Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary for 4.4.1.5 extracted from

  • Sukdeo, N.; Honek, J.F.
    Microbial glyoxalase enzymes: metalloenzymes controlling cellular levels of methylglyoxal (2008), Drug Metabol. Drug Interact., 23, 29-50.
    View publication on PubMed

Activating Compound

Activating Compound Comment Organism Structure
Zn2+ activates Plasmodium falciparum

Cloned(Commentary)

Cloned (Comment) Organism
isolation and overproduction of glxI enzymes from Pseudomonas aeruginosa using Escherichia coli expression systems Pseudomonas aeruginosa
isolation and overproduction of glxI enzymes from using Escherichia coli expression systems Pseudomonas aeruginosa
recombinant overproduction of gly1 in Escherichia coli in the presence of Ni2+ in the growth medium results in the formation of active enzyme, overproduction of in the presence of Zn2+ in the growth medium results in the formation of inactive enzyme Escherichia coli

Crystallization (Commentary)

Crystallization (Comment) Organism
a comparison of the X-ray structures of the Escherichia coli GlxI reconstituted with Zn2+ (inactive) and with the activating metals Co2+, Cd2+, Ni2+ reveals that all activating metals have an octahedral environment, but the Zn2+-bound form of the enzyme results in antrigonal bipyramidal five-coordinate environment around the metal. GlxI, containing activating metals all have two water molecules bound to the active site metal along with four protein side chains making up the homodimer of the enzyme: His5 A-subunit, Glu56 A-subunit, His74 B-subunit, Glu122 B-subunit. The inactive Zn2+-bound enzyme has the same four protein side chains bound to the metal, but only one water molecule is coordinated to the Zn2+ Escherichia coli

Inhibitors

Inhibitors Comment Organism Structure
Co2+ apo form reactivated Homo sapiens
Mg2+ apo form reactivated Homo sapiens
additional information inactive with Zn2+ Leishmania major
Ni2+ apo form reactivated Homo sapiens
Ni2+ activates Leishmania major
Zn2+ inactivation of gly I, metal can bind to the enzyme gly I, but the resulting enzyme is inactive Escherichia coli
Zn2+ apo form reactivated Homo sapiens
Zn2+ inactivation of gly I Neisseria meningitidis
Zn2+ inactivation of gloA1; inactivation of gly I Pseudomonas aeruginosa
Zn2+ inactivation of gly I Yersinia pestis

KM Value [mM]

KM Value [mM] KM Value Maximum [mM] Substrate Comment Organism Structure
additional information
-
additional information the KM value of Pseudomonas aeruginosa gloaA1 with Ni2+ is 0.032 mM Pseudomonas aeruginosa
additional information
-
additional information the KM value of Pseudomonas aeruginosa gloaA2 with Ni2+ is 0.021 mM Pseudomonas aeruginosa
additional information
-
additional information the KM value of Pseudomonas aeruginosa gloaA3 with Zn2+ is 0.287 mM Pseudomonas aeruginosa
additional information
-
additional information the KM value with Cd2+ is 0.0089 mM Escherichia coli
additional information
-
additional information the KM value with Co2+ is 0.012 mM Escherichia coli
additional information
-
additional information the KM value with Fe2+ is 0.01 mM Escherichia coli
additional information
-
additional information the KM value with Mn2+ is 0.01 mM Escherichia coli
additional information
-
additional information the KM value with Ni2+ is 0.027 mM Escherichia coli

Localization

Localization Comment Organism GeneOntology No. Textmining
cytosol
-
Plasmodium falciparum 5829
-
cytosol
-
Yersinia pestis 5829
-
cytosol
-
Leishmania sp. 5829
-
cytosol
-
Homo sapiens 5829
-
cytosol
-
Escherichia coli 5829
-
cytosol
-
Neisseria meningitidis 5829
-
cytosol
-
Pseudomonas aeruginosa 5829
-
cytosol
-
Pseudomonas putida 5829
-
mitochondrion
-
Plasmodium falciparum 5739
-
mitochondrion
-
Pseudomonas aeruginosa 5739
-

