Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary extracted from

  • Siedenburg, G.; Jendrossek, D.
    Squalene-hopene cyclases (2011), Appl. Environ. Microbiol., 77, 3905-3915.
    View publication on PubMedView publication on EuropePMC

Cloned(Commentary)

EC Number Cloned (Comment) Organism
4.2.1.129 gene shc or hpnF, part of a gene cluster containing four open reading frames, hpnCDEF Bradyrhizobium japonicum
4.2.1.129 gene shc or hpnF, part of a gene cluster containing six open reading frames, hpnABCDEF Zymomonas mobilis
4.2.1.129 gene shc, DNA and amino acid sequence determination, expression in Escherichia coli Alicyclobacillus acidocaldarius
5.4.99.17 DNA and amino acid sequence determination and analysis, sequence comparison, expression in Escherichia coli strain DH5alpha Bradyrhizobium japonicum
5.4.99.17 DNA and amino acid sequence determination and analysis, sequence comparison, expression in Escherichia coli strain DH5alpha Rhodopseudomonas palustris
5.4.99.17 DNA and amino acid sequence determination and analysis, sequence comparison, expression in Escherichia coli strain DH5alpha Streptomyces peucetius
5.4.99.17 DNA and amino acid sequence determination and analysis, sequence comparison, expression in Escherichia coli strain DH5alpha Zymomonas mobilis
5.4.99.17 DNA and amino acid sequence determination and analysis, sequence comparison, expression in Escherichia coli strain DH5alpha Methylococcus capsulatus
5.4.99.17 DNA and amino acid sequence determination and analysis, sequence comparison, expression in Escherichia coli strain DH5alpha Tetrahymena thermophila
5.4.99.17 DNA and amino acid sequence determination and analysis, sequence comparison, expression in Escherichia coli strain DH5alpha Alicyclobacillus acidocaldarius
5.4.99.17 gene shc, DNA and amino acid sequence determination, expression in Escherichia coli Alicyclobacillus acidocaldarius

