BRENDA - Enzyme Database show
show all sequences of 1.1.1.83

Regulation of aerobic and anaerobic D-malate metabolism of Escherichia coli by the LysR-type regulator DmlR (YeaT)

Lukas, H.; Reimann, J.; Kim, O.B.; Grimpo, J.; Unden, G.; J. Bacteriol. 192, 2503-2511 (2010)

Data extracted from this reference:

Metals/Ions
Metals/Ions
Commentary
Organism
Structure
Mg2+
divalent cation required
Escherichia coli
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Escherichia coli
P76251
-
-
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
(R)-malate + NAD+
-
712297
Escherichia coli
pyruvate + CO2 + NADH + H+
-
-
-
?
Temperature Optimum [°C]
Temperature Optimum [°C]
Temperature Optimum Maximum [°C]
Commentary
Organism
37
-
assay at
Escherichia coli
pH Optimum
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
7.6
-
assay at
Escherichia coli
Metals/Ions (protein specific)
Metals/Ions
Commentary
Organism
Structure
Mg2+
divalent cation required
Escherichia coli
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
(R)-malate + NAD+
-
712297
Escherichia coli
pyruvate + CO2 + NADH + H+
-
-
-
?
Temperature Optimum [°C] (protein specific)
Temperature Optimum [°C]
Temperature Optimum Maximum [°C]
Commentary
Organism
37
-
assay at
Escherichia coli
pH Optimum (protein specific)
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
7.6
-
assay at
Escherichia coli
Expression
Organism
Commentary
Expression
Escherichia coli
addition of nitrate during anaerobic growth represses the expression of dmlA-lacZ about 2.2fold, but the expression is still higher than the expression under aerobic conditions. The presence of glucose during anaerobic growth represses dmlA expression to levels similar to those observed after nitrate addition, suggesting that there is some glucose repression (2.4fold)
down
Escherichia coli
in a wild-type background, D-malate and meso- and L-tartrate cause high levels of induction of dmlA-lacZ expression (up to 12.3fold). With L-malate, succinate, and D-tartrate there is only weak induction. Induction of dmlA encoding DmlA requires an intact dmlR gene, which encodes DmlR, a LysR-type transcriptional regulator; the expression of dmlA-lacZ at high levels is induced under anaerobic conditions in the presence of D-malate and is more than 5fold greater than the expression under aerobic conditions
up
Expression (protein specific)
Organism
Commentary
Expression
Escherichia coli
addition of nitrate during anaerobic growth represses the expression of dmlA-lacZ about 2.2fold, but the expression is still higher than the expression under aerobic conditions. The presence of glucose during anaerobic growth represses dmlA expression to levels similar to those observed after nitrate addition, suggesting that there is some glucose repression (2.4fold)
down
Escherichia coli
in a wild-type background, D-malate and meso- and L-tartrate cause high levels of induction of dmlA-lacZ expression (up to 12.3fold). With L-malate, succinate, and D-tartrate there is only weak induction. Induction of dmlA encoding DmlA requires an intact dmlR gene, which encodes DmlR, a LysR-type transcriptional regulator; the expression of dmlA-lacZ at high levels is induced under anaerobic conditions in the presence of D-malate and is more than 5fold greater than the expression under aerobic conditions
up
Other publictions for EC 1.1.1.83
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
712297
Lukas
Regulation of aerobic and anae ...
Escherichia coli
J. Bacteriol.
192
2503-2511
2010
-
-
-
-
-
-
-
-
-
1
-
-
-
6
-
-
-
-
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
1
-
-
-
2
-
-
2
-
-
670917
Tsukatani
Sequential fluorometric quanti ...
Escherichia coli
Talanta
65
396-401
2005
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
287429
Ebbighausen
-
A novel mechanism involved in ...
Rhodobacter sphaeroides
Arch. Microbiol.
138
338-344
1984
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
389609
Giffhorn
Purification and characterizat ...
Rhodobacter sphaeroides, Rhodobacter sphaeroides Y
J. Bacteriol.
155
281-290
1983
1
-
-
-
-
1
6
2
-
7
3
-
-
6
-
-
1
-
-
-
1
2
4
1
1
-
4
-
1
1
1
1
-
-
-
1
-
-
1
-
-
1
-
6
-
2
-
7
3
-
-
-
-
1
-
-
1
2
4
1
1
-
4
-
1
1
1
-
-
-
-
-
-
-
287433
Knichel
D-Malic enzyme of Pseudomonas ...
Enterobacter aerogenes, Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas putida
Eur. J. Biochem.
123
547-552
1982
-
-
-
-
-
-
10
2
-
2
1
-
-
11
-
-
1
-
-
-
1
-
4
-
1
-
-
-
1
-
-
2
-
-
-
-
-
-
2
-
-
-
-
10
-
2
-
2
1
-
-
-
-
1
-
-
1
-
4
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
207978
Lähdesmäki
Comparison of D-malate and bet ...
Pseudomonas fluorescens, Pseudomonas fluorescens UK-1
Biochim. Biophys. Acta
613
266-274
1980
-
-
-
-
-
-
3
2
-
-
2
-
-
5
-
-
1
-
-
-
1
1
2
1
-
-
2
-
1
-
-
1
-
-
-
-
-
-
1
-
-
-
-
3
-
2
-
-
2
-
-
-
-
1
-
-
1
1
2
1
-
-
2
-
1
-
-
-
-
-
-
-
-
-
287434
Laehdesmaeki
D-Malate dehydrogenase from ps ...
Pseudomonas fluorescens, Pseudomonas fluorescens UK-1
Acta Chem. Scand. B
34
423-427
1980
-
-
-
-
-
1
2
-
-
-
2
-
-
6
-
-
1
-
-
-
-
1
-
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
1
-
2
-
-
-
-
2
-
-
-
-
1
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
287431
Stern
Oxidation D-malic and beta-alk ...
Enterobacter aerogenes, Salmonella enterica subsp. enterica serovar Typhimurium
J. Bacteriol.
98
147-151
1969
-
-
-
-
-
-
-
-
-
1
-
1
-
2
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-