Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary extracted from

  • Sharma, R.; Chisti, Y.; Banerjee, U.C.
    Production, purification, characterization, and applications of lipases (2001), Biotechnol. Adv., 19, 627-662.
    View publication on PubMed

Activating Compound

EC Number Activating Compound Comment Organism Structure
3.1.1.3 castor oil at 2% as carbon source, enhances the enzyme production in vivo, pH 6.9 Pseudomonas aeruginosa
3.1.1.3 additional information enzyme is not affected by benzamidine and PMSF Rhizopus arrhizus
3.1.1.3 additional information the lipase of strain F-111 is unaffected by various detergents Pseudomonas alcaligenes
3.1.1.3 Triton X-100 activation, strain F-111 Pseudomonas aeruginosa
3.1.1.3 Triton X-100 enhances the enzyme production in vivo by 50fold compared to olive oil alone in the medium Rhizomucor miehei
3.1.1.3 Tween 80 activation, strain F-111 Pseudomonas aeruginosa
3.1.1.3 yeast extract increases growth and enzyme production rate at 50°C, strain -12 Bacillus sp. (in: Bacteria)

Application

EC Number Application Comment Organism
3.1.1.3 detergent strain M1, enzyme is used for removal of fatty stains under conditions of a modern machine wash and in alkaline environment Pseudomonas alcaligenes
3.1.1.3 paper production removal of pitch, i.e. triglycerides and waxes, from the pulp produced for paper making Diutina rugosa
3.1.1.3 synthesis enantioselective hydrolysis of chiral esters Pseudomonas aeruginosa
3.1.1.3 synthesis immobilized enzyme is used for the transesterification reaction that replaces pamitic acid in palm oil with stearic acid Rhizomucor miehei
3.1.1.3 synthesis synthesis of enantiopure compounds by chemo-, regio-, and stereoselective transformations, catalysation of hydrolysis of water-immiscible triglycerides at water-liquid interface, transesterifications Geobacillus stearothermophilus
3.1.1.3 synthesis synthesis of enantiopure compounds by chemo-, regio-, and stereoselective transformations, catalysation of hydrolysis of water-immiscible triglycerides at water-liquid interface, transesterifications Aspergillus niger
3.1.1.3 synthesis synthesis of enantiopure compounds by chemo-, regio-, and stereoselective transformations, catalysation of hydrolysis of water-immiscible triglycerides at water-liquid interface, transesterifications Pseudomonas sp.
3.1.1.3 synthesis synthesis of enantiopure compounds by chemo-, regio-, and stereoselective transformations, catalysation of hydrolysis of water-immiscible triglycerides at water-liquid interface, transesterifications Acinetobacter calcoaceticus
3.1.1.3 synthesis synthesis of enantiopure compounds by chemo-, regio-, and stereoselective transformations, catalysation of hydrolysis of water-immiscible triglycerides at water-liquid interface, transesterifications Proteus vulgaris
3.1.1.3 synthesis synthesis of enantiopure compounds by chemo-, regio-, and stereoselective transformations, catalysation of hydrolysis of water-immiscible triglycerides at water-liquid interface, transesterifications Rhodotorula glutinis
3.1.1.3 synthesis synthesis of enantiopure compounds by chemo-, regio-, and stereoselective transformations, catalysation of hydrolysis of water-immiscible triglycerides at water-liquid interface, transesterifications Staphylococcus epidermidis
3.1.1.3 synthesis synthesis of enantiopure compounds by chemo-, regio-, and stereoselective transformations, catalysation of hydrolysis of water-immiscible triglycerides at water-liquid interface, transesterifications Rhizopus arrhizus
3.1.1.3 synthesis synthesis of enantiopure compounds by chemo-, regio-, and stereoselective transformations, catalysation of hydrolysis of water-immiscible triglycerides at water-liquid interface, transesterifications Bacillus sp. (in: Bacteria)
3.1.1.3 synthesis synthesis of enantiopure compounds by chemo-, regio-, and stereoselective transformations, catalysation of hydrolysis of water-immiscible triglycerides at water-liquid interface, transesterifications Burkholderia cepacia
3.1.1.3 synthesis synthesis of enantiopure compounds by chemo-, regio-, and stereoselective transformations, catalysation of hydrolysis of water-immiscible triglycerides at water-liquid interface, transesterifications Aspergillus oryzae
3.1.1.3 synthesis synthesis of enantiopure compounds by chemo-, regio-, and stereoselective transformations, catalysation of hydrolysis of water-immiscible triglycerides at water-liquid interface, transesterifications Penicillium roqueforti
3.1.1.3 synthesis synthesis of enantiopure compounds by chemo-, regio-, and stereoselective transformations, catalysation of hydrolysis of water-immiscible triglycerides at water-liquid interface, transesterifications Diutina rugosa
3.1.1.3 synthesis synthesis of enantiopure compounds by chemo-, regio-, and stereoselective transformations, catalysation of hydrolysis of water-immiscible triglycerides at water-liquid interface, transesterifications Moesziomyces antarcticus
3.1.1.3 synthesis synthesis of enantiopure compounds by chemo-, regio-, and stereoselective transformations, catalysation of hydrolysis of water-immiscible triglycerides at water-liquid interface, transesterifications Hyphopichia burtonii
3.1.1.3 synthesis synthesis of enantiopure compounds by chemo-, regio-, and stereoselective transformations, catalysation of hydrolysis of water-immiscible triglycerides at water-liquid interface, transesterifications Burkholderia sp.
3.1.1.3 synthesis synthesis of enantiopure compounds by chemo-, regio-, and stereoselective transformations, catalysation of hydrolysis of water-immiscible triglycerides at water-liquid interface, transesterifications Penicillium wortmanii