Protein Variants

EC Number Protein Variants Comment Organism
4.2.1.129 C435S/D374I/D374V/H451F site-directed mutagenesis, inactive mutant Alicyclobacillus acidocaldarius
4.2.1.129 D376E site-directed mutagenesis, inactive mutant Alicyclobacillus acidocaldarius
4.2.1.129 D377C/D377N/Y612A site-directed mutagenesis, the mutant shows an altered product pattern compared to the wild-type enzyme, overview Alicyclobacillus acidocaldarius
4.2.1.129 D377E/D376Q/D376R/D377R/E45K/W406V/W417A/D377C site-directed mutagenesis, inactive mutant Alicyclobacillus acidocaldarius
4.2.1.129 F365A site-directed mutagenesis, the mutant shows an altered product pattern compared to the wild-type enzyme, overview Alicyclobacillus acidocaldarius
4.2.1.129 F601A site-directed mutagenesis, the mutant shows an altered product pattern compared to the wild-type enzyme, overview Alicyclobacillus acidocaldarius
4.2.1.129 F605A site-directed mutagenesis, the mutant shows an altered product pattern compared to the wild-type enzyme, overview Alicyclobacillus acidocaldarius
4.2.1.129 I261A site-directed mutagenesis, the mutant shows an altered product pattern compared to the wild-type enzyme, overview Alicyclobacillus acidocaldarius
4.2.1.129 Q262G/Q262A/P263G/P263A site-directed mutagenesis, the mutant shows an altered product pattern compared to the wild-type enzyme, overview Alicyclobacillus acidocaldarius
4.2.1.129 V380E site-directed mutagenesis, inactive mutant Alicyclobacillus acidocaldarius
4.2.1.129 V381A/D376C site-directed mutagenesis, inactive mutant Alicyclobacillus acidocaldarius
4.2.1.129 W169F/W169H/W489A/F605K site-directed mutagenesis, the mutant shows an altered product pattern compared to the wild-type enzyme, overview Alicyclobacillus acidocaldarius
4.2.1.129 Y420A site-directed mutagenesis, the mutant shows an altered product pattern compared to the wild-type enzyme, overview Alicyclobacillus acidocaldarius
4.2.1.129 Y606A/W23V/W495V/W522V/W533A/W591L/W78S/E35Q/E197Q/D530N/T378A site-directed mutagenesis, the mutant shows the same product pattern and activity as the wild-type Alicyclobacillus acidocaldarius
4.2.1.129 Y609A/Y612A/L607K site-directed mutagenesis, the mutant shows an altered product pattern compared to the wild-type enzyme, overview Alicyclobacillus acidocaldarius
4.2.1.129 Y609F site-directed mutagenesis, the mutant shows an altered product pattern compared to the wild-type enzyme, overview Alicyclobacillus acidocaldarius
4.2.1.129 Y609F site-directed mutagenesis, the mutant shows an altered product pattern compared to the wild-type enzyme, overview. The phenotype of Y609F mutein is contrarily described in two publications Alicyclobacillus acidocaldarius
4.2.1.129 Y612F/D376E/D376G/D377E/D377G/D377Q/E45A/E45D/F365W/T41A/E93A/R127Q/W133A/Y267A/F434A/F437A/W258L/D350N/D421N/D442N/H451R/D447N/D377N/D313N/E535Q/D374E site-directed mutagenesis, the mutant shows the same product pattern as the wild-type with less enzyme activity Alicyclobacillus acidocaldarius
5.4.99.17 C435S/D374I/D374V/H451F inactive mutant Alicyclobacillus acidocaldarius
5.4.99.17 C435S/D374I/D374V/H451F site-directed mutagenesis, inactive mutant Alicyclobacillus acidocaldarius
5.4.99.17 D376E inactive mutant Alicyclobacillus acidocaldarius
5.4.99.17 D376E site-directed mutagenesis, inactive mutant Alicyclobacillus acidocaldarius
5.4.99.17 D377C/D377N/Y612A the mutant shows an altered product pattern compared to the wild-type enzyme, overview Alicyclobacillus acidocaldarius
5.4.99.17 D377C/D377N/Y612A site-directed mutagenesis, the mutant shows an altered product pattern compared to the wild-type enzyme, overview Alicyclobacillus acidocaldarius
5.4.99.17 D377E/D376Q/D376R/D377R/E45K/W406V/W417A/D377C inactive mutant Alicyclobacillus acidocaldarius
5.4.99.17 D377E/D376Q/D376R/D377R/E45K/W406V/W417A/D377C site-directed mutagenesis, inactive mutant Alicyclobacillus acidocaldarius
5.4.99.17 F365A the mutant shows an altered product pattern compared to the wild-type enzyme, overview Alicyclobacillus acidocaldarius
5.4.99.17 F365A site-directed mutagenesis, the mutant shows an altered product pattern compared to the wild-type enzyme, overview Alicyclobacillus acidocaldarius
5.4.99.17 F601A the mutant shows an altered product pattern compared to the wild-type enzyme, overview Alicyclobacillus acidocaldarius
5.4.99.17 F601A site-directed mutagenesis, the mutant shows an altered product pattern compared to the wild-type enzyme, overview Alicyclobacillus acidocaldarius
5.4.99.17 F605A the mutant shows an altered product pattern compared to the wild-type enzyme, overview Alicyclobacillus acidocaldarius
5.4.99.17 F605A site-directed mutagenesis, the mutant shows an altered product pattern compared to the wild-type enzyme, overview Alicyclobacillus acidocaldarius
5.4.99.17 I261A the mutant shows an altered product pattern compared to the wild-type enzyme, overview Alicyclobacillus acidocaldarius
5.4.99.17 I261A site-directed mutagenesis, the mutant shows an altered product pattern compared to the wild-type enzyme, overview Alicyclobacillus acidocaldarius
5.4.99.17 additional information product patterns of mutant enzymes, detailed overview Alicyclobacillus acidocaldarius
5.4.99.17 Q262G/Q262A/P263G/P263A the mutant shows an altered product pattern compared to the wild-type enzyme, overview Alicyclobacillus acidocaldarius
5.4.99.17 Q262G/Q262A/P263G/P263A site-directed mutagenesis, the mutant shows an altered product pattern compared to the wild-type enzyme, overview Alicyclobacillus acidocaldarius
5.4.99.17 V380E inactive mutant Alicyclobacillus acidocaldarius
5.4.99.17 V380E site-directed mutagenesis, inactive mutant Alicyclobacillus acidocaldarius
5.4.99.17 V381A/D376C inactive mutant Alicyclobacillus acidocaldarius
5.4.99.17 V381A/D376C site-directed mutagenesis, inactive mutant Alicyclobacillus acidocaldarius
5.4.99.17 W169F/W169H/W489A/F605K the mutant shows an altered product pattern compared to the wild-type enzyme, overview Alicyclobacillus acidocaldarius
5.4.99.17 W169F/W169H/W489A/F605K site-directed mutagenesis, the mutant shows an altered product pattern compared to the wild-type enzyme, overview Alicyclobacillus acidocaldarius
5.4.99.17 Y420A the mutant shows an altered product pattern compared to the wild-type enzyme, overview Alicyclobacillus acidocaldarius
5.4.99.17 Y420A site-directed mutagenesis, the mutant shows an altered product pattern compared to the wild-type enzyme, overview Alicyclobacillus acidocaldarius
5.4.99.17 Y606A/W23V/W495V/W522V/W533A/W591L/W78S/E35Q/E197Q/D530N/T378A the mutant shows the same product pattern and activity as the wild-type Alicyclobacillus acidocaldarius
5.4.99.17 Y606A/W23V/W495V/W522V/W533A/W591L/W78S/E35Q/E197Q/D530N/T378A site-directed mutagenesis, the mutant shows the same product pattern and activity as the wild-type Alicyclobacillus acidocaldarius
5.4.99.17 Y609A/Y612A/L607K the mutant shows an altered product pattern compared to the wild-type enzyme, overview Alicyclobacillus acidocaldarius
5.4.99.17 Y609A/Y612A/L607K site-directed mutagenesis, the mutant shows an altered product pattern compared to the wild-type enzyme, overview Alicyclobacillus acidocaldarius
5.4.99.17 Y609F the mutant shows an altered product pattern compared to the wild-type enzyme, overview Alicyclobacillus acidocaldarius
5.4.99.17 Y609F site-directed mutagenesis, the mutant shows an altered product pattern compared to the wild-type enzyme, overview Alicyclobacillus acidocaldarius
5.4.99.17 Y609F site-directed mutagenesis, the mutant shows an altered product pattern compared to the wild-type enzyme, overview. The phenotype of Y609F mutein is contrarily described in two publications Alicyclobacillus acidocaldarius
5.4.99.17 Y612F/D376E/D376G/D377E/D377G/D377Q/E45A/E45D/F365W/T41A/E93A/R127Q/W133A/Y267A/F434A/F437A/W258L/D350N/D421N/D442N/H451R/D447N/D377N/D313N/E535Q/D374E the mutant shows the same product pattern as the wild-type with less enzyme activity Alicyclobacillus acidocaldarius
5.4.99.17 Y612F/D376E/D376G/D377E/D377G/D377Q/E45A/E45D/F365W/T41A/E93A/R127Q/W133A/Y267A/F434A/F437A/W258L/D350N/D421N/D442N/H451R/D447N/D377N/D313N/E535Q/D374E site-directed mutagenesis, the mutant shows the same product pattern as the wild-type with less enzyme activity Alicyclobacillus acidocaldarius