Metals/Ions

Metals/Ions Comment Organism Structure
Cd2+ activation of gly I Escherichia coli
Cd2+ activation, Km: 0.0089 mM, Vmax: 0.043 mmol/min/mg, kcat: 21 1/s Escherichia coli
Co2+ activated by Ni2+ and Co2+ Neisseria meningitidis
Co2+ activated by Ni2+ and Co2+ Yersinia pestis
Co2+ activation of gloA1 Pseudomonas aeruginosa
Co2+ activation of gly I Yersinia pestis
Co2+ activation of gly I Escherichia coli
Co2+ activation of gly I Neisseria meningitidis
Co2+ activation of gly I Pseudomonas aeruginosa
Co2+ activation, Km: 0.012 mM, Vmax: 0.213 mmol/min/mg, kcat: 106 1/s Escherichia coli
Co2+ apo form reactivated Pseudomonas putida
Co2+ major activation by Ni2+ and Co2+ but also exhibits some measureable activation by Zn2+ Trypanosoma cruzi
Co2+ reactivation of apo gly I Homo sapiens
Co2+ reactivation of apo gly I Pseudomonas putida
Fe2+ activation, Km: 0.010 mM, Vmax: 0.112 mmol/min/mg, kcat: 56 1/s Escherichia coli
Fe3+ activation of gly I Escherichia coli
Mg2+ apo form reactivated Pseudomonas putida
Mg2+ reactivation of gly I Homo sapiens
Mg2+ reactivation of gly I Pseudomonas putida
Mn2+ activation of gly I Escherichia coli
Mn2+ activation, Km: 0.010 mM, Vmax: 0.121 mmol/min/mg, kcat: 60 1/s Escherichia coli
additional information not activated by Zn2+ Neisseria meningitidis
additional information not activated by Zn2+ Yersinia pestis
additional information inactive with Zn2+ Leishmania major
additional information inactive with Zn2+ Pseudomonas aeruginosa
additional information not activated by Zn2+, Zn2+ can bind to the enzyme, but the resulting enzyme is inactive. Mg2+ does not bind to the apoGlxI as determined by isothermal titration calorimetry Escherichia coli
Ni2+ activates Leishmania donovani
Ni2+ activated by Ni2+ and Co2+ Neisseria meningitidis
Ni2+ activated by Ni2+ and Co2+ Yersinia pestis
Ni2+ activation of gloA1 Pseudomonas aeruginosa
Ni2+ activation of gly I Yersinia pestis
Ni2+ activation of gly I Escherichia coli
Ni2+ activation of gly I Neisseria meningitidis
Ni2+ activation of gly I Pseudomonas aeruginosa
Ni2+ activation, Km: 0.021 mM, Vmax: 0.497 mmol/min/mg, kcat: 247 1/s, kcat/Km: 12000000 1/M * s Pseudomonas aeruginosa
Ni2+ activation, Km: 0.032 mM, vmax: 0.571 mmol/min/mg, kcat: 271 1/s, kcat/Km: 8500000 1/M * s Pseudomonas aeruginosa
Ni2+ apo form reactivated Pseudomonas putida
Ni2+ highest reactivation activity, Km: 0.027 mM, Vmax: 0.676 mmol/min/mg, kcat: 338 1/s Escherichia coli
Ni2+ major activation by Ni2+ and Co2+ but also exhibits some measureable activation by Zn2+ Trypanosoma cruzi
Ni2+ reactivation of apo gly I Homo sapiens
Ni2+ reactivation of apo gly I Pseudomonas putida
Zn2+ activation of gloA3, metal ion binds tightly to the enzyme so that removal of metall ion requires more forceful conditions Pseudomonas aeruginosa
Zn2+ activation of glxI Plasmodium falciparum
Zn2+ activation, Zn2+ is tightly bound to GloA3, Km: 0.287 mM, Vmax: 1.176 mmol/min/mg, kcat: 787 1/s, kcat/Km: 2800000 1/M * s Pseudomonas aeruginosa
Zn2+ apo form reactivated Pseudomonas putida
Zn2+ major activation by Ni2+ and Co2+ but also exhibits some measureable activation by Zn2+ Trypanosoma cruzi
Zn2+ reactivation of gly I Pseudomonas putida

Molecular Weight [Da]

Molecular Weight [Da] Molecular Weight Maximum [Da] Comment Organism
additional information
-
GlxI is longer than the Escherichia coli enzyme but similar to the Homo sapiens enzyme Pseudomonas aeruginosa
additional information
-
size is similar to the Escherichia coli enzyme and to Pseudomonas aeruginose Glx1 GloA1 Pseudomonas aeruginosa

Natural Substrates/ Products (Substrates)

Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
glutathionylspermidine + methylglyoxal Leishmania sp.
-
?
-
?
methylglyoxal + glutathione Plasmodium falciparum first step in the glyoxalase system, detoxification of methylglyoxal (R)-S-lactoylglutathione
-
r
methylglyoxal + glutathione Yersinia pestis first step in the glyoxalase system, detoxification of methylglyoxal (R)-S-lactoylglutathione
-
r
methylglyoxal + glutathione Leishmania sp. first step in the glyoxalase system, detoxification of methylglyoxal (R)-S-lactoylglutathione
-
r
methylglyoxal + glutathione Homo sapiens first step in the glyoxalase system, detoxification of methylglyoxal (R)-S-lactoylglutathione
-
r
methylglyoxal + glutathione Escherichia coli first step in the glyoxalase system, detoxification of methylglyoxal (R)-S-lactoylglutathione
-
r
methylglyoxal + glutathione Neisseria meningitidis first step in the glyoxalase system, detoxification of methylglyoxal (R)-S-lactoylglutathione
-
r
methylglyoxal + glutathione Pseudomonas aeruginosa first step in the glyoxalase system, detoxification of methylglyoxal (R)-S-lactoylglutathione
-
r
methylglyoxal + glutathione Pseudomonas putida first step in the glyoxalase system, detoxification of methylglyoxal (R)-S-lactoylglutathione
-
r
additional information Plasmodium falciparum the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes ?
-
?
additional information Yersinia pestis the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes ?
-
?
additional information Leishmania sp. the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes ?
-
?
additional information Homo sapiens the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes ?
-
?
additional information Escherichia coli the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes ?
-
?
additional information Neisseria meningitidis the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes ?
-
?
additional information Pseudomonas aeruginosa the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes ?
-
?
additional information Pseudomonas putida the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes ?
-
?
additional information Leishmania sp. the Leishmania sp. glxI preferentially utilizes the hemithioacetal formed between methylglyoxal and trypanothione as the substrate ?
-
?

Organism

Organism UniProt Comment Textmining
Escherichia coli
-
-
-
Escherichia coli P0AC81
-
-
Homo sapiens
-
-
-
Homo sapiens Q04760
-
-
Leishmania braziliensis
-
-
-
Leishmania donovani
-
-
-
Leishmania major
-
-
-
Leishmania sp.
-
-
-
Neisseria meningitidis
-
-
-
Neisseria meningitidis P0A0T3
-
-
Plasmodium falciparum
-
-
-
Pseudomonas aeruginosa
-
PAO1
-
Pseudomonas aeruginosa Q9HU72 gloA3
-
Pseudomonas aeruginosa Q9HY85 gloA1
-
Pseudomonas aeruginosa Q9I5L8 PAO1
-
Pseudomonas aeruginosa Q9I5L8 gloA2
-
Pseudomonas putida
-
-
-
Pseudomonas putida Q88GF8
-
-
Trypanosoma cruzi
-
-
-
Yersinia pestis
-
-
-

Substrates and Products (Substrate)

Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
glutathionylspermidine + methylglyoxal
-
Leishmania sp. ?
-
?
methylglyoxal + glutathione first step in the glyoxalase system, detoxification of methylglyoxal Plasmodium falciparum (R)-S-lactoylglutathione
-
r
methylglyoxal + glutathione first step in the glyoxalase system, detoxification of methylglyoxal Yersinia pestis (R)-S-lactoylglutathione
-
r
methylglyoxal + glutathione first step in the glyoxalase system, detoxification of methylglyoxal Leishmania sp. (R)-S-lactoylglutathione
-
r
methylglyoxal + glutathione first step in the glyoxalase system, detoxification of methylglyoxal Homo sapiens (R)-S-lactoylglutathione
-
r
methylglyoxal + glutathione first step in the glyoxalase system, detoxification of methylglyoxal Escherichia coli (R)-S-lactoylglutathione
-
r
methylglyoxal + glutathione first step in the glyoxalase system, detoxification of methylglyoxal Neisseria meningitidis (R)-S-lactoylglutathione
-
r
methylglyoxal + glutathione first step in the glyoxalase system, detoxification of methylglyoxal Pseudomonas aeruginosa (R)-S-lactoylglutathione
-
r
methylglyoxal + glutathione first step in the glyoxalase system, detoxification of methylglyoxal Pseudomonas putida (R)-S-lactoylglutathione
-
r
methylglyoxal + glutathione two major intracelluar thiols are used, glutathione and trypanothione Leishmania donovani S-((R)-lactoyl)glutathione
-
?
methylglyoxal + glutathione two major intracelluar thiols are used, glutathione and trypanothione Trypanosoma cruzi S-((R)-lactoyl)glutathione
-
?
methylglyoxal + glutathione two major intracelluar thiols are used, glutathione and trypanothione Leishmania major S-((R)-lactoyl)glutathione
-
?
methylglyoxal + glutathione two major intracelluar thiols are used, glutathione and trypanothione Leishmania braziliensis S-((R)-lactoyl)glutathione
-
?
methylglyoxal + trypanothione two major intracelluar thiols are used, glutathione and trypanothione Leishmania donovani S,S'-bis((R)-lactoyl)trypanothione
-
?
methylglyoxal + trypanothione two major intracelluar thiols are used, glutathione and trypanothione Trypanosoma cruzi S,S'-bis((R)-lactoyl)trypanothione
-
?
methylglyoxal + trypanothione two major intracelluar thiols are used, glutathione and trypanothione Leishmania braziliensis S,S'-bis((R)-lactoyl)trypanothione
-
?
methylglyoxal + trypanothione two major intracelluar thiols are used, glutathione and trypanothione, preferentially utilizes the hemithioacetal formed between methylglyoxal and trypanothione as the substrate Leishmania major S,S'-bis((R)-lactoyl)trypanothione
-
?
additional information the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes Plasmodium falciparum ?
-
?
additional information the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes Yersinia pestis ?
-
?
additional information the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes Leishmania sp. ?
-
?
additional information the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes Homo sapiens ?
-
?
additional information the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes Escherichia coli ?
-
?
additional information the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes Neisseria meningitidis ?
-
?
additional information the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes Pseudomonas aeruginosa ?
-
?
additional information the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes Pseudomonas putida ?
-
?
additional information the Leishmania sp. glxI preferentially utilizes the hemithioacetal formed between methylglyoxal and trypanothione as the substrate Leishmania sp. ?
-
?