Cloned(Commentary)

EC Number Cloned (Comment) Organism
3.1.1.3 expression in Saccharomyces cerevisiae, mature enzyme encoded by gene geh SE1 is overexpressed in Escherichia coli as N-terminally HIs-tagged enzyme Staphylococcus epidermidis
3.1.1.3 gene tglA, enzyme form L3, DNA and amino acid sequence determination and analysis, functional expressionin Escherichia coli, Aspergillus oryzae is used as a host for expression of Thermomyces lanuginosus Aspergillus oryzae
3.1.1.3 isozyme gene lip1, synthetically synthesized in an optimized nucleotide sequence to avoid the interference that occurs in heterologous expression of the native gene due to unusual codon usage, functional overexpression in Pichia pastoris of the synthetic gene, expression in Candida maltosa, a related yeast with the same codon usage, secretion in active form to the culture medium Diutina rugosa
3.1.1.3 strain DSM 853, cloning and epitope mapping Rhizopus arrhizus
3.1.1.3 strain IGB83, cloning and functional expression in Xanthomonas campestris, secretion of the recombinant enzyme to the medium, expression of the enzyme also in Escherichia coli as His-tagged protein, secretion to the medium Pseudomonas aeruginosa
3.1.1.3 strain M1, DNA sequencing and analysis, for functional expression in Escherichia coli the coexpression of a lipase-specific foldase, encoded by lipH, is required to ensure the correct folding and secretion of the recombinant enzyme through the host membrane Pseudomonas alcaligenes

Protein Variants

EC Number Protein Variants Comment Organism
3.1.1.3 additional information enzyme can be immobilized on Amberlite IRC50 with good long-term stability and high adsorption capacity Rhizopus arrhizus
3.1.1.3 additional information immobilization of lipase B on Sepharose, alumina, silica, for the latter using precursors Si(OCH3)3 or Si(OCH3)4, providing a highly active, chemically and thermally stable, heterogeneous biocatalyst Moesziomyces antarcticus

Inhibitors

EC Number Inhibitors Comment Organism Structure
3.1.1.3 Ag+
-
Penicillium roqueforti
3.1.1.3 Cd2+ strain KKA-5, slight inhibition Pseudomonas aeruginosa
3.1.1.3 Cu2+ strain KKA-5, slight inhibition Pseudomonas aeruginosa
3.1.1.3 Cu2+ strong inhibition Rhizopus arrhizus
3.1.1.3 Fe2+
-
Penicillium roqueforti
3.1.1.3 Fe2+ strain KKA-5, strong inhibition Pseudomonas aeruginosa
3.1.1.3 Fe2+ strong inhibition Rhizopus arrhizus
3.1.1.3 Fe3+ strain KKA-5, strong inhibition Pseudomonas aeruginosa
3.1.1.3 Fe3+ 60% inhibition at 1 mM Pseudomonas oleovorans
3.1.1.3 Fe3+ strong inhibition Rhizopus arrhizus
3.1.1.3 Hg2+
-
Penicillium roqueforti
3.1.1.3 Hg2+ strain KKA-5, strong inhibition Pseudomonas aeruginosa
3.1.1.3 Hg2+ strong inhibition Rhizopus arrhizus
3.1.1.3 isopropyl fluorophosphate
-
Penicillium roqueforti
3.1.1.3 Mn2+ strain KKA-5, slight inhibition Pseudomonas aeruginosa
3.1.1.3 additional information enzyme from strain A30-1 is stable to alkaline protease treatment Bacillus sp. (in: Bacteria)
3.1.1.3 additional information no inhibition by Ca2+, Mg2+, Mn2+, Na+, K+, Cu2+, EDTA, p-chloromercuribenzoate, and iodoacetate Penicillium roqueforti
3.1.1.3 additional information strain KKA-5, no inhibition by Ca2+ and Mg2+ Pseudomonas aeruginosa
3.1.1.3 additional information the lipase of strain F-111 is unaffected by various detergents Pseudomonas alcaligenes
3.1.1.3 additional information no inhibition by Ca2+, Hg2+, Zn2+, Mn2+, Cu2+, Mg2+, Co2+, Cd2+, Pb2+, EDTA, and o-phenanthrolin Pseudomonas oleovorans
3.1.1.3 additional information enzyme is not affected by benzamidine and PMSF Rhizopus arrhizus
3.1.1.3 oleic acid inhibits enzyme production, product inhibition Diutina rugosa
3.1.1.3 SDS strain F-111 Pseudomonas aeruginosa
3.1.1.3 Zn2+ strain KKA-5, strong inhibition, strain MB5001: 94% inhibition at 1 mM Pseudomonas aeruginosa

KM Value [mM]