Inhibitors

EC Number Inhibitors Comment Organism Structure
4.2.1.129 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate i.e. CHAPS, almost complete inhibition Methylococcus capsulatus
4.2.1.129 additional information different glucopyranosides inhibit this enzyme more or less completely; no inhibition by Triton X-100 and Tween 80 Methylococcus capsulatus
4.2.1.129 additional information the enzyme is inhibited by detergents Rhodopseudomonas palustris
4.2.1.129 sodium-taurodeoxycholate almost complete inhibition Methylococcus capsulatus

KM Value [mM]

EC Number KM Value [mM] KM Value Maximum [mM] Substrate Comment Organism Structure
4.2.1.123 0.018
-
squalene pH 7.0, 30°C Tetrahymena thermophila
4.2.1.129 0.003 0.016 squalene pH 6.0, 60°C Alicyclobacillus acidocaldarius
4.2.1.129 0.018
-
squalene pH 7.0, 30°C Tetrahymena thermophila
5.4.99.17 0.003 0.016 squalene pH 6.0, 60°C Alicyclobacillus acidocaldarius

Localization

EC Number Localization Comment Organism GeneOntology No. Textmining
4.2.1.129 membrane
-
Rhodopseudomonas palustris 16020
-
4.2.1.129 membrane
-
Methylococcus capsulatus 16020
-
4.2.1.129 plasma membrane SHC in vivo is a membrane-associated protein and can be solubilized from cell extracts by nonionic detergents, such as Triton X-100 or octylthioglucopyranoside. The enzyme is attached to the inner side of the cytoplasmic membrane by interactions of hydrophobic residues with the phospholipids. The membrane-binding part of the enzyme is a nonpolar region that is encircled by positive-charged amino acids enforcing the anchoring of the enzyme to the negatively charged surface of the phospholipid membrane Alicyclobacillus acidocaldarius 5886
-
5.4.99.17 plasma membrane enzyme SHC in vivo is a membrane-associated protein and can be solubilized from cell extracts by nonionic detergents, such as Triton X-100 or octylthioglucopyranoside. The enzyme is attached to the inner side of the cytoplasmic membrane by interactions of hydrophobic residues with the phospholipids. The membrane-binding part of the enzyme is a nonpolar region that is encircled by positive-charged amino acids enforcing the anchoring of the enzyme to the negatively charged surface of the phospholipid membrane Alicyclobacillus acidocaldarius 5886
-

Molecular Weight [Da]

EC Number Molecular Weight [Da] Molecular Weight Maximum [Da] Comment Organism
4.2.1.123 72000
-
x * 72000, SDS-PAGE Tetrahymena thermophila
4.2.1.129 71600
-
2 * 71600, about, sequence calculation Alicyclobacillus acidocaldarius
4.2.1.129 71600
-
x * 71600, about, sequence calculation Tetrahymena thermophila
4.2.1.129 72300
-
x * 72300, about, sequence calculation Rhodopseudomonas palustris
4.2.1.129 74100
-
x * 74100, about, sequence calculation Streptomyces peucetius
4.2.1.129 74100
-
x * 74100, about, sequence calculation Zymomonas mobilis
4.2.1.129 74100
-
x * 74100, about, sequence calculation Methylococcus capsulatus
4.2.1.129 76300
-
x * 76300, about, sequence calculation Bradyrhizobium japonicum
5.4.99.17 71600
-
x * 71600, SDS-PAGE Alicyclobacillus acidocaldarius
5.4.99.17 71600
-
2 * 71600, about, sequence calculation Alicyclobacillus acidocaldarius
5.4.99.17 72000
-
x * 72000, SDS-PAGE Tetrahymena thermophila
5.4.99.17 72300
-
x * 72300, SDS-PAGE Rhodopseudomonas palustris
5.4.99.17 74100
-
x * 74100, SDS-PAGE Streptomyces peucetius
5.4.99.17 74100
-
x * 74100, SDS-PAGE Zymomonas mobilis
5.4.99.17 74100
-
x * 74100, SDS-PAGE Methylococcus capsulatus
5.4.99.17 76300
-
x * 76300, SDS-PAGE Bradyrhizobium japonicum
5.4.99.17 76300
-
x * 76300, about, sequence calculation Bradyrhizobium japonicum

Natural Substrates/ Products (Substrates)

