BRENDA - Enzyme Database show
show all sequences of 1.1.1.26

Role of plant glyoxylate reductases during stress: a hypothesis

Allan, W.L.; Clark, S.M.; Hoover, G.J.; Shelp, B.J.; Biochem. J. 423, 15-22 (2009)

Data extracted from this reference:

Engineering
Amino acid exchange
Commentary
Organism
additional information
complementation of SSADH-deficient yeast with Arabidopsis thaliana GLYR1, the yeast then grows on 20 mM GABA as the sole nitrogen source and contains elevated levels of 4-hydroxybutyrate
Arabidopsis thaliana
Localization
Localization
Commentary
Organism
GeneOntology No.
Textmining
chloroplast
isozyme GLYR2
Arabidopsis thaliana
9507
-
cytosol
isozyme GLYR1
Arabidopsis thaliana
5829
-
Natural Substrates/ Products (Substrates)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
glyoxylate + NADPH + H+
Arabidopsis thaliana
-
glycolate + NADP+
-
-
ir
additional information
Arabidopsis thaliana
both cytosolic GLYR1 and plastidial GLYR2 catalyse the essentially irreversible, NADPH-based conversion of glyoxylate into glycolate, and can be regulated by the NADPH/NADP ratio
?
-
-
-
succinic semialdehyde + NADPH + H+
Arabidopsis thaliana
succinic semialdehyde-dependent GLYR activity potentially occurs in planta, despite the fact that glyoxylate is the preferred substrate in vitro
4-hydroxybutyrate + NADP+
-
-
ir
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Arabidopsis thaliana
-
NADPH-dependent cytosolic termed GLYR1, and plastidial termed GLYR2 isoforms of succinic semialdehyde/glyoxylate reductase
-
Source Tissue
Source Tissue
Commentary
Organism
Textmining
leaf
-
Arabidopsis thaliana
-
additional information
GLYR activity is found at all developmental stages and in all tissues, and activity is generally higher in vegetative and reproductive organs than in roots
Arabidopsis thaliana
-
root
-
Arabidopsis thaliana
-
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
glyoxylate + NADPH + H+
-
696125
Arabidopsis thaliana
glycolate + NADP+
-
-
-
ir
glyoxylate + NADPH + H+
preferred substrate
696125
Arabidopsis thaliana
glycolate + NADP+
-
-
-
ir
additional information
both cytosolic GLYR1 and plastidial GLYR2 catalyse the essentially irreversible, NADPH-based conversion of glyoxylate into glycolate, and can be regulated by the NADPH/NADP ratio
696125
Arabidopsis thaliana
?
-
-
-
-
succinic semialdehyde + NADPH + H+
succinic semialdehyde-dependent GLYR activity potentially occurs in planta, despite the fact that glyoxylate is the preferred substrate in vitro
696125
Arabidopsis thaliana
4-hydroxybutyrate + NADP+
-
-
-
ir
Subunits
Subunits
Commentary
Organism
More
GLYR1 structure, molecular modelling, overview
Arabidopsis thaliana
Cofactor
Cofactor
Commentary
Organism
Structure
NADP+
-
Arabidopsis thaliana
NADPH
-
Arabidopsis thaliana
Cofactor (protein specific)
Cofactor
Commentary
Organism
Structure
NADP+
-
Arabidopsis thaliana
NADPH
-
Arabidopsis thaliana
Engineering (protein specific)
Amino acid exchange
Commentary
Organism
additional information
complementation of SSADH-deficient yeast with Arabidopsis thaliana GLYR1, the yeast then grows on 20 mM GABA as the sole nitrogen source and contains elevated levels of 4-hydroxybutyrate
Arabidopsis thaliana
Localization (protein specific)
Localization
Commentary
Organism
GeneOntology No.
Textmining
chloroplast
isozyme GLYR2
Arabidopsis thaliana
9507
-
cytosol
isozyme GLYR1
Arabidopsis thaliana
5829
-
Natural Substrates/ Products (Substrates) (protein specific)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
glyoxylate + NADPH + H+
Arabidopsis thaliana
-
glycolate + NADP+
-
-
ir
additional information
Arabidopsis thaliana
both cytosolic GLYR1 and plastidial GLYR2 catalyse the essentially irreversible, NADPH-based conversion of glyoxylate into glycolate, and can be regulated by the NADPH/NADP ratio
?