EC Number KM Value [mM] KM Value Maximum [mM] Substrate Comment Organism Structure
3.1.1.3 0.7
-
4-nitrophenyl laurate
-
Rhodotorula glutinis
3.1.1.3 2.7
-
4-nitrophenyl butyrate
-
Rhodotorula glutinis
3.1.1.3 12
-
4-nitrophenyl palmitate
-
Burkholderia cepacia

Localization

EC Number Localization Comment Organism GeneOntology No. Textmining
3.1.1.3 extracellular
-
Pseudomonas sp.
-
-
3.1.1.3 extracellular
-
Proteus vulgaris
-
-
3.1.1.3 extracellular
-
Pseudomonas oleovorans
-
-
3.1.1.3 extracellular especially in a lypolytic strain Rhizopus arrhizus
-
-
3.1.1.3 extracellular L1, L2, and L3 Aspergillus oryzae
-
-
3.1.1.3 extracellular strain F-111 Pseudomonas alcaligenes
-
-
3.1.1.3 extracellular strain KKA-5, strain MB5001, strain IGB83 Pseudomonas aeruginosa
-
-
3.1.1.3 intracellular
-
Rhizopus arrhizus 5622
-

Metals/Ions

EC Number Metals/Ions Comment Organism Structure
3.1.1.3 Ba2+ activation, extracellular enzyme Bacillus sp. (in: Bacteria)
3.1.1.3 Ca2+ required Acinetobacter calcoaceticus
3.1.1.3 Ca2+ activation, extracellular enzyme Bacillus sp. (in: Bacteria)
3.1.1.3 Ca2+ increases enzyme expression Bacillus sp. (in: Bacteria)
3.1.1.3 Ca2+ native enzyme, required for activity Staphylococcus epidermidis
3.1.1.3 CaCl2 1.24fold stimulation at 1 mM Pseudomonas aeruginosa
3.1.1.3 Co2+ required Acinetobacter calcoaceticus
3.1.1.3 Cu2+ required Acinetobacter calcoaceticus
3.1.1.3 Iron increases enzyme expression Bacillus sp. (in: Bacteria)
3.1.1.3 Mg2+ required Acinetobacter calcoaceticus
3.1.1.3 Mg2+ enhances enzyme expression Aspergillus niger
3.1.1.3 Mg2+ increases enzyme expression Bacillus sp. (in: Bacteria)
3.1.1.3 Mg2+ required for strain F-111 and KKA-5, maximal enzyme production of strain KKA-5 at 0.8 M Mg2+ Pseudomonas oleovorans
3.1.1.3 additional information Ca2+-concentration does not affect the enzyme production Pseudomonas oleovorans
3.1.1.3 additional information strain A30-1 requires a complexed medium which must contains diverse metal ions, overview Bacillus sp. (in: Bacteria)
3.1.1.3 Na+ activation, extracellular enzyme Bacillus sp. (in: Bacteria)
3.1.1.3 taurocholic acid 1.6fold stimulation at 200 mM Pseudomonas aeruginosa
3.1.1.3 Tween 80 increases growth and enzyme production rate at 50°C, strain -12 Bacillus sp. (in: Bacteria)

Molecular Weight [Da]

EC Number Molecular Weight [Da] Molecular Weight Maximum [Da] Comment Organism
3.1.1.3 24000
-
enzyme form L1 Aspergillus oryzae
3.1.1.3 25000
-
x * 25000, SDS-PAGE Penicillium roqueforti
3.1.1.3 29000
-
x * 29000, enzyme of strain MB5001, SDS-PAGE, x * 32000, enzyme from strain F-111, SDS-PAGE, x * 30000, enzyme of strain KKA-5, SDS-PAGE Pseudomonas aeruginosa
3.1.1.3 30000
-
x * 29000, enzyme of strain MB5001, SDS-PAGE, x * 32000, enzyme from strain F-111, SDS-PAGE, x * 30000, enzyme of strain KKA-5, SDS-PAGE Pseudomonas aeruginosa
3.1.1.3 30000
-
x * 33000, enzyme from strain KM1-56, SDS-PAGE, x * 30000, extracellular enzyme, SDS-PAGE Pseudomonas sp.
3.1.1.3 31000
-
1 * 31000, SDS-PAGE Proteus vulgaris
3.1.1.3 32000
-
extracellular enzyme, gel filtration Rhizopus arrhizus
3.1.1.3 32000
-
x * 29000, enzyme of strain MB5001, SDS-PAGE, x * 32000, enzyme from strain F-111, SDS-PAGE, x * 30000, enzyme of strain KKA-5, SDS-PAGE Pseudomonas aeruginosa
3.1.1.3 32000
-
x * 32000, strain BD 413, SDS-PAGE Acinetobacter calcoaceticus
3.1.1.3 33000
-
x * 33000, enzyme from strain KM1-56, SDS-PAGE, x * 30000, extracellular enzyme, SDS-PAGE Pseudomonas sp.
3.1.1.3 35000
-
1 * 35000 + 1 * 46000, recombinant enzyme, SDS-PAGE Staphylococcus epidermidis
3.1.1.3 45000
-
1 * 45000, strain J33 Bacillus sp. (in: Bacteria)
3.1.1.3 46000
-
1 * 35000 + 1 * 46000, recombinant enzyme, SDS-PAGE Staphylococcus epidermidis
3.1.1.3 51000
-
gel filtration Hyphopichia burtonii
3.1.1.3 80000 90000 recombinant enzyme, gel filtration and native PAGE Staphylococcus epidermidis

