BRENDA - Enzyme Database show
show all sequences of 1.1.1.78

Metabolism of 2-oxoaldehyde in yeasts. Purification and characterization of NADPH-dependent methylglyoxal-reducing enzyme from Saccharomyces cerevisiae

Murata, K.; Fukuda, Y.; Simosaka, M.; Watanabe, K.; Saikusa, T.; Kimura, A.; Eur. J. Biochem. 151, 631-636 (1985)

Data extracted from this reference:

Molecular Weight [Da]
Molecular Weight [Da]
Molecular Weight Maximum [Da]
Commentary
Organism
43000
-
1 * 43000, SDS-PAGE
Saccharomyces cerevisiae
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Reaction
Reaction
Commentary
Organism
(R)-lactaldehyde + NAD+ = methylglyoxal + NADH + H+
similar enzyme with NADPH-requirement for methylglyoxal reduction, that is inactive with NAD+, NADH and NADP+
Saccharomyces cerevisiae
Subunits
Subunits
Commentary
Organism
monomer
1 * 43000, SDS-PAGE
Saccharomyces cerevisiae
Temperature Stability [C]
Temperature Stability Minimum [C]
Temperature Stability Maximum [C]
Commentary
Organism
25
-
stable below
Saccharomyces cerevisiae
39
-
3 min, 50% loss of activity
Saccharomyces cerevisiae
44
-
80 s, 50% loss of activity
Saccharomyces cerevisiae
50
-
40 s, 50% loss of activity
Saccharomyces cerevisiae
60
-
35 s, 50% loss of activity
Saccharomyces cerevisiae
pH Optimum
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
7
-
similar enzyme with NADPH-requirement for methylglyoxal reduction, that is inactive with NAD+, NADH and NADP+
Saccharomyces cerevisiae
pH Range
pH Minimum
pH Maximum
Commentary
Organism
6
8
pH 6.0 and pH 8.0: about 50% of activity maximum
Saccharomyces cerevisiae
pH Stability
pH Stability
pH Stability Maximum
Commentary
Organism
4.5
-
1 min, 40C, 50% loss of activity
Saccharomyces cerevisiae
6
-
1 min, 40C, stable
Saccharomyces cerevisiae
8
-
1 min, 40C, stable
Saccharomyces cerevisiae
11
-
1 min, 40C, 50% loss of activity 4
Saccharomyces cerevisiae
Cofactor
Cofactor
Commentary
Organism
Structure
NADPH
NADPH required
Saccharomyces cerevisiae
Cofactor (protein specific)
Cofactor
Commentary
Organism
Structure
NADPH
NADPH required
Saccharomyces cerevisiae
Molecular Weight [Da] (protein specific)
Molecular Weight [Da]
Molecular Weight Maximum [Da]
Commentary
Organism
43000
-
1 * 43000, SDS-PAGE
Saccharomyces cerevisiae
Subunits (protein specific)
Subunits
Commentary
Organism
monomer
1 * 43000, SDS-PAGE
Saccharomyces cerevisiae
Temperature Stability [C] (protein specific)
Temperature Stability Minimum [C]
Temperature Stability Maximum [C]
Commentary
Organism
25
-
stable below
Saccharomyces cerevisiae
39
-
3 min, 50% loss of activity
Saccharomyces cerevisiae
44
-
80 s, 50% loss of activity
Saccharomyces cerevisiae
50
-
40 s, 50% loss of activity
Saccharomyces cerevisiae
60
-
35 s, 50% loss of activity
Saccharomyces cerevisiae
pH Optimum (protein specific)
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
7
-
similar enzyme with NADPH-requirement for methylglyoxal reduction, that is inactive with NAD+, NADH and NADP+
Saccharomyces cerevisiae
pH Range (protein specific)
pH Minimum
pH Maximum
Commentary
Organism
6
8
pH 6.0 and pH 8.0: about 50% of activity maximum
Saccharomyces cerevisiae
pH Stability (protein specific)
pH Stability
pH Stability Maximum
Commentary
Organism
4.5
-
1 min, 40C, 50% loss of activity
Saccharomyces cerevisiae
6
-
1 min, 40C, stable
Saccharomyces cerevisiae
8
-
1 min, 40C, stable
Saccharomyces cerevisiae
11
-
1 min, 40C, 50% loss of activity 4
Saccharomyces cerevisiae
Other publictions for EC 1.1.1.78
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [C]
Temperature Range [C]
Temperature Stability [C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [C] (protein specific)
Temperature Range [C] (protein specific)
Temperature Stability [C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
657418
Chen
Associating protein activities ...
Saccharomyces cerevisiae
Yeast
20
545-554
2003
-
-
1
-
-
-
-
-
-
-
-
-
-
2
-
-
1
-
-
-
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
207975
Kato
-
Purification and partial chara ...
Sus scrofa
Agric. Biol. Chem.
52
2641-2642
1988
-
-
-
-
-
-
1
-
-
-
2
1
-
1
-
-
1
-
-
-
-
-
6
1
-
-
-
-
1
-
-
1
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
2
1
-
-
-
1
-
-
-
-
6
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
207976
Saikusa
-
Metabolism of 2-oxoaldehydes i ...
Escherichia coli
Agric. Biol. Chem.
51
1893-1899
1987
3
-
-
-
-
-
8
1
-
-
1
2
-
1
-
-
1
-
-
-
1
-
3
1
1
1
-
-
1
1
-
2
-
-
-
3
-
-
2
-
-
-
-
8
-
1
-
-
1
2
-
-
-
1
-
-
1
-
3
1
1
1
-
-
1
1
-
-
-
-
-
-
-
-
137611
Tran-Din
-
Formation of D(-)-1,2-propaned ...
Clostridium sphenoides
Arch. Microbiol.
142
87-92
1985
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
207969
Ray
Purification and partial chara ...
Capra hircus
Biochim. Biophys. Acta
802
119-127
1984
-
-
-
-
-
-
2
3
1
-
2
1
-
2
-
-
-
-
-
2
1
1
5
1
-
-
-
-
1
-
-
2
-
-
-
-
-
-
2
-
-
-
-
2
-
3
1
-
2
1
-
-
-
-
-
2
1
1
5
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
207968
Ting
The metabolism of lactaldehyde ...
Rattus norvegicus
Biochim. Biophys. Acta
97
407-415
1965
-
-
-
-
-
-
3
2
-
-
-
1
-
1
-
-
1
-
-
7
-
-
4
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
2
-
-
-
-
3
-
2
-
-
-
1
-
-
-
1
-
7
-
-
4
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-