BRENDA - Enzyme Database show
show all sequences of 1.1.1.203

Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli

Moon, T.S.; Yoon, S.H.; Lanza, A.M.; Roy-Mayhew, J.D.; Prather, K.L.; Appl. Environ. Microbiol. 75, 589-595 (2009)

Data extracted from this reference:

Cloned(Commentary)
Commentary
Organism
expression in Escherichia coli; Udh subcloned into vector pTrc99A to produce pT1053 and transformed into Escherichia coli BL21 Star (DE3) to construct an Escherichia coli strain carrying INO1, MIOX, and udh
Pseudomonas syringae pv. tomato
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Pseudomonas syringae pv. tomato
Q888H1
; pv. tomato DC3000
-
Specific Activity [micromol/min/mg]
Specific Activity Minimum [µmol/min/mg]
Specific Activity Maximum [µmol/min/mg]
Commentary
Organism
10
-
value about, culture condition 1-3 days, 30°C
Pseudomonas syringae pv. tomato
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
D-glucuronate + NAD+ + H2O
inclusion of a third enzyme, Udh, apart from myo-inositol-1-phosphate synthase (Ino1) from Saccharomyces cerevisiae and myo-inositol oxygenase (MIOX) from mice, facilitates conversion of D-glucuronate to D-glucaric acid. Up to 1 g/l of glucaric acid is produced with the three enzymes, whereas only 0.27 g/l of glucuronic acid is produced in the system harboring the two genes of INO1 and MIOX. Udh activity is highest, more than 2fold higher than Ino1 activity and 3fold higher than MIOX activity. The high activity of Udh may pull glucose flux through the glucaric acid pathway, leading to a relatively higher titer of glucaric acid
695783
Pseudomonas syringae pv. tomato
D-glucaric acid + NADH + H+
-
-
-
?
D-glucuronic acid + NAD+ + H2O
assay at pH 8.0
695783
Pseudomonas syringae pv. tomato
D-glucaric acid + NADH + H+
-
-
-
?
pH Optimum
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
8
-
assay at
Pseudomonas syringae pv. tomato
Cofactor
Cofactor
Commentary
Organism
Structure
NAD+
-
Pseudomonas syringae pv. tomato
Cloned(Commentary) (protein specific)
Commentary
Organism
expression in Escherichia coli; Udh subcloned into vector pTrc99A to produce pT1053 and transformed into Escherichia coli BL21 Star (DE3) to construct an Escherichia coli strain carrying INO1, MIOX, and udh
Pseudomonas syringae pv. tomato
Cofactor (protein specific)
Cofactor
Commentary
Organism
Structure
NAD+
-
Pseudomonas syringae pv. tomato
Specific Activity [micromol/min/mg] (protein specific)
Specific Activity Minimum [µmol/min/mg]
Specific Activity Maximum [µmol/min/mg]
Commentary
Organism
10
-
value about, culture condition 1-3 days, 30°C
Pseudomonas syringae pv. tomato
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
D-glucuronate + NAD+ + H2O
inclusion of a third enzyme, Udh, apart from myo-inositol-1-phosphate synthase (Ino1) from Saccharomyces cerevisiae and myo-inositol oxygenase (MIOX) from mice, facilitates conversion of D-glucuronate to D-glucaric acid. Up to 1 g/l of glucaric acid is produced with the three enzymes, whereas only 0.27 g/l of glucuronic acid is produced in the system harboring the two genes of INO1 and MIOX. Udh activity is highest, more than 2fold higher than Ino1 activity and 3fold higher than MIOX activity. The high activity of Udh may pull glucose flux through the glucaric acid pathway, leading to a relatively higher titer of glucaric acid
695783
Pseudomonas syringae pv. tomato
D-glucaric acid + NADH + H+
-
-
-
?
D-glucuronic acid + NAD+ + H2O
assay at pH 8.0
695783
Pseudomonas syringae pv. tomato
D-glucaric acid + NADH + H+
-
-
-
?
pH Optimum (protein specific)
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
8
-
assay at
Pseudomonas syringae pv. tomato
Other publictions for EC 1.1.1.203
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
725435
Parkkinen
Crystal structure of uronate d ...
Agrobacterium tumefaciens, Agrobacterium tumefaciens C58
J. Biol. Chem.
286
27294-27300
2011
-
-
1
1
1
-
-
-
-
-
-
4
-
6
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
1
1
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
695552
Moon
Enzymatic assay of D-glucurona ...
Agrobacterium tumefaciens, Agrobacterium tumefaciens C58
Anal. Biochem.
392
183-185
2009
-
1
1
-
-
-
-
-
-
-
-
-
-
20
-
-
1
-
-
-
-
1
2
-
-
-
-
-
-
-
-
1
-
-
-
-
1
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
1
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
695783
Moon
Production of glucaric acid fr ...
Pseudomonas syringae pv. tomato
Appl. Environ. Microbiol.
75
589-595
2009
-
-
1
-
-
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
1
-
2
-
-
-
-
-
1
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
2
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
698607
Yoon
Cloning and characterization o ...
Agrobacterium tumefaciens, Agrobacterium tumefaciens C58, Pseudomonas putida KT2440, Pseudomonas syringae pv. tomato
J. Bacteriol.
191
1565-1573
2009
-
-
3
-
-
-
-
9
-
-
3
-
-
13
-
-
3
-
-
-
-
-
8
3
-
-
-
6
3
-
-
3
-
-
-
-
-
3
3
-
-
-
-
-
-
9
-
-
3
-
-
-
-
3
-
-
-
-
8
3
-
-
-
6
3
-
-
-
-
-
-
-
-
-
286231
Wagner
Uronic acid dehydrogenase from ...
Pseudomonas syringae
Eur. J. Biochem.
61
589-596
1976
-
-
-
-
-
1
4
3
-
-
2
2
-
2
-
-
1
-
1
1
1
2
3
1
1
-
3
2
-
-
-
1
-
-
-
-
-
-
1
-
-
1
-
4
-
3
-
-
2
2
-
-
-
1
1
1
1
2
3
1
1
-
3
2
-
-
-
-
-
-
-
-
-
-
286230
Bateman
Purification and properties of ...
Pseudomonas syringae
Arch. Biochem. Biophys.
136
97-105
1970
-
-
-
-
-
1
1
3
-
-
-
2
-
2
-
-
1
-
-
1
1
1
2
-
-
-
2
-
1
-
2
1
-
-
-
-
-
-
1
-
-
1
-
1
-
3
-
-
-
2
-
-
-
1
-
1
1
1
2
-
-
-
2
-
1
-
2
-
-
-
-
-
-
-