Organic Solvent Stability

EC Number Organic Solvent Comment Organism
3.1.1.3 1,1,1-trichloroethane enzyme catalyzes the regioselective hydrolysis of preacetylated monosaccharide derivatives in Aspergillus niger
3.1.1.3 hexane estrification of lactic acid and alcohols in hexane Moesziomyces antarcticus
3.1.1.3 n-heptane enzyme performs the hydrolysis of 4-nitrophenyl palmitate in n-heptane Burkholderia cepacia
3.1.1.3 n-heptane the purified enzyme is less active in dry n-heptane than the crude preparation, but the addition of a small amount of water dramatically activates the purified enzyme but not the crude one Diutina rugosa
3.1.1.3 toluene catalyzes the esterification of sulcatol and fatty acids in toluene Diutina rugosa

Organism

EC Number Organism UniProt Comment Textmining
3.1.1.3 Acinetobacter calcoaceticus
-
-
-
3.1.1.3 Acinetobacter calcoaceticus BD 413
-
-
-
3.1.1.3 Aspergillus niger
-
-
-
3.1.1.3 Aspergillus oryzae
-
2 enzyme forms L1, L2, and L3
-
3.1.1.3 Bacillus sp. (in: Bacteria)
-
-
-
3.1.1.3 Bacillus sp. (in: Bacteria) J33
-
-
-
3.1.1.3 Burkholderia cepacia
-
-
-
3.1.1.3 Burkholderia sp.
-
-
-
3.1.1.3 Diutina rugosa
-
dimorphic yeast, several lipase isoforms encoded by the lip1 gene family
-
3.1.1.3 Geobacillus stearothermophilus
-
L1
-
3.1.1.3 Geobacillus stearothermophilus L1
-
L1
-
3.1.1.3 Hyphopichia burtonii
-
-
-
3.1.1.3 Moesziomyces antarcticus
-
multiple enzyme forms
-
3.1.1.3 Penicillium roqueforti
-
-
-
3.1.1.3 Penicillium roqueforti IAM7268
-
-
-
3.1.1.3 Penicillium wortmanii
-
-
-
3.1.1.3 Proteus vulgaris
-
highly alkaline enzyme
-
3.1.1.3 Pseudomonas aeruginosa
-
strain KKA-5, strain MB5001
-
3.1.1.3 Pseudomonas alcaligenes
-
strain M1, strain F-111
-
3.1.1.3 Pseudomonas oleovorans
-
strain F-111, strain KKA-5
-
3.1.1.3 Pseudomonas sp.
-
-
-
3.1.1.3 Pseudomonas sp. KM1-56
-
-
-
3.1.1.3 Rhizomucor miehei
-
-
-
3.1.1.3 Rhizopus arrhizus
-
lipolytic strain
-
3.1.1.3 Rhodotorula glutinis
-
-
-
3.1.1.3 Staphylococcus epidermidis
-
strain RP 62A, strain 9
-

Oxidation Stability

EC Number Oxidation Stability Organism
3.1.1.3 enzyme from strain A30-1 is stable to H2O2 Bacillus sp. (in: Bacteria)

Posttranslational Modification

EC Number Posttranslational Modification Comment Organism
3.1.1.3 additional information strain 9 contains an enzyme which is organized as a preproenzyme Staphylococcus epidermidis

Purification (Commentary)

EC Number Purification (Comment) Organism
3.1.1.3
-
Proteus vulgaris
3.1.1.3 enzyme form L1, to homogeneity Aspergillus oryzae
3.1.1.3 extracellular enzyme, 1200fold Rhizopus arrhizus
3.1.1.3 from strain KW1-56: 13.9fold, extracellular enzyme: 37fold to homogeneity Pseudomonas sp.
3.1.1.3 from strain MB5001 in a 3-step procedure, from strain F-111 to homogeneity, 518fold from strain KKA-5 to homogeneity Pseudomonas aeruginosa
3.1.1.3 native enzyme to homogeneity, recombinant enzyme rROL from Saccharomyces cerevisiae, recombinant His-tagged mature enzyme Staphylococcus epidermidis
3.1.1.3 partial from strain A30-1, 175fold from strain J33 Bacillus sp. (in: Bacteria)
3.1.1.3 strain BD413, to homogeneity Acinetobacter calcoaceticus
3.1.1.3 to homogeneity Penicillium roqueforti
3.1.1.3 to homogeneity Hyphopichia burtonii

Reaction

EC Number Reaction Comment Organism Reaction ID
3.1.1.3 triacylglycerol + H2O = diacylglycerol + a carboxylate enzyme contains the conserved pentapeptide Ala-Xaa-Ser-Xaa-Gly Bacillus sp. (in: Bacteria)
3.1.1.3 triacylglycerol + H2O = diacylglycerol + a carboxylate enzyme form L3: catalytic triad is formed by conserved Ser, His and Asp residues Aspergillus oryzae