EC Number Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
4.2.1.123 squalene + H2O Tetrahymena thermophila
-
tetrahymanol
-
?
4.2.1.129 additional information Alicyclobacillus acidocaldarius product pattern of alternative substrates, overview ?
-
?
4.2.1.129 squalene + H2O Bradyrhizobium japonicum
-
hopan-22-ol
-
?
4.2.1.129 squalene + H2O Rhodopseudomonas palustris
-
hopan-22-ol
-
?
4.2.1.129 squalene + H2O Streptomyces peucetius
-
hopan-22-ol
-
?
4.2.1.129 squalene + H2O Zymomonas mobilis
-
hopan-22-ol
-
?
4.2.1.129 squalene + H2O Methylococcus capsulatus
-
hopan-22-ol
-
?
4.2.1.129 squalene + H2O Tetrahymena thermophila
-
hopan-22-ol
-
?
4.2.1.129 squalene + H2O Alicyclobacillus acidocaldarius
-
hopan-22-ol
-
?
5.4.99.17 additional information Alicyclobacillus acidocaldarius product pattern of alternative substrates, overview ?
-
?
5.4.99.17 squalene Bradyrhizobium japonicum
-
hop-22(29)-ene
-
?
5.4.99.17 squalene Rhodopseudomonas palustris
-
hop-22(29)-ene
-
?
5.4.99.17 squalene Streptomyces peucetius
-
hop-22(29)-ene
-
?
5.4.99.17 squalene Zymomonas mobilis
-
hop-22(29)-ene
-
?
5.4.99.17 squalene Methylococcus capsulatus
-
hop-22(29)-ene
-
?
5.4.99.17 squalene Tetrahymena thermophila
-
hop-22(29)-ene
-
?
5.4.99.17 squalene Alicyclobacillus acidocaldarius
-
hop-22(29)-ene
-
?

Organism

EC Number Organism UniProt Comment Textmining
4.2.1.123 no activity in Alicyclobacillus acidocaldarius
-
-
-
4.2.1.123 no activity in Bradyrhizobium japonicum
-
-
-
4.2.1.123 no activity in Methylococcus capsulatus
-
-
-
4.2.1.123 no activity in Rhodopseudomonas palustris
-
-
-
4.2.1.123 Tetrahymena thermophila
-
-
-
4.2.1.129 Alicyclobacillus acidocaldarius P33247 formerly Bacillus acidocaldarius, gene shc
-
4.2.1.129 Bradyrhizobium japonicum
-
gene shc or hpnF
-
4.2.1.129 Methylococcus capsulatus
-
-
-
4.2.1.129 no activity in Escherichia coli
-
-
-
4.2.1.129 Rhodopseudomonas palustris
-
-
-
4.2.1.129 Streptomyces peucetius
-
-
-
4.2.1.129 Tetrahymena thermophila
-
-
-
4.2.1.129 Zymomonas mobilis
-
gene shc or hpnF
-
5.4.99.17 Alicyclobacillus acidocaldarius
-
formerly Bacillus acidocaldarius
-
5.4.99.17 Alicyclobacillus acidocaldarius P33247 formerly Bacillus acidocaldarius, gene shc
-
5.4.99.17 Bradyrhizobium japonicum
-
-
-
5.4.99.17 Methylococcus capsulatus
-
-
-
5.4.99.17 no activity in Methylococcus capsulatus
-
-
-
5.4.99.17 Rhodopseudomonas palustris
-
-
-
5.4.99.17 Streptomyces peucetius
-
-
-
5.4.99.17 Tetrahymena thermophila
-
-
-
5.4.99.17 Zymomonas mobilis
-
-
-

Purification (Commentary)

EC Number Purification (Comment) Organism
4.2.1.129 native and/or recombinant enzyme, SHC in vivo is a membrane-associated protein and can be solubilized from cell extracts by nonionic detergents, such as Triton X-100 or octylthioglucopyranoside Alicyclobacillus acidocaldarius
4.2.1.129 the native enzyme can be solubilized from membranes by Triton X-100 and Tween 80 without loss of activity, but ionic detergents, such as 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), sodium-taurodeoxycolate, and different glucopyranosides, inhibit this enzyme more or less completely Methylococcus capsulatus
5.4.99.17 native and/or recombinant enzyme, the enzyme in vivo is a membrane-associated protein and can be solubilized from cell extracts by nonionic detergents, such as Triton X-100 or octylthioglucopyranoside Alicyclobacillus acidocaldarius

