BRENDA - Enzyme Database show
show all sequences of 1.1.1.119

Improvement of P450(BM-3) whole-cell biocatalysis by integrating heterologous cofactor regeneration combining glucose facilitator and dehydrogenase in E. coli

Schewe, H.; Kaup, B.A.; Schrader, J.; Appl. Microbiol. Biotechnol. 78, 55-65 (2008)

Data extracted from this reference:

Application
Application
Commentary
Organism
industry
Optimizing whole-cell biocatalysts by integrating a recombinant intracellular NADPH regeneration system through co-expression of a glucose facilitator from Zymomonas mobilis for uptake of unphosphorylated glucose and a NADP+-dependent glucose dehydrogenase from Bacillus megaterium that oxidizes glucose to gluconolactone.
Bacillus megaterium
synthesis
Escherichia coli strain expressing both recombinant glucose 1-dehydrogenase and a glucose facilitator for uptake of unphosphorylated glucose shows a nine times higher initial alpha-pinene oxide formation rate corresponding to a sixfold higher yield of 20 mg per g cell dry weight after 1.5 h and to a sevenfold increased alpha-pinene oxide yield in the presence of glucose compared to glucose-free conditions
Bacillus megaterium
Cloned(Commentary)
Commentary
Organism
expression in Escherichia coli BL21 (DE3) already heterologously overexpressing P450 BM-3 QM together with glucose facilitator (GLF) from Zymomonas mobilis; expression in Escherichia coli, together with a glucose facilitator from Zymomonas mobilis for uptake of unphosphorylated glucose
Bacillus megaterium
Engineering
Amino acid exchange
Commentary
Organism
additional information
Escherichia coli strain expressing both recombinant glucose 1-dehydrogenase and a glucose facilitator for uptake of unphosphorylated glucose shows a nine times higher initial alpha-pinene oxide formation rate corresponding to a sixfold higher yield of 20 mg per g cell dry weight after 1.5 h and to a sevenfold increased alpha-pinene oxide yield in the presence of glucose compared to glucose-free conditions; introduction of both, GLF and GlcDH, in P450-overexpressing Escherichia coli should enable the cell to carry out a straightforward intracellular cofactor regeneration driven by externally added glucose. For the generation of recombinant Escherichia coli strains carrying two plasmids, these are transformed successively. Firstly, pZY507glf is transformed into Escherichia coli BL21 (DE3). Subsequently, competent cells are prepared from a positive transformant, and then pETDUETbm-3qm glcdh is transformed.
Bacillus megaterium
Natural Substrates/ Products (Substrates)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
D-glucose + NADP+
Bacillus megaterium
unphosphorylated glucose as substrate
D-glucono-1,5-lactone + NADPH + H+
-
-
?
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Bacillus megaterium
-
; expression in Escherichia coli BL21 (DE3) already heterologously overexpressing P450 BM-3 QM together with glucose facilitator (GLF) from Zymomonas mobilis
-
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
D-glucose + NADP+
unphosphorylated glucose as substrate
684637
Bacillus megaterium
D-glucono-1,5-lactone + NADPH + H+
-
-
-
?
Application (protein specific)
Application
Commentary
Organism
industry
Optimizing whole-cell biocatalysts by integrating a recombinant intracellular NADPH regeneration system through co-expression of a glucose facilitator from Zymomonas mobilis for uptake of unphosphorylated glucose and a NADP+-dependent glucose dehydrogenase from Bacillus megaterium that oxidizes glucose to gluconolactone.
Bacillus megaterium
synthesis
Escherichia coli strain expressing both recombinant glucose 1-dehydrogenase and a glucose facilitator for uptake of unphosphorylated glucose shows a nine times higher initial alpha-pinene oxide formation rate corresponding to a sixfold higher yield of 20 mg per g cell dry weight after 1.5 h and to a sevenfold increased alpha-pinene oxide yield in the presence of glucose compared to glucose-free conditions
Bacillus megaterium
Cloned(Commentary) (protein specific)
Commentary
Organism
expression in Escherichia coli BL21 (DE3) already heterologously overexpressing P450 BM-3 QM together with glucose facilitator (GLF) from Zymomonas mobilis; expression in Escherichia coli, together with a glucose facilitator from Zymomonas mobilis for uptake of unphosphorylated glucose