Source Tissue

EC Number Source Tissue Comment Organism Textmining
3.1.1.3 cell culture batch or fed-batch culture in a medium containing citric acid and soybean oil as substrates Pseudomonas alcaligenes
-
3.1.1.3 cell culture enzyme production in presence of 1% olive oil or corn oil in the culture medium Bacillus sp. (in: Bacteria)
-
3.1.1.3 cell culture submerged batch culture Diutina rugosa
-
3.1.1.3 additional information culture conditions, the extracellular enzyme is dependent on a special nitrogen source in the medium, e.g. peptone, while the intracellular enzyme form is not Rhizopus arrhizus
-
3.1.1.3 additional information high enzyme production Penicillium wortmanii
-
3.1.1.3 additional information medium conditions for the cell culture Pseudomonas aeruginosa
-
3.1.1.3 additional information medium conditions for the cell culture Pseudomonas oleovorans
-
3.1.1.3 additional information strain A30-1 requires a complexed medium which must contains diverse metal ions, overview Bacillus sp. (in: Bacteria)
-

Specific Activity [micromol/min/mg]

EC Number Specific Activity Minimum [µmol/min/mg] Specific Activity Maximum [µmol/min/mg] Comment Organism
3.1.1.3 additional information
-
-
Bacillus sp. (in: Bacteria)

Substrates and Products (Substrate)

EC Number Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
3.1.1.3 4-nitrophenyl butyrate + H2O
-
Rhodotorula glutinis 4-nitrophenol + butyrate
-
?
3.1.1.3 4-nitrophenyl caprylate + H2O L1, best substrate Geobacillus stearothermophilus 4-nitrophenol + caprylate
-
?
3.1.1.3 4-nitrophenyl caprylate + H2O preferred substrate of lipase A Diutina rugosa 4-nitrophenol + caprylate
-
?
3.1.1.3 4-nitrophenyl caprylate + H2O L1, best substrate Geobacillus stearothermophilus L1 4-nitrophenol + caprylate
-
?
3.1.1.3 4-nitrophenyl laurate + H2O
-
Rhodotorula glutinis 4-nitrophenol + laurate
-
?
3.1.1.3 4-nitrophenyl laurate + H2O preferred substrate of lipase B Diutina rugosa 4-nitrophenol + laurate
-
?
3.1.1.3 4-nitrophenyl laurate + H2O purified enzyme of strain F-111 shows preference for Pseudomonas aeruginosa 4-nitrophenol + laurate
-
?
3.1.1.3 4-nitrophenyl myristate + H2O purified enzyme of strain F-111 shows preference for Pseudomonas aeruginosa 4-nitrophenol + myristate
-
?
3.1.1.3 4-nitrophenyl palmitate + H2O
-
Acinetobacter calcoaceticus 4-nitrophenol + palmitate
-
?
3.1.1.3 4-nitrophenyl palmitate + H2O in n-heptane Burkholderia cepacia 4-nitrophenol + palmitate
-
?
3.1.1.3 4-nitrophenyl palmitate + H2O
-
Acinetobacter calcoaceticus BD 413 4-nitrophenol + palmitate
-
?
3.1.1.3 castor oil + H2O
-
Pseudomonas aeruginosa ?
-
?
3.1.1.3 methyl beta-D-glucopyranoside + H2O regioselective deacetylation of preacylated substrate Aspergillus niger methanol + beta-D-glucose
-
?
3.1.1.3 additional information enantioselective transesterification of 2-phenoxy-1-propanol Pseudomonas sp. ?
-
?
3.1.1.3 additional information highly specific for short-chain fatty acids esters Penicillium roqueforti ?
-
?
3.1.1.3 additional information immobilized enzyme performs the transesterification reaction that replaces pamitic acid in palm oil with stearic acid Rhizomucor miehei ?
-
?
3.1.1.3 additional information lipases A and B display no interfacial activation due to absence of the lid structure which regulates the access to the active site. The enzyme performs estrification of lactic acid and alcohols in hexane Moesziomyces antarcticus ?
-
?
3.1.1.3 additional information strain A30-1, active with triglycerides of C16:0 to C22:0fatty acids and on natural fats and oils Bacillus sp. (in: Bacteria) ?
-
?
3.1.1.3 additional information substrates are long acyl chain 4-nitrophenol esters Acinetobacter calcoaceticus ?
-
?
3.1.1.3 additional information highly specific for short-chain fatty acids esters Penicillium roqueforti IAM7268 ?
-
?
3.1.1.3 additional information strain A30-1, active with triglycerides of C16:0 to C22:0fatty acids and on natural fats and oils Bacillus sp. (in: Bacteria) J33 ?
-
?
3.1.1.3 additional information substrates are long acyl chain 4-nitrophenol esters Acinetobacter calcoaceticus BD 413 ?
-
?
3.1.1.3 additional information enantioselective transesterification of 2-phenoxy-1-propanol Pseudomonas sp. KM1-56 ?
-
?
3.1.1.3 R-ketoprofen + H2O lipase B is stereoselective for the R-isomer in an antichiral solvent such as isopentyl methyl ketone or S(+)-carvone Moesziomyces antarcticus ?
-
?
3.1.1.3 rac 2-(4-chlorophenoxy)propanoic acid + n-butanol esterification reaction, in n-heptane Diutina rugosa ?
-
?
3.1.1.3 sulcatol + fatty acid esterification reaction, in toluene Diutina rugosa ?
-
?
3.1.1.3 tert-butyl octanoate + H2O preferred substrate, high activity with Burkholderia sp. tert-butanol + octanoate
-
?
3.1.1.3 tributyrin + H2O
-
Geobacillus stearothermophilus dibutyrin + butyrate
-
?
3.1.1.3 tributyrin + H2O
-
Aspergillus niger dibutyrin + butyrate
-
?
3.1.1.3 tributyrin + H2O
-
Pseudomonas aeruginosa dibutyrin + butyrate
-
?
3.1.1.3 tributyrin + H2O
-
Pseudomonas sp. dibutyrin + butyrate
-
?
3.1.1.3 tributyrin + H2O
-
Acinetobacter calcoaceticus dibutyrin + butyrate
-
?
3.1.1.3 tributyrin + H2O
-
Proteus vulgaris dibutyrin + butyrate
-
?
3.1.1.3 tributyrin + H2O
-
Rhodotorula glutinis dibutyrin + butyrate
-
?
3.1.1.3 tributyrin + H2O
-
Staphylococcus epidermidis dibutyrin + butyrate
-
?
3.1.1.3 tributyrin + H2O
-
Rhizopus arrhizus dibutyrin + butyrate
-
?
3.1.1.3 tributyrin + H2O
-
Bacillus sp. (in: Bacteria) dibutyrin + butyrate
-
?
3.1.1.3 tributyrin + H2O
-
Pseudomonas alcaligenes dibutyrin + butyrate
-
?
3.1.1.3 tributyrin + H2O
-
Burkholderia cepacia dibutyrin + butyrate
-
?
3.1.1.3 tributyrin + H2O
-
Aspergillus oryzae dibutyrin + butyrate
-
?
3.1.1.3 tributyrin + H2O
-
Penicillium roqueforti dibutyrin + butyrate
-
?
3.1.1.3 tributyrin + H2O
-
Diutina rugosa dibutyrin + butyrate
-
?
3.1.1.3 tributyrin + H2O
-
Pseudomonas oleovorans dibutyrin + butyrate
-
?
3.1.1.3 tributyrin + H2O
-
Rhizomucor miehei dibutyrin + butyrate
-
?
3.1.1.3 tributyrin + H2O
-
Moesziomyces antarcticus dibutyrin + butyrate
-
?
3.1.1.3 tributyrin + H2O
-
Hyphopichia burtonii dibutyrin + butyrate
-
?
3.1.1.3 tributyrin + H2O
-
Burkholderia sp. dibutyrin + butyrate
-
?
3.1.1.3 tributyrin + H2O
-
Penicillium wortmanii dibutyrin + butyrate
-
?
3.1.1.3 tributyrin + H2O
-
Penicillium roqueforti IAM7268 dibutyrin + butyrate
-
?
3.1.1.3 tributyrin + H2O
-
Bacillus sp. (in: Bacteria) J33 dibutyrin + butyrate
-
?
3.1.1.3 tributyrin + H2O
-
Acinetobacter calcoaceticus BD 413 dibutyrin + butyrate
-
?
3.1.1.3 tributyrin + H2O
-
Geobacillus stearothermophilus L1 dibutyrin + butyrate
-
?
3.1.1.3 tributyrin + H2O
-
Pseudomonas sp. KM1-56 dibutyrin + butyrate
-
?
3.1.1.3 triolein + H2O hydrolysis at all positions, strain J33 Bacillus sp. (in: Bacteria) diolein + oleate
-
?
3.1.1.3 triolein + H2O preferred substrate of enzyme form L1 Aspergillus oryzae diolein + oleate
-
?
3.1.1.3 triolein + H2O hydrolysis at all positions, strain J33 Bacillus sp. (in: Bacteria) J33 diolein + oleate
-
?

