Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary for 2.8.1.2 extracted from

  • Lec, J.; Boutserin, S.; Mazon, H.; Mulliert, G.; Boschi-Muller, S.; Talfournier, F.
    Unraveling the mechanism of cysteine persulfide formation catalyzed by 3-mercaptopyruvate sulfurtransferases (2018), ACS Catal., 8, 2049-2059 .
No PubMed abstract available

Protein Variants

Protein Variants Comment Organism
D53A mutation of catalytic triad, does not change the kinetic parameters of for the first reaction step Escherichia coli
H66A 10fold decrease in kmax1/K3-mercaptopyruvate ratio relative to the wild-type Homo sapiens
H66A the first step of sulfur transfer becomes rate-limiting in the mutant Escherichia coli
H66A/R102L the first step of sulfur transfer becomes rate-limiting in the mutant, with cumulative effects of the mutations Escherichia coli
H66N kinetic properties are identical with those of the wild type Escherichia coli
R102K the first step of sulfur transfer becomes rate-limiting in the mutant Escherichia coli
R102L the first step of sulfur transfer becomes rate-limiting in the mutant Escherichia coli
R178L moderate decrease in kmax1/K3-mercaptopyruvate, the first step of sulfur transfer is not drastically impaired Escherichia coli
R178L/R187L substituting both Arg residues does not fully abolish the sulfur transfer step Escherichia coli
R187L moderate decrease in kmax1/K3-mercaptopyruvate, the first step of sulfur transfer is not drastically impaired Escherichia coli
S239A strong decrease in kcat value Escherichia coli
S239A no key role of residue S239 in the activation of the 3-mercaptopyruvate thiol group Homo sapiens

KM Value [mM]

KM Value [mM] KM Value Maximum [mM] Substrate Comment Organism Structure
0.24
-
3-Mercaptopyruvate mutant S239A, pH 8.0, 30°C Escherichia coli
0.43
-
3-Mercaptopyruvate mutant H66A, pH 8.0, 30°C Escherichia coli
0.6
-
3-Mercaptopyruvate mutant S239A, enzyme displays kinetic cooperativity with respect to 3-mercaptopyruvate and thioredoxin, pH 8.0, 30°C Homo sapiens
0.79
-
3-Mercaptopyruvate mutant H66A, enzyme displays kinetic cooperativity with respect to 3-mercaptopyruvate and thioredoxin, pH 8.0, 30°C Homo sapiens
0.9
-
3-Mercaptopyruvate mutant R102L, pH 8.0, 30°C Escherichia coli
1
-
3-Mercaptopyruvate wild-type, pH 8.0, 30°C Escherichia coli
1
-
3-Mercaptopyruvate mutant H66A/R102L, pH 8.0, 30°C Escherichia coli
1
-
3-Mercaptopyruvate mutant R102K, pH 8.0, 30°C Escherichia coli
1.4
-
3-Mercaptopyruvate mutant H66N, pH 8.0, 30°C Escherichia coli
1.7
-
3-Mercaptopyruvate wild-type, enzyme displays kinetic cooperativity with respect to 3-mercaptopyruvate and thioredoxin, pH 8.0, 30°C Homo sapiens
2 3 3-Mercaptopyruvate mutant R178L/R187L, pH 8.0, 30°C Escherichia coli
2.4
-
3-Mercaptopyruvate mutant D53A, pH 8.0, 30°C Escherichia coli
4
-
3-Mercaptopyruvate mutant R187L, pH 8.0, 30°C Escherichia coli
15
-
3-Mercaptopyruvate mutant R178L, pH 8.0, 30°C Escherichia coli

Organism

Organism UniProt Comment Textmining
Escherichia coli
-
-
-
Escherichia coli DH5alpha
-
-
-
Homo sapiens P25325
-
-

Substrates and Products (Substrate)

Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
3-mercaptopyruvate + thioredoxin
-
Escherichia coli pyruvate + persulfurated thioredoxin
-
?
3-mercaptopyruvate + thioredoxin
-
Homo sapiens pyruvate + persulfurated thioredoxin
-
?
3-mercaptopyruvate + thioredoxin
-
Escherichia coli DH5alpha pyruvate + persulfurated thioredoxin
-
?

Synonyms

Synonyms Comment Organism
MPST
-
Escherichia coli
MPST
-
Homo sapiens

Turnover Number [1/s]

Turnover Number Minimum [1/s] Turnover Number Maximum [1/s] Substrate Comment Organism Structure
0.05
-
3-Mercaptopyruvate mutant R178L, pH 8.0, 30°C Escherichia coli
0.068
-
3-Mercaptopyruvate mutant R178L/R187L, pH 8.0, 30°C Escherichia coli
0.11
-
3-Mercaptopyruvate mutant S239A, pH 8.0, 30°C Homo sapiens
0.16
-
3-Mercaptopyruvate mutant R187L, pH 8.0, 30°C Escherichia coli
0.47
-
3-Mercaptopyruvate wild-type, pH 8.0, 30°C Homo sapiens
0.48
-
3-Mercaptopyruvate mutant H66A, pH 8.0, 30°C Homo sapiens
1
-
3-Mercaptopyruvate mutant D53A, pH 8.0, 30°C Escherichia coli
2.5
-
3-Mercaptopyruvate mutant S239A, pH 8.0, 30°C Escherichia coli
3.9
-
3-Mercaptopyruvate mutant H66A/R102L, pH 8.0, 30°C Escherichia coli
20
-
3-Mercaptopyruvate mutant H66A, pH 8.0, 30°C Escherichia coli
49
-
3-Mercaptopyruvate mutant R102L, pH 8.0, 30°C Escherichia coli
59
-
3-Mercaptopyruvate mutant R102K, pH 8.0, 30°C Escherichia coli
75
-
3-Mercaptopyruvate mutant H66N, pH 8.0, 30°C Escherichia coli
112
-
3-Mercaptopyruvate wild-type, pH 8.0, 30°C Escherichia coli

General Information

General Information Comment Organism
metabolism the first step of sulfur transfer that leads to pyruvate release and formation of the persulfide intermediate is very efficient. It critically depends on the electrostatic contribution provided by the CGSGVT catalytic loop, any role of the so-called Ser/His/Asp triad can be excluded. In a concerted mechanism, the water-mediated protonation of the pyruvate enolate and S0 transfer from the deprotonated 3-mercaptopyruvate to the thiolate form of the catalytic cysteine occur concomitantly Escherichia coli
metabolism the first step of sulfur transfer that leads to pyruvate release and formation of the persulfide intermediate is very efficient. It critically depends on the electrostatic contribution provided by the CGSGVT catalytic loop, any role of the so-called Ser/His/Asp triad can be excluded. In a concerted mechanism, the water-mediated protonation of the pyruvate enolate and S0 transfer from the deprotonated 3-mercaptopyruvate to the thiolate form of the catalytic cysteine occur concomitantly Homo sapiens