Reaction

EC Number Reaction Comment Organism Reaction ID
4.2.1.123 tetrahymanol = squalene + H2O overall mechanism of the polycyclization reaction of SHCs and structures of squalene cyclization products, overview Tetrahymena thermophila
4.2.1.129 hopan-22-ol = squalene + H2O overall mechanism of the polycyclization reaction of SHCs and structures of squalene cyclization products, overview Bradyrhizobium japonicum
4.2.1.129 hopan-22-ol = squalene + H2O overall mechanism of the polycyclization reaction of SHCs and structures of squalene cyclization products, overview Rhodopseudomonas palustris
4.2.1.129 hopan-22-ol = squalene + H2O overall mechanism of the polycyclization reaction of SHCs and structures of squalene cyclization products, overview Streptomyces peucetius
4.2.1.129 hopan-22-ol = squalene + H2O overall mechanism of the polycyclization reaction of SHCs and structures of squalene cyclization products, overview Zymomonas mobilis
4.2.1.129 hopan-22-ol = squalene + H2O overall mechanism of the polycyclization reaction of SHCs and structures of squalene cyclization products, overview Methylococcus capsulatus
4.2.1.129 hopan-22-ol = squalene + H2O overall mechanism of the polycyclization reaction of SHCs and structures of squalene cyclization products, overview Tetrahymena thermophila
4.2.1.129 hopan-22-ol = squalene + H2O overall mechanism of the polycyclization reaction of SHCs and structures of squalene cyclization products, overview Alicyclobacillus acidocaldarius
5.4.99.17 squalene = hop-22(29)-ene catalytic mechanism, the initial reaction catalyzed is the protonation of the terminal double bond of squalene. The conserved DXDD motif of SHCs is essential for this protonation reaction, overview Bradyrhizobium japonicum
5.4.99.17 squalene = hop-22(29)-ene catalytic mechanism, the initial reaction catalyzed is the protonation of the terminal double bond of squalene. The conserved DXDD motif of SHCs is essential for this protonation reaction, overview Rhodopseudomonas palustris
5.4.99.17 squalene = hop-22(29)-ene catalytic mechanism, the initial reaction catalyzed is the protonation of the terminal double bond of squalene. The conserved DXDD motif of SHCs is essential for this protonation reaction, overview Streptomyces peucetius
5.4.99.17 squalene = hop-22(29)-ene catalytic mechanism, the initial reaction catalyzed is the protonation of the terminal double bond of squalene. The conserved DXDD motif of SHCs is essential for this protonation reaction, overview Zymomonas mobilis
5.4.99.17 squalene = hop-22(29)-ene catalytic mechanism, the initial reaction catalyzed is the protonation of the terminal double bond of squalene. The conserved DXDD motif of SHCs is essential for this protonation reaction, overview Methylococcus capsulatus
5.4.99.17 squalene = hop-22(29)-ene catalytic mechanism, the initial reaction catalyzed is the protonation of the terminal double bond of squalene. The conserved DXDD motif of SHCs is essential for this protonation reaction, overview Tetrahymena thermophila
5.4.99.17 squalene = hop-22(29)-ene catalytic mechanism, the initial reaction catalyzed is the protonation of the terminal double bond of squalene. The conserved DXDD motif of SHCs is essential for this protonation reaction. In Alicyclobacillus acidocaldarius SHC, Asp376 of this motif is hydrogen bonded to His451, and an additional hydrogen bond exists to an ordered water molecule, which connects D376 to the hydroxyl group of the Y495 side chain and thus further enhances its acidity. The carboxyl groups of Asp374 and Asp377 accommodate the positive charge of the D376-H451 pair prior to proton transfer. After proton transfer to the 2,3-double bond of squalene, the D376-H451 pair loses its charge, leaving the remaining negative charge on the D374-D377 pair for stabilization of the initial cationic intermediates (24, 101). Reprotonation of D376 occurs through a water molecule bound to Y495-OH, which can transfer protons from disordered water in the solvent-accessible upper cavity of SHC Alicyclobacillus acidocaldarius
5.4.99.17 squalene = hop-22(29)-ene overall mechanism of the polycyclization reaction of SHCs and structures of squalene cyclization products, overview Bradyrhizobium japonicum
5.4.99.17 squalene = hop-22(29)-ene overall mechanism of the polycyclization reaction of SHCs and structures of squalene cyclization products, overview Alicyclobacillus acidocaldarius

Substrates and Products (Substrate)

EC Number Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
4.2.1.123 squalene + H2O
-
Tetrahymena thermophila tetrahymanol
-
?
4.2.1.129 additional information substrate specificity, overview Alicyclobacillus acidocaldarius ?
-
?
4.2.1.129 additional information product pattern of alternative substrates, overview Alicyclobacillus acidocaldarius ?
-
?
4.2.1.129 squalene + H2O
-
Bradyrhizobium japonicum hopan-22-ol
-
?
4.2.1.129 squalene + H2O
-
Rhodopseudomonas palustris hopan-22-ol
-
?
4.2.1.129 squalene + H2O
-
Streptomyces peucetius hopan-22-ol
-
?
4.2.1.129 squalene + H2O
-
Zymomonas mobilis hopan-22-ol
-
?
4.2.1.129 squalene + H2O
-
Methylococcus capsulatus hopan-22-ol
-
?
4.2.1.129 squalene + H2O
-
Tetrahymena thermophila hopan-22-ol
-
?
4.2.1.129 squalene + H2O
-
Alicyclobacillus acidocaldarius hopan-22-ol
-
?
5.4.99.17 additional information substrate specificity, overview Alicyclobacillus acidocaldarius ?
-
?
5.4.99.17 additional information substrate specificity, detailed overview Streptomyces peucetius ?
-
?
5.4.99.17 additional information substrate specificity, detailed overview Zymomonas mobilis ?
-
?
5.4.99.17 additional information the enzyme also catalyzes 2,3-oxidosqualene cyclization, but no tetrahymanol formation. Substrate specificity, detailed overview Bradyrhizobium japonicum ?
-
?
5.4.99.17 additional information the enzyme also catalyzes 2,3-oxidosqualene cyclization, but no tetrahymanol formation. Substrate specificity, detailed overview Alicyclobacillus acidocaldarius ?
-
?
5.4.99.17 additional information the enzyme also catalyzes 2,3-oxidosqualene cyclization, substrate specificity, detailed overview Tetrahymena thermophila ?
-
?
5.4.99.17 additional information the enzyme does not catalyze 2,3-oxidosqualene cyclization nor tetrahymanol formation. Substrate specificity, detailed overview Methylococcus capsulatus ?
-
?
5.4.99.17 additional information the enzyme does not catalyze tetrahymanol formation. Substrate specificity, detailed overview Rhodopseudomonas palustris ?
-
?
5.4.99.17 additional information product pattern of alternative substrates, overview Alicyclobacillus acidocaldarius ?
-
?
5.4.99.17 squalene
-
Bradyrhizobium japonicum hop-22(29)-ene
-
?
5.4.99.17 squalene
-
Rhodopseudomonas palustris hop-22(29)-ene
-
?
5.4.99.17 squalene
-
Streptomyces peucetius hop-22(29)-ene
-
?
5.4.99.17 squalene
-
Zymomonas mobilis hop-22(29)-ene
-
?
5.4.99.17 squalene
-
Methylococcus capsulatus hop-22(29)-ene
-
?
5.4.99.17 squalene
-
Tetrahymena thermophila hop-22(29)-ene
-
?
5.4.99.17 squalene
-
Alicyclobacillus acidocaldarius hop-22(29)-ene
-
?