Subunits

EC Number Subunits Comment Organism
3.1.1.3 ? x * 25000, SDS-PAGE Penicillium roqueforti
3.1.1.3 ? 1 * 31000, SDS-PAGE Proteus vulgaris
3.1.1.3 ? x * 29000, enzyme of strain MB5001, SDS-PAGE, x * 32000, enzyme from strain F-111, SDS-PAGE, x * 30000, enzyme of strain KKA-5, SDS-PAGE Pseudomonas aeruginosa
3.1.1.3 ? x * 32000, strain BD 413, SDS-PAGE Acinetobacter calcoaceticus
3.1.1.3 ? x * 33000, enzyme from strain KM1-56, SDS-PAGE, x * 30000, extracellular enzyme, SDS-PAGE Pseudomonas sp.
3.1.1.3 dimer 1 * 35000 + 1 * 46000, recombinant enzyme, SDS-PAGE Staphylococcus epidermidis
3.1.1.3 monomer 1 * 51000, SDS-PAGE Hyphopichia burtonii
3.1.1.3 monomer 1 * 24000, enzyme form L1 Aspergillus oryzae
3.1.1.3 monomer 1 * 32000, extracellular enzyme, SDS-PAGE Rhizopus arrhizus
3.1.1.3 monomer 1 * 45000, strain J33 Bacillus sp. (in: Bacteria)

