BRENDA - Enzyme Database show
show all sequences of 1.1.1.B20

Metabolic engineering of acetoin and meso-2, 3-butanediol biosynthesis in E. coli

Nielsen, D.R.; Yoon, S.H.; Yuan, C.J.; Prather, K.L.; Biotechnol. J. 5, 274-284 (2010)

Data extracted from this reference:

Cloned(Commentary)
Commentary
Organism
gene bdh1, phylogenetic analysis, expression in Escherichia coi strain YYC202(DE3) ldhA-/- ilvC? expressing ilvBN from Escherichia coli and aldB from Lactobacillus lactis, encoding acetolactate synthase and acetolactate decarboxylase activities, respectively, disruption of the lactate biosynthesis pathway in the strain increases pyruvate precursor availability to this strain, increased availability of NADH for acetoin reduction to meso-2,3-butanediol is the most important consequence of ldhA deletion
Saccharomyces cerevisiae
phylogenetic analysis, enzyme expression in Escherichia coli strains MG1655(DE3) and YYC202(DE3)
Escherichia coli
Engineering
Amino acid exchange
Commentary
Organism
additional information
expression of gene bdh1 from Saccharomyces cervisiae in Escherichia coi strain YYC202(DE3) ldhA-/- ilvC-/- expressing ilvBN from Escherichia coli and aldB from Lactobacillus lactis, encoding acetolactate synthase and acetolactate decarboxylase activities, respectively. Disruption of the lactate biosynthesis pathway in the strain increases pyruvate precursor availability to this strain, increased availability of NADH for acetoin reduction to meso-2,3-butanediol is the most important consequence of ldhA deletion. Optimization of 2,3-butanediol production in Escherichia coli, overview
Escherichia coli
Natural Substrates/ Products (Substrates)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
(3R)-acetoin + NADH + H+
Saccharomyces cerevisiae
-
meso-2,3-butanediol + NAD+
-
-
r
(3R)-acetoin + NADH + H+
Escherichia coli
low activity in vivo
meso-2,3-butanediol + NAD+
-
-
r
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Escherichia coli
-
-
-
Saccharomyces cerevisiae
-
gene bdh1
-
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
(3R)-acetoin + NADH + H+
-
702809
Escherichia coli
meso-2,3-butanediol + NAD+
-
-
-
r
(3R)-acetoin + NADH + H+
-
702809
Saccharomyces cerevisiae
meso-2,3-butanediol + NAD+
-
-
-
r
(3R)-acetoin + NADH + H+
low activity in vivo
702809
Escherichia coli
meso-2,3-butanediol + NAD+
-
-
-
r
Cofactor
Cofactor
Commentary
Organism
Structure
NADH
-
Escherichia coli
NADH
-
Saccharomyces cerevisiae
Cloned(Commentary) (protein specific)
Commentary
Organism
gene bdh1, phylogenetic analysis, expression in Escherichia coi strain YYC202(DE3) ldhA-/- ilvC? expressing ilvBN from Escherichia coli and aldB from Lactobacillus lactis, encoding acetolactate synthase and acetolactate decarboxylase activities, respectively, disruption of the lactate biosynthesis pathway in the strain increases pyruvate precursor availability to this strain, increased availability of NADH for acetoin reduction to meso-2,3-butanediol is the most important consequence of ldhA deletion
Saccharomyces cerevisiae
phylogenetic analysis, enzyme expression in Escherichia coli strains MG1655(DE3) and YYC202(DE3)
Escherichia coli
Cofactor (protein specific)
Cofactor
Commentary
Organism
Structure
NADH
-
Escherichia coli
NADH
-
Saccharomyces cerevisiae
Engineering (protein specific)
Amino acid exchange
Commentary
Organism
additional information
