BRENDA - Enzyme Database show
show all sequences of 1.1.1.87

Cloning and characterization of a novel all-trans retinol short-chain dehydrogenase/reductase from the RPE

Wu, B.X.; Chen, Y.; Chen, Y.; Fan, J.; Rohrer, B.; Crouch, R.K.; Ma, J.X.; Invest. Ophthalmol. Vis. Sci. 43, 3365-3372 (2002)

Data extracted from this reference:

Cloned(Commentary)
Commentary
Organism
-
Bos taurus
-
Mus musculus
RDH10 is expressed in COS cells
Homo sapiens
Localization
Localization
Commentary
Organism
GeneOntology No.
Textmining
microsome
-
Bos taurus
-
-
microsome
-
Homo sapiens
-
-
microsome
-
Mus musculus
-
-
Molecular Weight [Da]
Molecular Weight [Da]
Molecular Weight Maximum [Da]
Commentary
Organism
38087
-
x * 38087, calculated from sequence
Homo sapiens
38090
-
calculated from sequence
Homo sapiens
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Bos taurus
Q8HZT6
-
-
Homo sapiens
Q8IZV5
-
-
Mus musculus
Q8VCH7
-
-
Source Tissue
Source Tissue
Commentary
Organism
Textmining
brain
low activity
Bos taurus
-
kidney
low activity
Bos taurus
-
liver
low activity
Bos taurus
-
lung
low activity
Bos taurus
-
pancreas
low activity
Bos taurus
-
retinal pigment epithelium
high activity
Bos taurus
-
retinal pigment epithelium
-
Homo sapiens
-
retinal pigment epithelium
-
Mus musculus
-
skeletal muscle
low activity
Bos taurus
-
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
all-trans-retinol + NAD+
the addition of NADP+ results in more efficient oxidation of all-trans retinol into all-trans retinal, when compared with the addition of NAD+, suggesting that RDH10 prefers NADP as the cofactor. At assay conditions (pH 5.5 and pH 7.6), and NADH or NADPH is used as the cofactor, only a low level of all-trans retinol is generated by RDH10
692700
Homo sapiens
all-trans-retinal + NADH + H+
-
-
-
r
all-trans-retinol + NAD+
the addition of NADP+ results in more efficient oxidation of all-trans retinol into all-trans retinal, when compared with the addition of NAD+, suggesting that RDH10 prefers NADP as the cofactor. At assay conditions (pH 5.5 and pH 7.6), and NADH or NADPH is used as the cofactor, only a low level of all-trans retinol is generated by RDH10
692700
Mus musculus
all-trans-retinal + NADH + H+
-
-
-
r
all-trans-retinol + NAD+
the addition of NADP+ results in more efficient oxidation of all-trans retinol into all-trans retinal, when compared with the addition of NAD+, suggesting that RDH10 prefers NADP as the cofactor. At assay conditions (pH 5.5 and pH 7.6), and NADH or NADPH is used as the cofactor, only a low level of all-trans retinol is generated by RDH10
692700
Bos taurus
all-trans-retinal + NADH + H+
-
-
-
r
all-trans-retinol + NADP+
the addition of NADP+ results in more efficient oxidation of all-trans retinol into all-trans retinal, when compared with the addition of NAD+, suggesting that RDH10 prefers NADP as the cofactor. At assay conditions (pH 5.5 and pH 7.6), and NADH or NADPH is used as the cofactor, only a low level of all-trans retinol is generated by RDH10
692700
Homo sapiens
all-trans-retinal + NADPH + H+
-
-
-
r
all-trans-retinol + NADP+
the addition of NADP+ results in more efficient oxidation of all-trans retinol into all-trans retinal, when compared with the addition of NAD+, suggesting that RDH10 prefers NADP as the cofactor. At assay conditions (pH 5.5 and pH 7.6), and NADH or NADPH is used as the cofactor, only a low level of all-trans retinol is generated by RDH10
692700
Mus musculus
all-trans-retinal + NADPH + H+
-
-
-
r
all-trans-retinol + NADP+
the addition of NADP+ results in more efficient oxidation of all-trans retinol into all-trans retinal, when compared with the addition of NAD+, suggesting that RDH10 prefers NADP as the cofactor. At assay conditions (pH 5.5 and pH 7.6), and NADH or NADPH is used as the cofactor, only a low level of all-trans retinol is generated by RDH10
692700
Bos taurus
all-trans-retinal + NADPH + H+
-
-
-
r
additional information
RDH10 does not oxidize 11-cis retinol, 9-cis retinol, or 13-cis retinol into the respective retinal (pH 7.6, in the presence of NAD or NADP+), indicating the substrate specificity of RDH10
692700
Homo sapiens
?