Synonyms

EC Number Synonyms Comment Organism
3.1.1.3 amano AP
-
Moesziomyces antarcticus
3.1.1.3 amano B
-
Moesziomyces antarcticus
3.1.1.3 amano CE
-
Moesziomyces antarcticus
3.1.1.3 amano CES
-
Moesziomyces antarcticus
3.1.1.3 amano P
-
Moesziomyces antarcticus
3.1.1.3 amno N-AP
-
Moesziomyces antarcticus
3.1.1.3 BAL
-
Moesziomyces antarcticus
3.1.1.3 Bile-salt-stimulated lipase
-
Moesziomyces antarcticus
3.1.1.3 BSSL
-
Moesziomyces antarcticus
3.1.1.3 butyrinase
-
Moesziomyces antarcticus
3.1.1.3 cacordase
-
Moesziomyces antarcticus
3.1.1.3 CALB
-
Moesziomyces antarcticus
3.1.1.3 capalase L
-
Moesziomyces antarcticus
3.1.1.3 Carboxyl ester lipase
-
Moesziomyces antarcticus
3.1.1.3 cholesterol esterase
-
Moesziomyces antarcticus
3.1.1.3 CRL
-
Diutina rugosa
3.1.1.3 Cytotoxic T lymphocyte lipase
-
Moesziomyces antarcticus
3.1.1.3 EDL
-
Moesziomyces antarcticus
3.1.1.3 endothelial cell-derived lipase
-
Moesziomyces antarcticus
3.1.1.3 endothelial-derived lipase
-
Moesziomyces antarcticus
3.1.1.3 GA 56 (enzyme)
-
Moesziomyces antarcticus
3.1.1.3 Gastric lipase
-
Moesziomyces antarcticus
3.1.1.3 GEH
-
Moesziomyces antarcticus
3.1.1.3 glycerol ester hydrolase
-
Moesziomyces antarcticus
3.1.1.3 glycerol-ester hydrolase
-
Moesziomyces antarcticus
3.1.1.3 heparin releasable hepatic lipase
-
Moesziomyces antarcticus
3.1.1.3 hepatic lipase
-
Moesziomyces antarcticus
3.1.1.3 hepatic monoacylglycerol acyltransferase
-
Moesziomyces antarcticus
3.1.1.3 Lingual lipase
-
Moesziomyces antarcticus
3.1.1.3 lipase
-
Geobacillus stearothermophilus
3.1.1.3 lipase
-
Aspergillus niger
3.1.1.3 lipase
-
Pseudomonas aeruginosa
3.1.1.3 lipase
-
Pseudomonas sp.
3.1.1.3 lipase
-
Acinetobacter calcoaceticus
3.1.1.3 lipase
-
Proteus vulgaris
3.1.1.3 lipase
-
Rhodotorula glutinis
3.1.1.3 lipase
-
Staphylococcus epidermidis
3.1.1.3 lipase
-
Rhizopus arrhizus
3.1.1.3 lipase
-
Bacillus sp. (in: Bacteria)
3.1.1.3 lipase
-
Pseudomonas alcaligenes
3.1.1.3 lipase
-
Burkholderia cepacia
3.1.1.3 lipase
-
Aspergillus oryzae
3.1.1.3 lipase
-
Penicillium roqueforti
3.1.1.3 lipase
-
Pseudomonas oleovorans
3.1.1.3 lipase
-
Rhizomucor miehei
3.1.1.3 lipase
-
Moesziomyces antarcticus
3.1.1.3 lipase
-
Hyphopichia burtonii
3.1.1.3 lipase
-
Burkholderia sp.
3.1.1.3 lipase
-
Penicillium wortmanii
3.1.1.3 lipase, triacylglycerol
-
Moesziomyces antarcticus
3.1.1.3 lipazin
-
Moesziomyces antarcticus
3.1.1.3 liver lipase
-
Moesziomyces antarcticus
3.1.1.3 meito MY 30
-
Moesziomyces antarcticus
3.1.1.3 meito Sangyo OF lipase
-
Moesziomyces antarcticus
3.1.1.3 Pancreatic lipase
-
Moesziomyces antarcticus
3.1.1.3 Pancreatic lysophospholipase
-
Moesziomyces antarcticus
3.1.1.3 PGE
-
Moesziomyces antarcticus
3.1.1.3 PL-RP2
-
Moesziomyces antarcticus
3.1.1.3 post-heparin plasma protamine-resistant lipase
-
Moesziomyces antarcticus
3.1.1.3 PPL
-
Moesziomyces antarcticus
3.1.1.3 Pregastric esterase
-
Moesziomyces antarcticus
3.1.1.3 Pregastric lipase
-
Moesziomyces antarcticus
3.1.1.3 salt-resistant post-heparin lipase
-
Moesziomyces antarcticus
3.1.1.3 steapsin
-
Moesziomyces antarcticus
3.1.1.3 Sterol esterase
-
Moesziomyces antarcticus
3.1.1.3 takedo 1969-4-9
-
Moesziomyces antarcticus
3.1.1.3 teenesterase
-
Moesziomyces antarcticus
3.1.1.3 tiacetinase
-
Moesziomyces antarcticus
3.1.1.3 tibutyrin esterase
-
Moesziomyces antarcticus
3.1.1.3 triacylglycerol ester hydrolase
-
Moesziomyces antarcticus
3.1.1.3 Triacylglycerol lipase
-
Moesziomyces antarcticus
3.1.1.3 tributyrase
-
Moesziomyces antarcticus
3.1.1.3 tributyrinase
-
Moesziomyces antarcticus
3.1.1.3 triglyceridase
-
Moesziomyces antarcticus
3.1.1.3 triglyceride hydrolase
-
Moesziomyces antarcticus
3.1.1.3 triglyceride lipase
-
Moesziomyces antarcticus
3.1.1.3 triolein hydrolase
-
Moesziomyces antarcticus
3.1.1.3 tween hydrolase
-
Moesziomyces antarcticus
3.1.1.3 tween-hydrolyzing esterase
-
Moesziomyces antarcticus
3.1.1.3 Tweenase
-
Moesziomyces antarcticus