-
-
-
succinic semialdehyde + NADPH + H+
Arabidopsis thaliana
succinic semialdehyde-dependent GLYR activity potentially occurs in planta, despite the fact that glyoxylate is the preferred substrate in vitro
4-hydroxybutyrate + NADP+
-
-
ir
Source Tissue (protein specific)
Source Tissue
Commentary
Organism
Textmining
leaf
-
Arabidopsis thaliana
-
additional information
GLYR activity is found at all developmental stages and in all tissues, and activity is generally higher in vegetative and reproductive organs than in roots
Arabidopsis thaliana
-
root
-
Arabidopsis thaliana
-
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
glyoxylate + NADPH + H+
-
696125
Arabidopsis thaliana
glycolate + NADP+
-
-
-
ir
glyoxylate + NADPH + H+
preferred substrate
696125
Arabidopsis thaliana
glycolate + NADP+
-
-
-
ir
additional information
both cytosolic GLYR1 and plastidial GLYR2 catalyse the essentially irreversible, NADPH-based conversion of glyoxylate into glycolate, and can be regulated by the NADPH/NADP ratio
696125
Arabidopsis thaliana
?
-
-
-
-
succinic semialdehyde + NADPH + H+
succinic semialdehyde-dependent GLYR activity potentially occurs in planta, despite the fact that glyoxylate is the preferred substrate in vitro
696125
Arabidopsis thaliana
4-hydroxybutyrate + NADP+
-
-
-
ir
Subunits (protein specific)
Subunits
Commentary
Organism
More
GLYR1 structure, molecular modelling, overview
Arabidopsis thaliana
Expression
Organism
Commentary
Expression
Arabidopsis thaliana
GLYR isozyme transcript levels increase under various stresses, such as cold and heat
up
General Information
General Information
Commentary
Organism
metabolism
the enzyme is involved in the glycolate metabolism, as well as the 4-hydroxybutyrate production and the GABA shunt pathway, overview
Arabidopsis thaliana
physiological function
succinic semialdehyde and glyoxylate are typically generated in leaves via two distinct metabolic pathways, 4-aminobutyrate and glycolate respectively. GLYR isozymes function in the detoxification of both aldehydes during stress and contribute to redox balance, overview
Arabidopsis thaliana
General Information (protein specific)
General Information
Commentary
Organism
metabolism
the enzyme is involved in the glycolate metabolism, as well as the 4-hydroxybutyrate production and the GABA shunt pathway, overview
Arabidopsis thaliana
physiological function
succinic semialdehyde and glyoxylate are typically generated in leaves via two distinct metabolic pathways, 4-aminobutyrate and glycolate respectively. GLYR isozymes function in the detoxification of both aldehydes during stress and contribute to redox balance, overview
Arabidopsis thaliana
Expression (protein specific)
Organism
Commentary
Expression
Arabidopsis thaliana
GLYR isozyme transcript levels increase under various stresses, such as cold and heat
up
Other publictions for EC 1.1.1.26
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
722899
Ching
Glyoxylate reductase isoform 1 ...
Arabidopsis thaliana
J. Integr. Plant Biol.
54
152-168
2012
-
-
1
-
-
-
-
-
4
-
-
2
-
3
-
-
-
-
-
3
-
-
2
-
-
-
-
-
-
-
-
4
-
-
-
-
-
1
4
-
-
-
-
-
-
-
4
-
-
2
-
-
-
-
-
3
-
-
2
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
715548
Nunn
Metabolism of pentose sugars i ...
Sulfolobus solfataricus, Sulfolobus solfataricus P2
J. Biol. Chem.
285
33701-33709
2010
-
-
1
-
-
-
-
2
-
-
-
-
-
2
-
-
-
-
-
1
-
-
2
-
1
-
-
-
1
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
1
-
-
2
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
696125
Allan
Role of plant glyoxylate reduc ...
Arabidopsis thaliana
Biochem. J.
423
15-22
2009
-
-
-
-
1
-
-
-
2
-
-
3
-
3
-
-
-
-
-
3
-
-
4
1
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
1
-
-
-
-
-
2
-
-
3
-
-
-
-
-
3
-
-
4
1
-
-
-
-
-
-
-
-
1
2
2
1
-
-
684838
Shinoda
A highly specific glyoxylate r ...
Paracoccus sp.
Biochem. Biophys. Res. Commun.
355
782-787
2007
-
-
-
-
1
-
-
1
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
1
-
-
1
1
-
-
1
-
-
-
-
-
-
1
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
1
1
-
-
-
-
-
-
-
-
-
685349
Fauvart
Identification of a novel glyo ...
Rhizobium etli, Rhizobium etli CFN42
Biochim. Biophys. Acta
1774
1092-1098
2007
-
-
1
-
-
-
-
4
-
-
3
6
-
6
-
-
1
-
-
-
-
-
11
1
1
-
-
4
1
1
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
4
-
-
3
6
-
-
-
1
-
-
-
-
11
1
1
-
-
4
1
1
-
-
-
-
-
-
-
-
685901
Hoover
Characteristics of an Arabidop ...