-
-
-
-
additional information
RDH10 does not oxidize 11-cis retinol, 9-cis retinol, or 13-cis retinol into the respective retinal (pH 7.6, in the presence of NAD or NADP+), indicating the substrate specificity of RDH10
692700
Mus musculus
?
-
-
-
-
additional information
RDH10 does not oxidize 11-cis retinol, 9-cis retinol, or 13-cis retinol into the respective retinal (pH 7.6, in the presence of NAD or NADP+), indicating the substrate specificity of RDH10
692700
Bos taurus
?
-
-
-
-
Subunits
Subunits
Commentary
Organism
?
x * 38087, calculated from sequence
Homo sapiens
Cofactor
Cofactor
Commentary
Organism
Structure
NAD+
the addition of NADP+ results in more efficient oxidation of all-trans retinol into all-trans retinal, when compared with the addition of NAD+, suggesting that RDH10 prefers NADP as the cofactor
Bos taurus
NAD+
the addition of NADP+ results in more efficient oxidation of all-trans retinol into all-trans retinal, when compared with the addition of NAD+, suggesting that RDH10 prefers NADP+ as the cofactor
Homo sapiens
NAD+
the addition of NADP+ results in more efficient oxidation of all-trans retinol into all-trans retinal, when compared with the addition of NAD+, suggesting that RDH10 prefers NADP as the cofactor
Mus musculus
NADH
-
Bos taurus
NADH
-
Homo sapiens
NADH
-
Mus musculus
NADP+
the addition of NADP+ results in more efficient oxidation of all-trans retinol into all-trans retinal, when compared with the addition of NAD+, suggesting that RDH10 prefers NADP as the cofactor
Bos taurus
NADP+
the addition of NADP+ resulted in more efficient oxidation of all-trans retinol into all-trans retinal, when compared with the addition of NAD+, suggesting that RDH10 prefers NADP+ as the cofactor
Homo sapiens
NADP+
the addition of NADP+ results in more efficient oxidation of all-trans retinol into all-trans retinal, when compared with the addition of NAD+, suggesting that RDH10 prefers NADP as the cofactor
Mus musculus
NADPH
-
Bos taurus
NADPH
-
Homo sapiens
NADPH
-
Mus musculus
pI Value
Organism
Commentary
pI Value Maximum
pI Value
Homo sapiens
calculated from sequence
-
7.4
Cloned(Commentary) (protein specific)
Commentary
Organism
-
Bos taurus
-
Mus musculus
RDH10 is expressed in COS cells
Homo sapiens
Cofactor (protein specific)
Cofactor
Commentary
Organism
Structure
NAD+
the addition of NADP+ results in more efficient oxidation of all-trans retinol into all-trans retinal, when compared with the addition of NAD+, suggesting that RDH10 prefers NADP as the cofactor
Bos taurus
NAD+
the addition of NADP+ results in more efficient oxidation of all-trans retinol into all-trans retinal, when compared with the addition of NAD+, suggesting that RDH10 prefers NADP+ as the cofactor
Homo sapiens
NAD+
the addition of NADP+ results in more efficient oxidation of all-trans retinol into all-trans retinal, when compared with the addition of NAD+, suggesting that RDH10 prefers NADP as the cofactor
Mus musculus
NADH
-
Bos taurus
NADH
-
Homo sapiens
NADH
-
Mus musculus
NADP+
the addition of NADP+ results in more efficient oxidation of all-trans retinol into all-trans retinal, when compared with the addition of NAD+, suggesting that RDH10 prefers NADP as the cofactor
Bos taurus
NADP+
the addition of NADP+ resulted in more efficient oxidation of all-trans retinol into all-trans retinal, when compared with the addition of NAD+, suggesting that RDH10 prefers NADP+ as the cofactor
Homo sapiens
NADP+
the addition of NADP+ results in more efficient oxidation of all-trans retinol into all-trans retinal, when compared with the addition of NAD+, suggesting that RDH10 prefers NADP as the cofactor
Mus musculus
NADPH
-
Bos taurus
NADPH
-
Homo sapiens
NADPH
-
Mus musculus
Localization (protein specific)
Localization
Commentary
Organism
GeneOntology No.
