Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary for 5.3.3.1 extracted from

  • Sigala, P.A.; Kraut, D.A.; Caaveiro, J.M.; Pybus, B.; Ruben, E.A.; Ringe, D.; Petsko, G.A.; Herschlag, D.
    Testing geometrical discrimination within an enzyme active site: constrained hydrogen bonding in the ketosteroid isomerase oxyanion hole (2008), J. Am. Chem. Soc., 130, 13696-13708.
    View publication on PubMedView publication on EuropePMC

Crystallization (Commentary)

Crystallization (Comment) Organism
1.2-1.5 A resolution X-ray crystallography, 1H and 19F NMR spectroscopy, quantum mechanical calculations, and transition-state analogue binding measurements of the active site. Packing and binding interactions within the KSI active site can constrain local side-chain reorientation and prevent hydrogen bond shortening by 0.1 A or less. This constraint has substantial energetic effects on ligand binding and stabilization of negative charge within the oxyanion hole. Structural features of the oxyanion hole suggest that hydrogen bond formation to the reacting substrate is geometrically optimal in the transition state but not in the ground state. During steroid isomerization, the hybridization of the substrate oxygen changes from a planar sp2 carbonyl to a tetrahedral sp3 dienolate, altering the spatial distribution of its lone pair electrons. This reorientation of atomic orbitals about the substrate oxygen alters its geometric preference for accepting hydrogen bonds Comamonas testosteroni
1.2-1.5 A resolution X-ray crystallography, 1H and 19F NMR spectroscopy, quantum mechanical calculations, and transition-state analogue binding measurements of the active site. Packing and binding interactions within the KSI active site can constrain local side-chain reorientation and prevent hydrogen bond shortening by 0.1 A or less. This constraint has substantial energetic effects on ligand binding and stabilization of negative charge within the oxyanion hole. Structural features of the oxyanion hole suggest that hydrogen bond formation to the reacting substrate is geometrically optimal in the transition state but not in the ground state. During steroid isomerization, the hybridization of the substrate oxygen changes from a planar sp2 carbonyl to a tetrahedral sp3 dienolate, altering the spatial distribution of its lone pair electrons. This reorientation of atomic orbitals about the substrate oxygen alters its geometric preference for accepting hydrogen bonds Pseudomonas putida

Organism

Organism UniProt Comment Textmining
Comamonas testosteroni
-
-
-
Pseudomonas putida P07445
-
-