Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary for 2.4.2.30 extracted from

  • Lonskaya, I.; Potaman, V.N.; Shlyakhtenko, L.S.; Oussatcheva, E.A.; Lyubchenko, Y.L.; Soldatenkov, V.A.
    Regulation of poly(ADP-ribose) polymerase-1 by DNA structure-specific binding (2005), J. Biol. Chem., 280, 17076-17083.
    View publication on PubMed

Natural Substrates/ Products (Substrates)

Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
additional information Homo sapiens mechanistic basis for the physiological function of PARP-1 in the dynamics of the local modulation of chromatin structure. PARP-1 activation upon binding to base-unpaired regions and stem-loops structures in DNA leads to a local PAR modification of histones and non-histone proteins at genomic sites where such DNA structures are formed. Subsequent PARP-1 automodification results in its dissociation from DNA leading to an enzymatic self-inactivation thus ensuring a transient character of chromatin ADP-ribosylation. In combination with the PAR-glycohydrolase degradation of ADP-ribose polymers on acceptor proteins, PARP-1 interaction with DNA secondary structures provides a mechanism for local and transient chromatin modification by PAR during physiological nuclear processes ?
-
?

Organism

Organism UniProt Comment Textmining
Homo sapiens
-
-
-

Substrates and Products (Substrate)

Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
additional information mechanistic basis for the physiological function of PARP-1 in the dynamics of the local modulation of chromatin structure. PARP-1 activation upon binding to base-unpaired regions and stem-loops structures in DNA leads to a local PAR modification of histones and non-histone proteins at genomic sites where such DNA structures are formed. Subsequent PARP-1 automodification results in its dissociation from DNA leading to an enzymatic self-inactivation thus ensuring a transient character of chromatin ADP-ribosylation. In combination with the PAR-glycohydrolase degradation of ADP-ribose polymers on acceptor proteins, PARP-1 interaction with DNA secondary structures provides a mechanism for local and transient chromatin modification by PAR during physiological nuclear processes Homo sapiens ?
-
?
NAD+ + histone H1
-
Homo sapiens nicotinamide + (ADP-D-ribosyl)-histone H1
-
?

Synonyms

Synonyms Comment Organism
poly(ADP-ribose) polymerase-1
-
Homo sapiens