Textmining
microsome
-
Bos taurus
-
-
microsome
-
Homo sapiens
-
-
microsome
-
Mus musculus
-
-
Molecular Weight [Da] (protein specific)
Molecular Weight [Da]
Molecular Weight Maximum [Da]
Commentary
Organism
38087
-
x * 38087, calculated from sequence
Homo sapiens
38090
-
calculated from sequence
Homo sapiens
Source Tissue (protein specific)
Source Tissue
Commentary
Organism
Textmining
brain
low activity
Bos taurus
-
kidney
low activity
Bos taurus
-
liver
low activity
Bos taurus
-
lung
low activity
Bos taurus
-
pancreas
low activity
Bos taurus
-
retinal pigment epithelium
high activity
Bos taurus
-
retinal pigment epithelium
-
Homo sapiens
-
retinal pigment epithelium
-
Mus musculus
-
skeletal muscle
low activity
Bos taurus
-
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
all-trans-retinol + NAD+
the addition of NADP+ results in more efficient oxidation of all-trans retinol into all-trans retinal, when compared with the addition of NAD+, suggesting that RDH10 prefers NADP as the cofactor. At assay conditions (pH 5.5 and pH 7.6), and NADH or NADPH is used as the cofactor, only a low level of all-trans retinol is generated by RDH10
692700
Homo sapiens
all-trans-retinal + NADH + H+
-
-
-
r
all-trans-retinol + NAD+
the addition of NADP+ results in more efficient oxidation of all-trans retinol into all-trans retinal, when compared with the addition of NAD+, suggesting that RDH10 prefers NADP as the cofactor. At assay conditions (pH 5.5 and pH 7.6), and NADH or NADPH is used as the cofactor, only a low level of all-trans retinol is generated by RDH10
692700
Mus musculus
all-trans-retinal + NADH + H+
-
-
-
r
all-trans-retinol + NAD+
the addition of NADP+ results in more efficient oxidation of all-trans retinol into all-trans retinal, when compared with the addition of NAD+, suggesting that RDH10 prefers NADP as the cofactor. At assay conditions (pH 5.5 and pH 7.6), and NADH or NADPH is used as the cofactor, only a low level of all-trans retinol is generated by RDH10
692700
Bos taurus
all-trans-retinal + NADH + H+
-
-
-
r
all-trans-retinol + NADP+
the addition of NADP+ results in more efficient oxidation of all-trans retinol into all-trans retinal, when compared with the addition of NAD+, suggesting that RDH10 prefers NADP as the cofactor. At assay conditions (pH 5.5 and pH 7.6), and NADH or NADPH is used as the cofactor, only a low level of all-trans retinol is generated by RDH10
692700
Homo sapiens
all-trans-retinal + NADPH + H+
-
-
-
r
all-trans-retinol + NADP+
the addition of NADP+ results in more efficient oxidation of all-trans retinol into all-trans retinal, when compared with the addition of NAD+, suggesting that RDH10 prefers NADP as the cofactor. At assay conditions (pH 5.5 and pH 7.6), and NADH or NADPH is used as the cofactor, only a low level of all-trans retinol is generated by RDH10
692700
Mus musculus
all-trans-retinal + NADPH + H+
-
-
-
r
all-trans-retinol + NADP+
the addition of NADP+ results in more efficient oxidation of all-trans retinol into all-trans retinal, when compared with the addition of NAD+, suggesting that RDH10 prefers NADP as the cofactor. At assay conditions (pH 5.5 and pH 7.6), and NADH or NADPH is used as the cofactor, only a low level of all-trans retinol is generated by RDH10
692700
Bos taurus
all-trans-retinal + NADPH + H+
-
-
-
r
additional information
RDH10 does not oxidize 11-cis retinol, 9-cis retinol, or 13-cis retinol into the respective retinal (pH 7.6, in the presence of NAD or NADP+), indicating the substrate specificity of RDH10
692700
Homo sapiens
?