Arabidopsis thaliana
Can. J. Bot.
85
883-895
2007
-
-
1
-
-
-
-
3
-
-
-
-
-
1
-
-
1
-
-
3
1
1
2
1
1
1
-
2
1
1
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
3
-
-
-
-
-
-
-
1
-
3
1
1
2
1
1
1
-
2
1
1
-
-
-
-
-
-
-
-
655702
Cregeen
Molecular analysis of the glyo ...
Homo sapiens
Hum. Mutat.
22
497
2003
-
1
-
-
3
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
727414
Ohshima
A novel hyperthermophilic arch ...
Thermococcus litoralis, Thermococcus litoralis DSM 5473
Eur. J. Biochem.
268
4740-4747
2001
-
-
1
-
-
-
5
3
-
-
3
2
-
10
-
-
1
-
-
-
1
-
6
1
2
-
1
-
1
-
-
1
-
-
-
-
-
1
1
-
-
-
-
5
-
3
-
-
3
2
-
-
-
1
-
-
1
-
6
1
2
-
1
-
1
-
-
-
-
-
-
-
-
-
286417
Rumsby
Identification and expression ...
Homo sapiens
Biochim. Biophys. Acta
1446
383-388
1999
-
-
1
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
286416
Giafi
Kinetic analysis and tissue di ...
Homo sapiens
Ann. Clin. Biochem.
35
104-109
1998
-
-
-
-
-
-
-
1
-
-
-
-
-
2
-
-
-
-
-
2
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
2
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
286418
Givan
The enzymic reduction of glyox ...
Hordeum vulgare, Nicotiana tabacum, Petroselinum crispum, Pisum sativum, Spinacia oleracea, Zea mays
Plant Physiol.
100
552-556
1992
-
-
-
-
1
-
6
5
9
-
5
7
-
10
-
-
1
-
-
5
2
-
12
2
-
-
-
-
-
2
-
6
-
-
-
-
-
-
6
-
1
-
-
6
-
5
9
-
5
7
-
-
-
1
-
5
2
-
12
2
-
-
-
-
-
2
-
-
-
-
-
-
-
-
286419
Betsche
Identification and characteria ...
Cyanophora paradoxa, Pisum sativum
Plant Physiol.
98
887-893
1992
-
-
-
-
-
-
4
-
5
-
-
6
-
6
-
-
2
1
-
1
10
-
8
-
-
-
-
-
2
1
-
4
-
-
-
-
-
-
4
-
-
-
-
4
-
-
5
-
-
6
-
-
-
2
-
1
10
-
8
-
-
-
-
-
2
1
-
-
-
-
-
-
-
-
286409
Yokota
Occurrence and subcellular dis ...
Euglena gracilis
Agric. Biol. Chem.
45
15-22
1981
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
286408
Hullin
Glyoxylate reductase, two form ...
Pseudomonas fluorescens
Methods Enzymol.
41B
343-348
1975
-
-
-
-
-
-
2
-
-
-
1
-
-
2
-
-
1
-
-
-
3
-
2
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
2
-
-
-
-
2
-
-
-
-
1
-
-
-
-
1
-
-
3
-
2
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
286414
Bergmeyer
-
Glyoxylate reductase ...
Spinacia oleracea
Methods Enzym. Anal. , 3rd Ed. (Bergmeyer, H. U. , ed. )
2
126-328
1974
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
1
3
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
286410
Suzuki
Studies on peroxisomes. IV. in ...
Rattus norvegicus
J. Biochem.
73
1033-1038
1973
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
286413
Cerff
Glyceraldehyde 3-phosphate deh ...
Sinapis alba
Plant Physiol.
51
76-81
1973
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
3
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
286411
Zelitch
-
Glycolic acid oxidase and glyo ...
Nicotiana tabacum, Spinacia oleracea
Methods Enzymol.
1
528-535
1955
-
-
-
-
-
-
3
-
-
-
-
-
-
2
-
-
1
-
-
2
2
-
2
-
-
-
-
-
1
-
-
4
-
-
-
-
-
-
4
-
-
-
-
3
-
-
-
-
-
-
-
-
-
1
-
2
2
-
2
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
286412
Zelitch
The isolation and action of cr ...
Nicotiana tabacum
J. Biol. Chem.
216
553-575
1955
-
-
-
1
-
-
-
-
-
-
-
-
-
2
-
-
1
-
-
1
1
-
1
-
-
-
-
-
1
1
-
2
-
-
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
1
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
286415
Zelitch
Oxidation and reduction of gly ...
Spinacia oleracea
J. Biol. Chem.
201
719-726
1953
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
1
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-