Subunits

EC Number Subunits Comment Organism
4.2.1.123 ? x * 72000, SDS-PAGE Tetrahymena thermophila
4.2.1.129 ? x * 71600, about, sequence calculation Tetrahymena thermophila
4.2.1.129 ? x * 72300, about, sequence calculation Rhodopseudomonas palustris
4.2.1.129 ? x * 74100, about, sequence calculation Streptomyces peucetius
4.2.1.129 ? x * 74100, about, sequence calculation Zymomonas mobilis
4.2.1.129 ? x * 74100, about, sequence calculation Methylococcus capsulatus
4.2.1.129 ? x * 76300, about, sequence calculation Bradyrhizobium japonicum
4.2.1.129 homodimer 2 * 71600, about, sequence calculation Alicyclobacillus acidocaldarius
4.2.1.129 More each subunit consists of alpha-helical domains that build up a dumbbell-shaped structure. The first domain consists of a regular (alpha/alpha)6 barrel structure, whereas the second domain shows an alpha-barrel structure in a less periodic manner Alicyclobacillus acidocaldarius
5.4.99.17 ? x * 72000, SDS-PAGE Tetrahymena thermophila
5.4.99.17 ? x * 71600, SDS-PAGE Alicyclobacillus acidocaldarius
5.4.99.17 ? x * 72300, SDS-PAGE Rhodopseudomonas palustris
5.4.99.17 ? x * 74100, SDS-PAGE Streptomyces peucetius
5.4.99.17 ? x * 74100, SDS-PAGE Zymomonas mobilis
5.4.99.17 ? x * 74100, SDS-PAGE Methylococcus capsulatus
5.4.99.17 ? x * 76300, SDS-PAGE Bradyrhizobium japonicum
5.4.99.17 ? x * 76300, about, sequence calculation Bradyrhizobium japonicum
5.4.99.17 homodimer 2 * 71600, about, sequence calculation Alicyclobacillus acidocaldarius
5.4.99.17 More dumbbell-shaped structure of chain A with a more structured beta-barrel structure in domain 1, active site structure, structure analysis, overview Alicyclobacillus acidocaldarius
5.4.99.17 More each subunit consists of alpha-helical domains that build up a dumbbell-shaped structure. The first domain consists of a regular (alpha/alpha)6 barrel structure, whereas the second domain shows an alpha-barrel structure in a less periodic manner Alicyclobacillus acidocaldarius

Synonyms

EC Number Synonyms Comment Organism
4.2.1.123 squalene-tetrahymanol cyclase
-
Tetrahymena thermophila
4.2.1.129 SHC
-
Bradyrhizobium japonicum
4.2.1.129 SHC
-
Rhodopseudomonas palustris
4.2.1.129 SHC
-
Streptomyces peucetius
4.2.1.129 SHC
-
Zymomonas mobilis
4.2.1.129 SHC
-
Methylococcus capsulatus
4.2.1.129 SHC
-
Tetrahymena thermophila
4.2.1.129 SHC
-
Alicyclobacillus acidocaldarius
4.2.1.129 squalene-hopene cyclase
-
Bradyrhizobium japonicum
4.2.1.129 squalene-hopene cyclase
-
Rhodopseudomonas palustris
4.2.1.129 squalene-hopene cyclase
-
Streptomyces peucetius
4.2.1.129 squalene-hopene cyclase
-
Zymomonas mobilis
4.2.1.129 squalene-hopene cyclase
-
Methylococcus capsulatus
4.2.1.129 squalene-hopene cyclase
-
Tetrahymena thermophila
4.2.1.129 squalene-hopene cyclase
-
Alicyclobacillus acidocaldarius
5.4.99.17 SHC
-
Bradyrhizobium japonicum
5.4.99.17 SHC
-
Rhodopseudomonas palustris
5.4.99.17 SHC
-
Streptomyces peucetius
5.4.99.17 SHC
-
Zymomonas mobilis
5.4.99.17 SHC
-
Methylococcus capsulatus
5.4.99.17 SHC
-
Tetrahymena thermophila
5.4.99.17 SHC
-
Alicyclobacillus acidocaldarius
5.4.99.17 squalene-hopene cyclase
-
Bradyrhizobium japonicum
5.4.99.17 squalene-hopene cyclase
-
Alicyclobacillus acidocaldarius

Temperature Optimum [°C]