-
-
-
-
additional information
RDH10 does not oxidize 11-cis retinol, 9-cis retinol, or 13-cis retinol into the respective retinal (pH 7.6, in the presence of NAD or NADP+), indicating the substrate specificity of RDH10
692700
Mus musculus
?
-
-
-
-
additional information
RDH10 does not oxidize 11-cis retinol, 9-cis retinol, or 13-cis retinol into the respective retinal (pH 7.6, in the presence of NAD or NADP+), indicating the substrate specificity of RDH10
692700
Bos taurus
?
-
-
-
-
Subunits (protein specific)
Subunits
Commentary
Organism
?
x * 38087, calculated from sequence
Homo sapiens
pI Value (protein specific)
Organism
Commentary
pI Value Maximum
pI Value
Homo sapiens
calculated from sequence
-
7.4
Other publictions for EC 1.1.1.87
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
722303
Gabriel
Homoisocitrate dehydrogenase f ...
Candida albicans, Candida albicans ATCC 10231
FEMS Yeast Res.
13
143-155
2013
-
-
1
-
-
-
3
4
-
2
3
2
-
8
-
-
1
-
-
-
-
-
6
2
1
-
-
4
1
-
-
1
-
-
3
-
-
1
1
-
-
-
3
3
-
4
-
2
3
2
-
-
-
1
-
-
-
-
6
2
1
-
-
4
1
-
-
-
-
1
1
-
4
4
722569
Nango
Structure of Thermus thermophi ...
Thermus thermophilus
J. Biochem.
150
607-614
2011
-
-
-
1
-
-
2
1
-
1
-
1
-
5
-
-
-
-
-
-
-
-
2
-
1
-
-
-
1
-
-
1
1
-
-
-
-
-
1
1
-
-
-
2
1
1
-
1
-
1
-
-
-
-
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
1
1
-
-
-
690842
Takahashi
Characterization of key residu ...
Homo sapiens
Biochem. J.
419
113-122
2009
-
-
1
-
13
-
-
8
1
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
4
-
-
-
-
-
1
4
-
13
-
-
-
-
8
1
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
692705
Farjo
RDH10 has 11-cis-retinol dehyd ...
Homo sapiens
Invest. Ophthalmol. Vis. Sci.
50
5089-5097
2009
1
-
1
-
-
-
-
-
-
-
-
2
-
4
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
2
-
-
-
1
-
1
2
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
696350
Lin
Site-directed mutagenesis as a ...
Saccharomyces cerevisiae
Biochemistry
48
7305-7312
2009
-
-
-
-
2
-
-
1
-
2
-
1
-
2
-
-
-
-
-
-
-
-
2
-
1
-
-
-
2
1
-
1
-
-
-
-
-
-
1
-
2
-
-
-
-
1
-
2
-
1
-
-
-
-
-
-
-
-
2
-
1
-
-
-
2
1
-
-
-
-
-
-
-
-
685232
Lin
Chemical mechanism of homoisoc ...