expression of gene bdh1 from Saccharomyces cervisiae in Escherichia coi strain YYC202(DE3) ldhA-/- ilvC-/- expressing ilvBN from Escherichia coli and aldB from Lactobacillus lactis, encoding acetolactate synthase and acetolactate decarboxylase activities, respectively. Disruption of the lactate biosynthesis pathway in the strain increases pyruvate precursor availability to this strain, increased availability of NADH for acetoin reduction to meso-2,3-butanediol is the most important consequence of ldhA deletion. Optimization of 2,3-butanediol production in Escherichia coli, overview
Escherichia coli
Natural Substrates/ Products (Substrates) (protein specific)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
(3R)-acetoin + NADH + H+
Saccharomyces cerevisiae
-
meso-2,3-butanediol + NAD+
-
-
r
(3R)-acetoin + NADH + H+
Escherichia coli
low activity in vivo
meso-2,3-butanediol + NAD+
-
-
r
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
(3R)-acetoin + NADH + H+
-
702809
Escherichia coli
meso-2,3-butanediol + NAD+
-
-
-
r
(3R)-acetoin + NADH + H+
-
702809
Saccharomyces cerevisiae
meso-2,3-butanediol + NAD+
-
-
-
r
(3R)-acetoin + NADH + H+
low activity in vivo
702809
Escherichia coli
meso-2,3-butanediol + NAD+
-
-
-
r
General Information
General Information
Commentary
Organism
evolution
phylogenetic analysis
Escherichia coli
evolution
phylogenetic analysis
Saccharomyces cerevisiae
General Information (protein specific)
General Information
Commentary
Organism
evolution
phylogenetic analysis
Escherichia coli
evolution
phylogenetic analysis
Saccharomyces cerevisiae
Other publictions for EC 1.1.1.B20
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [C]
Temperature Range [C]
Temperature Stability [C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [C] (protein specific)
Temperature Range [C] (protein specific)
Temperature Stability [C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
721397
Zhang
A new NAD(H)-dependent meso-2, ...
Serratia marcescens, Serratia marcescens H30
Appl. Microbiol. Biotechnol.
98
1175-1184
2014
-
-
1
-
-
-
6
4
-
3
-
-
-
5
-
-
-
-
-
-
-
-
14
-
1
-
-
4
2
-
-
2
-
-
-
-
-
1
2
-
-
-
-
6
-
4
-
3
-
-
-
-
-
-
-
-
-
-
14
-
1
-
-
4
2
-
-
-
-
2
2
-
-
-
721906
Zhang
Cloning, expression and charac ...
Klebsiella pneumoniae, Klebsiella pneumoniae XJ-Li
Biotechnol. Lett.
34
1519-1523
2012
-
-
1
-
-
-
-
5
-
-
-
2
-
5
-
-
-
-
-
-
3
-
6
-
1
-
-
-
1
-
-
2
-
-
-
-
-
1
2
-
-
-
-
-
-
5
-
-
-
2
-
-
-
-
-
-
3
-
6
-
1
-
-
-
1
-
-
-
-
1
1
-
-
-
702809
Nielsen
Metabolic engineering of aceto ...
Escherichia coli, Saccharomyces cerevisiae
Biotechnol. J.
5
274-284
2010
-
-
2
-
1
-
-
-
-
-
-
2
-
5
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
2
-
-
-
-
-
2
2
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
710944
Gonzalez
Role of Saccharomyces cerevisi ...
Saccharomyces cerevisiae
Appl. Environ. Microbiol.
76
670-679
2010
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
712019
Otagiri
Structural basis for chiral su ...
Corynebacterium glutamicum
FEBS Lett.
584
219-223
2010
-
-
-
-
4
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
7
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
7
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
246405
Otagiri
Crystal structure of meso-2,3- ...
Klebsiella pneumoniae
J. Biochem.
129
205-208
2001
-
-
1
1
2
-
1
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
1
2
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
246408
Ui
Formation of a chiral acetoini ...
Klebsiella pneumoniae
Lett. Appl. Microbiol.
28
457-460
1999
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-