Subunits

Subunits Comment Organism
dimer
-
Homo sapiens
dimer gly1 Escherichia coli
homodimer GlxI, containing activating metals all have two water molecules bound to the active site metal along with four protein side chains making up the homodimer of the enzyme: His5 A-subunit, Glu56 A-subunit, His74 B-subunit, Glu122 B-subunit. The inactive Zn2+-bound enzyme has the same four protein side chains bound to the metal, but only one water molecule is coordinated to the Zn2+ Escherichia coli
More enzyme is composed of a single polypeptide chain containing two active sites. It has been shown that there is a allosteric coupling between the two active sites Plasmodium falciparum

Synonyms

Synonyms Comment Organism
GloA1
-
Pseudomonas aeruginosa
GloA2
-
Pseudomonas aeruginosa
GloA3
-
Pseudomonas aeruginosa
GLXI
-
Escherichia coli
GLXI
-
Pseudomonas putida
GLXI
-
Leishmania donovani
GLXI
-
Trypanosoma cruzi
GLXI
-
Plasmodium falciparum
GLXI
-
Yersinia pestis
GLXI
-
Leishmania sp.
GLXI
-
Leishmania major
GLXI
-
Leishmania braziliensis
GLXI
-
Homo sapiens
GLXI
-
Neisseria meningitidis
GLXI
-
Pseudomonas aeruginosa
glyoxalase I
-
Plasmodium falciparum
glyoxalase I
-
Yersinia pestis
glyoxalase I
-
Leishmania sp.
glyoxalase I
-
Homo sapiens
glyoxalase I
-
Escherichia coli
glyoxalase I
-
Neisseria meningitidis
glyoxalase I
-
Pseudomonas aeruginosa
glyoxalase I
-
Pseudomonas putida

Turnover Number [1/s]

Turnover Number Minimum [1/s] Turnover Number Maximum [1/s] Substrate Comment Organism Structure
additional information
-
additional information the turnover number of Pseudomonas aeruginosa gloaA1 with Ni2+ is 271 s Pseudomonas aeruginosa
additional information
-
additional information the turnover number of Pseudomonas aeruginosa gloaA2 with Ni2+ is 247 s Pseudomonas aeruginosa
additional information
-
additional information the turnover number of Pseudomonas aeruginosa gloaA3 with Zn2+ is 787 s Pseudomonas aeruginosa
additional information
-
additional information the turnover number with Cd2+ is 21 s Escherichia coli
additional information
-
additional information the turnover number with Co2+ is 106 s Escherichia coli
additional information
-
additional information the turnover number with Fe2+ is 56 s Escherichia coli
additional information
-
additional information the turnover number with Mn2+ is 60 s Escherichia coli
additional information
-
additional information the turnover number with Ni2+ is 338 s Escherichia coli