Saccharomyces cerevisiae
Biochemistry
47
4169-4180
2008
-
-
-
-
-
-
2
5
-
1
-
-
-
2
-
-
-
1
-
-
-
-
4
-
3
-
-
-
1
-
1
-
1
-
-
-
-
-
-
-
-
-
-
2
1
5
-
1
-
-
-
-
-
-
-
-
-
-
4
-
3
-
-
-
1
-
1
-
-
-
-
-
-
-
685539
Yamamoto
Thiahomoisocitrate: a highly p ...
Saccharomyces cerevisiae
Bioorg. Med. Chem.
16
3372-3376
2008
-
-
-
-
-
-
4
3
-
1
-
-
-
4
-
-
-
-
-
-
-
-
3
-
-
-
-
3
1
-
-
-
3
-
-
-
-
-
-
-
-
-
-
4
3
3
-
1
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
3
1
-
-
-
-
-
-
-
-
-
687735
Belyaeva
Kinetic analysis of human enzy ...
Homo sapiens
J. Biol. Chem.
283
20299-20308
2008
-
-
1
-
-
-
3
6
-
-
1
1
-
2
-
-
1
-
-
-
-
1
9
1
-
-
-
-
-
-
-
2
-
-
-
-
-
2
3
-
-
-
-
3
-
9
-
-
1
1
-
-
-
1
-
-
-
1
9
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
687988
Romand
Dynamic expression of the reti ...
Mus musculus
J. Comp. Neurol.
508
879-892
2008
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
9
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
9
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
696220
Lin
Potassium is an activator of h ...
Saccharomyces cerevisiae
Biochemistry
47
10809-10815
2008
-
-
-
-
-
-
4
3
-
5
-
1
-
2
-
-
-
-
-
-
-
-
3
-
1
-
-
-
1
1
-
1
1
-
-
-
-
-
1
-
-
-
-
4
1
3
-
5
-
1
-
-
-
-
-
-
-
-
3
-
1
-
-
-
1
1
-
-
-
-
-
-
-
-
667934
Yamamoto
Substrate specificity analysis ...
Deinococcus radiodurans, Saccharomyces cerevisiae
Bioorg. Med. Chem.
15
1346-1355
2007
-
-
1
-
-
-
11
20
-
2
-
-
-
7
-
-
1
-
-
-
2
-
24
-
2
-
-
20
2
-
-
2
9
-
-
-
-
1
2
-
-
-
-
11
9
20
-
2
-
-
-
-
-
1
-
-
2
-
24
-
2
-
-
20
2
-
-
-
-
-
-
-
-
-
686287
Cammas
Expression of the murine retin ...
Mus musculus
Dev. Dyn.
236
2899-2908
2007
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
686950
Sandell
RDH10 is essential for synthes ...
Mus musculus
Genes Dev.
21
1113-1124
2007
-
-
-
-
1
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
669670
Szamtari
PPARgamma controls CD1d expres ...
Homo sapiens
J. Exp. Med.
203
2351-2362
2006
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
660907
Miyazaki
Bifunctional isocitrate-homois ...
Pyrococcus horikoshii
Biochem. Biophys. Res. Commun.
331
341-346
2005
-
-
1
-
-
-
-
2
-
1
-
4
-
3
-
-
1
-
-
-
1
-
4
-
1
-
-
2
1
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
2
-
1
-
4
-
-
-
1
-
-
1
-
4
-
1
-
-
2
1
-
-
-
-
-
-
-
-
-
660918
Miyazaki
Identification of a novel trif ...
Deinococcus radiodurans
Biochem. Biophys. Res. Commun.
336
596-602
2005
-
-
1
-
4
-
-
7
-
2
2
-
-
4
-
-
1
-
-
-
1
-
3
1
1
-
-
7
1
-
-
1
-
-
-
-
-
1
1
-
4
-
-
-
-
7
-
2
2
-
-
-
-
1
-
-
1
-
3
1
1
-
-
7
1
-
-
-
-
-
-
-
-
-
669109
Miyazaki
Crystal structure of tetrameri ...
