antioxidant drugs for the treatment of ochronotic alkaptonuria in an in vitro human cell modelJ. Cell. Physiol.22584-912010Homo sapiens PubMed
712909Toth, K.; Kiss-Laaszlo, Z.; Lenart, E.; Juhasz, K.; Takacs, K.; Bender, T.; Szabo, J.Familiar ochronotic arthropathy-caused by a gene mutation traced three hundred yearsJoint Bone Spine77355-3572010Homo sapiens PubMed
712929Zhou, G.L.; Cao, Y.; Li, M.; Zhang, L.C.; Yu, Y.S.; Jin, H.G.Meat quality and carcass traits in relation to HGD-BstXI and HGD-HaeIII PCR-RFLP polymorphism in Chinese red cattleMeat Sci.85270-2732010Bos taurus (B8YB76), Bos taurus, Bos taurus Chinese red cattle (B8YB76) PubMed
712935Effelsberg, N.; Huegle, T.; Walker, U.A metabolic cause of spinal deformityMetab. Clin. Exp.59140-1432010Homo sapiens PubMed
712990Zhou, G.; Dudgeon, C.; Li, M.; Cao, Y.; Zhang, L.; Jin, H.Molecular cloning of the HGD gene and association of SNPs with meat quality traits in Chinese red cattleMol. Biol. Rep.37603-6112010Bos taurus (B8YB76), Bos taurus PubMed
725601Laschi, M.; Tinti, L.; Braconi, D.; Millucci, L.; Ghezzi, L.; Amato, L.; Selvi, E.; Spreafico, A.; Bernardini, G.; Santucci, A.Homogentisate 1,2 dioxygenase is expressed in human osteoarticular cells: implications in alkaptonuriaJ. Cell. Physiol.2273254-32572012Homo sapiens, Homo sapiens (Q93099) PubMed
726271Mendez, V.; Agullo, L.; Gonzalez, M.; Seeger, M.The homogentisate and homoprotocatechuate central pathways are involved in 3- and 4-hydroxyphenylacetate degradation by Burkholderia xenovorans LB400PLoS ONE6e175832011Burkholderia xenovorans PubMed
726390Jeoung, J.H.; Bommer, M.; Lin, T.Y.; Dobbek, H.Visualizing the substrate-, superoxo-, alkylperoxo-, and product-bound states at the nonheme Fe(II) site of homogentisate dioxygenaseProc. Natl. Acad. Sci. USA11012625-126302013Pseudomonas putida (Q88E47), Pseudomonas putida KT2400 (Q88E47) PubMed
726475Al-sbou, M.Novel mutations in the homogentisate 1,2 dioxygenase gene identified in Jordanian patients with alkaptonuriaRheumatol. Int.321741-17462012Homo sapiens, Homo sapiens (Q93099) PubMed

LINKS TO OTHER DATABASES (specific for EC-Number 1.13.11.5)
ExplorEnz
ExPASy
KEGG
MetaCyc
NCBI: PubMed, Protein, Nucleotide, Structure, Genome, OMIM
IUBMB Enzyme Nomenclature
PROSITE Database of protein families and domains
SYSTERS
Protein Mutant Database
InterPro (database of protein families, domains and functional sites)