EC Number Temperature Optimum [°C] Temperature Optimum Maximum [°C] Comment Organism
4.2.1.123 30
-
-
Tetrahymena thermophila
4.2.1.129 28
-
-
Bradyrhizobium japonicum
4.2.1.129 30
-
-
Rhodopseudomonas palustris
4.2.1.129 30
-
-
Zymomonas mobilis
4.2.1.129 30
-
-
Tetrahymena thermophila
4.2.1.129 35
-
-
Streptomyces peucetius
4.2.1.129 40
-
-
Methylococcus capsulatus
4.2.1.129 60
-
-
Alicyclobacillus acidocaldarius
5.4.99.17 28
-
-
Bradyrhizobium japonicum
5.4.99.17 30
-
-
Rhodopseudomonas palustris
5.4.99.17 30
-
-
Zymomonas mobilis
5.4.99.17 30
-
-
Tetrahymena thermophila
5.4.99.17 35
-
-
Streptomyces peucetius
5.4.99.17 40
-
-
Methylococcus capsulatus
5.4.99.17 60
-
-
Alicyclobacillus acidocaldarius

pH Optimum

EC Number pH Optimum Minimum pH Optimum Maximum Comment Organism
4.2.1.123 7
-
-
Tetrahymena thermophila
4.2.1.129 6
-
-
Zymomonas mobilis
4.2.1.129 6
-
-
Alicyclobacillus acidocaldarius
4.2.1.129 6.5
-
-
Bradyrhizobium japonicum
4.2.1.129 6.5
-
-
Rhodopseudomonas palustris
4.2.1.129 6.8
-
-
Streptomyces peucetius
4.2.1.129 6.8
-
-
Methylococcus capsulatus
4.2.1.129 7
-
-
Tetrahymena thermophila
5.4.99.17 6
-
-
Zymomonas mobilis
5.4.99.17 6
-
-
Alicyclobacillus acidocaldarius
5.4.99.17 6.5
-
-
Bradyrhizobium japonicum
5.4.99.17 6.5
-
-
Rhodopseudomonas palustris
5.4.99.17 6.8
-
-
Streptomyces peucetius
5.4.99.17 6.8
-
-
Methylococcus capsulatus
5.4.99.17 7
-
-
Tetrahymena thermophila

pH Range

EC Number pH Minimum pH Maximum Comment Organism
4.2.1.129 5 8 activity range Rhodopseudomonas palustris
5.4.99.17 5 8 activity range Rhodopseudomonas palustris