Thermus thermophilus
J. Bacteriol.
187
6779-6788
2005
-
-
-
1
1
-
-
2
-
1
-
-
-
2
-
-
-
-
-
-
1
-
3
1
1
-
-
2
1
-
-
1
-
-
-
-
-
-
1
1
1
-
-
-
-
2
-
1
-
-
-
-
-
-
-
-
1
-
3
1
1
-
-
2
1
-
-
-
-
-
-
-
-
-
656127
Miyazaki
Characterization of homoisocit ...
Thermus thermophilus
J. Biol. Chem.
278
1864-1871
2003
-
-
1
-
1
-
-
2
-
-
-
1
-
3
-
-
1
-
-
-
2
-
4
-
-
-
2
2
-
-
-
1
-
-
-
-
-
1
1
-
1
-
-
-
-
2
-
-
-
1
-
-
-
1
-
-
2
-
4
-
-
-
2
2
-
-
-
-
-
-
-
-
-
-
692332
Picozzi
Genomic organization and trans ...
Homo sapiens
FEBS Lett.
554
59-66
2003
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
9
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
9
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
692700
Wu
Cloning and characterization o ...
Bos taurus, Homo sapiens, Mus musculus
Invest. Ophthalmol. Vis. Sci.
43
3365-3372
2002
-
-
3
-
-
-
-
-
3
-
2
-
-
6
-
-
-
-
-
9
-
-
9
1
-
-
-
-
-
-
-
12
-
1
-
-
-
3
12
-
-
-
-
-
-
-
3
-
2
-
-
-
-
-
-
9
-
-
9
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
644538
Garrad
Lysine biosynthesis in selecte ...
Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Saccharomyces cerevisiae
J. Bacteriol.
174
7379-7384
1992
-
3
1
-
-
-
-
-
-
-
-
4
-
11
-
-
-
-
-
-
4
-
7
-
-
-
-
-
-
-
-
-
-
-
-
-
3
1
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
4
-
7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
288190
Ye
Lysine biosynthesis pathway an ...
Schizosaccharomyces pombe
J. Bacteriol.
170
5968-5970
1988
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644540
Gaillardin
Wild-type and mutant forms of ...
Saccharomycopsis lipolytica
Eur. J. Biochem.
128
489-494
1982
-
-
-
-
-
2
3
-
-
3
1
1
-
3
-
-
1
-
-
-
1
2
2
2
1
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
2
-
3
-
-
-
3
1
1
-
-
-
1
-
-
1
2
2
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
644541
Broquist
-
Homoisocitric Dehydrogenase ...
Saccharomyces cerevisiae
Methods Enzymol.
17B
118-119
1971
-
-
-
-
-
-
-
1
-
1
-
1
-
1
-
-
1
-
-
-
-
-
1
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
1
-
1
-
1
-
-
-
1
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
644539
Rowley
Homoisocitric dehydrogenase fr ...
Saccharomyces cerevisiae
Arch. Biochem. Biophys.
141
499-510
1970
2
-
-
-
-
-
1
4
-
3
1
1
-
2
-
-
1
-
-
-
1
-
3
-
1
-
-
-
2
2
-
2
-
-
-
2
-
-
2
-
-
-
-
1
-
4
-
3
1
1
-
-
-
1
-
-
1
-
3
-
1
-
-
-
2
2
-
-
-
-
-
-
-
-
644543
Strassmann
Enzymatic formation of alpha-k ...
Saccharomyces cerevisiae
J. Biol. Chem.
240
4357-4361
1965
-
-
-
-
-
-
-
1
-
1
-
1
-
1
-
-
1
-
-
-
-
2
2
-
1
-
-
-
1
1
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
1
-
1
-
-
-
1
-
-
-
2
2
-
1
-
-
-
1
1
-
-
-
-
-
-
-
-