Temperature Optimum [°C]

EC Number Temperature Optimum [°C] Temperature Optimum Maximum [°C] Comment Organism
3.1.1.3 35
-
extracellular enzyme Rhizopus arrhizus
3.1.1.3 40
-
strain F-111 Pseudomonas oleovorans
3.1.1.3 45
-
-
Hyphopichia burtonii
3.1.1.3 45
-
crude enzyme Penicillium wortmanii
3.1.1.3 45 60 extracellular enzyme Pseudomonas sp.
3.1.1.3 50
-
optimal growth temperature, strain RS-12, and extracellular enzyme Bacillus sp. (in: Bacteria)
3.1.1.3 55
-
strain MB5001 Pseudomonas aeruginosa
3.1.1.3 60
-
enzyme from strain A30-1, also optimal growth temperature for the strain in vivo at pH 9.0 Bacillus sp. (in: Bacteria)
3.1.1.3 60
-
strain KW1-56 Pseudomonas sp.
3.1.1.3 60 65 L1 Geobacillus stearothermophilus

Temperature Range [°C]

EC Number Temperature Minimum [°C] Temperature Maximum [°C] Comment Organism
3.1.1.3 40 50 strain RS-12, no growth at 40°C, maximal growth at 50°C Bacillus sp. (in: Bacteria)

Temperature Stability [°C]

EC Number Temperature Stability Minimum [°C] Temperature Stability Maximum [°C] Comment Organism
3.1.1.3 additional information
-
highly thermostable enzyme, strain A30-1 Bacillus sp. (in: Bacteria)
3.1.1.3 additional information
-
lipase B can be stabilized by covalent immobilization Moesziomyces antarcticus
3.1.1.3 additional information
-
thermostable Pseudomonas aeruginosa
3.1.1.3 additional information
-
thermostable enzyme Geobacillus stearothermophilus
3.1.1.3 45
-
extracellular enzyme, 30 min, 65% remaining activity Rhizopus arrhizus
3.1.1.3 45
-
half-life 45 min Rhodotorula glutinis
3.1.1.3 55
-
half-life 11.8 min Rhodotorula glutinis
3.1.1.3 60
-
15 h, 90% remaining activity Bacillus sp. (in: Bacteria)
3.1.1.3 60
-
extracellular enzyme, stable up to Pseudomonas sp.
3.1.1.3 60
-
purified enzyme from strain KW1-56, 24 h, 96% remaining activity, thermostable enzyme Pseudomonas sp.
3.1.1.3 75
-
after 30 min 100% remaining activity, after 8 h 50% remaining activity, extracellular enzyme shows 50% remaining activity after 15 min Bacillus sp. (in: Bacteria)

pH Optimum

EC Number pH Optimum Minimum pH Optimum Maximum Comment Organism
3.1.1.3 6
-
native enzyme Staphylococcus epidermidis
3.1.1.3 6.5
-
-
Hyphopichia burtonii
3.1.1.3 7
-
crude enzyme Penicillium wortmanii
3.1.1.3 7 9 extracellular enzyme Pseudomonas sp.
3.1.1.3 7.5
-
-
Rhodotorula glutinis
3.1.1.3 7.5
-
extracellular enzyme Rhizopus arrhizus
3.1.1.3 7.8 8.8
-
Acinetobacter calcoaceticus
3.1.1.3 8
-
strain MB5001 Pseudomonas aeruginosa
3.1.1.3 8.5
-
strain KKA-5 Pseudomonas aeruginosa
3.1.1.3 9 10 L1 Geobacillus stearothermophilus
3.1.1.3 9.5
-
enzyme from strain A30-1 Bacillus sp. (in: Bacteria)
3.1.1.3 10
-
-
Proteus vulgaris

pH Range

EC Number pH Minimum pH Maximum Comment Organism
3.1.1.3 6 10 strain F-111 Pseudomonas oleovorans

pI Value

EC Number Organism Comment pI Value Maximum pI Value
3.1.1.3 Pseudomonas sp. extracellular enzyme
-
4.5
3.1.1.3 Hyphopichia burtonii isoelectric focusing
-
5.8
3.1.1.3 Pseudomonas aeruginosa strain F-111 7.4 7.3
3.1.1.3 Rhizopus arrhizus extracellular enzyme
-
7.6