General Information

EC Number General Information Comment Organism
4.2.1.123 metabolism the enzyme converts squalene to tetrahymanol, EC 4.2.1.123, and to hopanol, EC 4.2.1.129, pathway overview Tetrahymena thermophila
4.2.1.129 evolution enzyme distribution in the different taxa, overview Bradyrhizobium japonicum
4.2.1.129 evolution enzyme distribution in the different taxa, overview Rhodopseudomonas palustris
4.2.1.129 evolution enzyme distribution in the different taxa, overview Streptomyces peucetius
4.2.1.129 evolution enzyme distribution in the different taxa, overview Zymomonas mobilis
4.2.1.129 evolution enzyme distribution in the different taxa, overview Methylococcus capsulatus
4.2.1.129 evolution enzyme distribution in the different taxa, overview Tetrahymena thermophila
4.2.1.129 evolution enzyme distribution in the different taxa, overview Alicyclobacillus acidocaldarius
4.2.1.129 metabolism the enzyme converts squalene to hopanol, EC 4.2.1.129 as well as to tetrahymanol, EC 4.2.1.123, but not to hopene, EC 5.4.99.17, pathway overview Tetrahymena thermophila
4.2.1.129 metabolism the enzyme converts squalene to hopanol, EC 4.2.1.129, and to hopene, EC 5.4.99.17, but not to tetrahymanol, EC 4.2.1.123, pathway overview Alicyclobacillus acidocaldarius
4.2.1.129 metabolism the enzyme converts squalene to hopanol, EC 4.2.1.129, but not to tetrahymanol, EC 4.2.1.123, and not to hopene, EC 5.4.99.17, pathway overview Methylococcus capsulatus
4.2.1.129 metabolism the enzyme converts squalene to hopanol, EC 4.2.1.129, but not to tetrahymanol, EC 4.2.1.123, pathway overview Rhodopseudomonas palustris
4.2.1.129 metabolism the enzyme converts squalene to hopanol, pathway overview Streptomyces peucetius
4.2.1.129 metabolism the enzyme converts squalene to hopanol, pathway overview Zymomonas mobilis
4.2.1.129 metabolism the enzyme converts squalene to tetrahymanol, EC 4.2.1.123, to hopene, EC 5.4.99.17, and to hopanol, EC 4.2.1.129, pathway overview Bradyrhizobium japonicum
4.2.1.129 additional information structure-function relationships of SHCs, active site structure, overview Bradyrhizobium japonicum
4.2.1.129 additional information structure-function relationships of SHCs, active site structure, overview Rhodopseudomonas palustris
4.2.1.129 additional information structure-function relationships of SHCs, active site structure, overview Streptomyces peucetius
4.2.1.129 additional information structure-function relationships of SHCs, active site structure, overview Zymomonas mobilis
4.2.1.129 additional information structure-function relationships of SHCs, active site structure, overview Methylococcus capsulatus
4.2.1.129 additional information structure-function relationships of SHCs, active site structure, overview Tetrahymena thermophila
4.2.1.129 additional information structure-function relationships of SHCs, active site structure, overview. A protruding part in the center of the nonpolar region contains a lipophilic channel and directs the substrate to the active-site cavity inside the protein. The channel and cavity are separated by a narrow constriction buildup of four amino acids, D376, F166, C435, and F434, that appear to block access to the active site. Residues C435 and F434 are part of a loop that seems to be flexible enough to permit passage of the substrate and the product Alicyclobacillus acidocaldarius
5.4.99.17 evolution structure-function relationships of squalene-hopene cyclases, the DXDD motif, which is typical for all squalene-hopene cyclases, overview Bradyrhizobium japonicum
5.4.99.17 evolution structure-function relationships of squalene-hopene cyclases, the DXDD motif, which is typical for all squalene-hopene cyclases, overview Rhodopseudomonas palustris
5.4.99.17 evolution structure-function relationships of squalene-hopene cyclases, the DXDD motif, which is typical for all squalene-hopene cyclases, overview Streptomyces peucetius
5.4.99.17 evolution structure-function relationships of squalene-hopene cyclases, the DXDD motif, which is typical for all squalene-hopene cyclases, overview Zymomonas mobilis
5.4.99.17 evolution structure-function relationships of squalene-hopene cyclases, the DXDD motif, which is typical for all squalene-hopene cyclases, overview Methylococcus capsulatus
5.4.99.17 evolution structure-function relationships of squalene-hopene cyclases, the DXDD motif, which is typical for all squalene-hopene cyclases, overview Tetrahymena thermophila
5.4.99.17 evolution structure-function relationships of squalene-hopene cyclases, the DXDD motif, which is typical for all squalene-hopene cyclases, overview Alicyclobacillus acidocaldarius
5.4.99.17 evolution enzyme distribution in the different taxa, overview Bradyrhizobium japonicum
5.4.99.17 evolution enzyme distribution in the different taxa, overview Alicyclobacillus acidocaldarius
5.4.99.17 metabolism the enzyme is involved in biosynthesis of hopanoids, members of a large group of cyclic triterpenoic compounds that have important functions in many prokaryotic and eukaryotic organisms Bradyrhizobium japonicum
5.4.99.17 metabolism the enzyme is involved in biosynthesis of hopanoids, members of a large group of cyclic triterpenoic compounds that have important functions in many prokaryotic and eukaryotic organisms Rhodopseudomonas palustris
5.4.99.17 metabolism the enzyme is involved in biosynthesis of hopanoids, members of a large group of cyclic triterpenoic compounds that have important functions in many prokaryotic and eukaryotic organisms Streptomyces peucetius
5.4.99.17 metabolism the enzyme is involved in biosynthesis of hopanoids, members of a large group of cyclic triterpenoic compounds that have important functions in many prokaryotic and eukaryotic organisms Zymomonas mobilis
5.4.99.17 metabolism the enzyme is involved in biosynthesis of hopanoids, members of a large group of cyclic triterpenoic compounds that have important functions in many prokaryotic and eukaryotic organisms Methylococcus capsulatus
5.4.99.17 metabolism the enzyme is involved in biosynthesis of hopanoids, members of a large group of cyclic triterpenoic compounds that have important functions in many prokaryotic and eukaryotic organisms Alicyclobacillus acidocaldarius
5.4.99.17 metabolism the nezym eis involved in biosynthesis of hopanoids, members of a large group of cyclic triterpenoic compounds that have important functions in many prokaryotic and eukaryotic organisms Tetrahymena thermophila
5.4.99.17 metabolism the enzyme converts squalene to hopanol, EC 4.2.1.129, and to hopene, EC 5.4.99.17, but not to tetrahymanol, EC 4.2.1.123, pathway overview Alicyclobacillus acidocaldarius
5.4.99.17 metabolism the enzyme converts squalene to tetrahymanol, EC 4.2.1.123, to hopene, EC 5.4.99.17, and to hopanol, EC 4.2.1.129, pathway overview Bradyrhizobium japonicum
5.4.99.17 additional information structure-function relationships of squalene-hopene cyclases, overview Bradyrhizobium japonicum
5.4.99.17 additional information structure-function relationships of squalene-hopene cyclases, overview Rhodopseudomonas palustris
5.4.99.17 additional information structure-function relationships of squalene-hopene cyclases, overview Streptomyces peucetius
5.4.99.17 additional information structure-function relationships of squalene-hopene cyclases, overview Zymomonas mobilis
5.4.99.17 additional information structure-function relationships of squalene-hopene cyclases, overview Methylococcus capsulatus
5.4.99.17 additional information structure-function relationships of squalene-hopene cyclases, overview Tetrahymena thermophila
5.4.99.17 additional information structure-function relationships of squalene-hopene cyclases, overview. A large central cavity represents the catalytic site in Alicyclobacillus acidocaldarius enzyme that takes up and orientates the squalene molecule. The channel and active-site cavity inside the protein are separated by a narrow constriction buildup of four amino acids, D376, F166, C435, and F434, that appear to block access to the active site Alicyclobacillus acidocaldarius
5.4.99.17 additional information structure-function relationships of SHCs, active site structure, overview Bradyrhizobium japonicum
5.4.99.17 additional information structure-function relationships of SHCs, active site structure, overview. A protruding part in the center of the nonpolar region contains a lipophilic channel and directs the substrate to the active-site cavity inside the protein. The channel and cavity are separated by a narrow constriction buildup of four amino acids, D376, F166, C435, and F434, that appear to block access to the active site. Residues C435 and F434 are part of a loop that seems to be flexible enough to permit passage of the substrate and the product Alicyclobacillus acidocaldarius