Bacillus megaterium
Engineering (protein specific)
Amino acid exchange
Commentary
Organism
additional information
Escherichia coli strain expressing both recombinant glucose 1-dehydrogenase and a glucose facilitator for uptake of unphosphorylated glucose shows a nine times higher initial alpha-pinene oxide formation rate corresponding to a sixfold higher yield of 20 mg per g cell dry weight after 1.5 h and to a sevenfold increased alpha-pinene oxide yield in the presence of glucose compared to glucose-free conditions; introduction of both, GLF and GlcDH, in P450-overexpressing Escherichia coli should enable the cell to carry out a straightforward intracellular cofactor regeneration driven by externally added glucose. For the generation of recombinant Escherichia coli strains carrying two plasmids, these are transformed successively. Firstly, pZY507glf is transformed into Escherichia coli BL21 (DE3). Subsequently, competent cells are prepared from a positive transformant, and then pETDUETbm-3qm glcdh is transformed.
Bacillus megaterium
Natural Substrates/ Products (Substrates) (protein specific)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
D-glucose + NADP+
Bacillus megaterium
unphosphorylated glucose as substrate
D-glucono-1,5-lactone + NADPH + H+
-
-
?
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
D-glucose + NADP+
unphosphorylated glucose as substrate
684637
Bacillus megaterium
D-glucono-1,5-lactone + NADPH + H+
-
-
-
?
Other publictions for EC 1.1.1.119
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
728011
Sugii
Characterization of the low-te ...
Sulfolobus tokodaii, Sulfolobus tokodaii DSM 16993
J. Biosci. Bioeng.
118
367-371
2014
-
-
1
-
1
-
-
12
-
-
-
2
-
2
-
-
1
-
-
-
-
-
4
-
-
-
-
12
1
-
-
1
-
-
-
-
-
1
1
-
1
-
-
-
-
12
-
-
-
2
-
-
-
1
-
-
-
-
4
-
-
-
-
12
1
-
-
-
-
-
-
-
12
12
699602
Pire
-
Alteration of coenzyme specifi ...
Haloferax mediterranei
J. Mol. Catal. B
59
261-265
2009
-
-
1
-
4
-
3
25
-
-
-
-
-
2
-
-
1
-
1
-
-
1
6
-
-
-
-
7
-
-
-
2
10
-
-
-
-
2
3
-
8
-
-
3
10
34
-
-
-
-
-
-
-
1
1
-
-
1
6
-
-
-
-
7
-
-
-
-
-
-
-
-
16
16
701014
Baker
Active site dynamics in the zi ...
Haloferax mediterranei
Proc. Natl. Acad. Sci. USA
106
779-784
2009
-
-
-
1
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
2
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
684637
Schewe
Improvement of P450(BM-3) whol ...
Bacillus megaterium
Appl. Microbiol. Biotechnol.
78
55-65
2008
-
2
1
-
1
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
2
1
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
696604
Sovic
The utilization of bathocuproi ...
Pseudomonas fluorescens
Bioorg. Chem.
36
91-95
2008
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
686754
Esclapez
Analysis of acidic surface of ...
Haloferax mediterranei
FEBS Lett.
581
837-842
2007
1
-
-
-
4
-
1
9
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
3
-
-
-
2
-
-
-
1
-
-
2
-
4
-
-
1
-
9
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
728653
Britton
Analysis of protein solvent in ...
Haloferax mediterranei, Haloferax mediterranei DSM 1411
Proc. Natl. Acad. Sci. USA
103
4846-4851
2006
-
-
-
1
-
-
-
-
-
1
-
-
-
5
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
667073
Esclapez
Crystallization and preliminar ...
Haloferax mediterranei, Haloferax mediterranei DSM 1411
Acta Crystallogr. Sect. F
61
743-746
2005
1
-
-
1
1
-
-
-
-
-
2
-
-
6
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
1
-
-
-
1
-
-
1
2
1
-
-
-
-
-
-
-
2
-
-
-
-
2
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
656318
Satoh
Enzyme-catalyzed poly(3-hydrox ...
Cupriavidus necator
J. Biosci. Bioeng.
95
335-341
2003
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
285785
Johnsen
Different glycolytic pathways ...
Halococcus saccharolyticus
Arch. Microbiol.
175
52-61
2001
-
-
-
-
-
-
-
3
-
-
-
-
-
1
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
726569
Ferrer
Crystallization and preliminar ...
Haloferax mediterranei, Haloferax mediterranei DSM 1411
Acta Crystallogr. Sect. D
57
1887-1889
2001
-
-
1
1
-
-
-
-
-
-
-
-
-
5
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
285784
Kataoka
Escherichia coli transformant ...
Bacillus megaterium
Biosci. Biotechnol. Biochem.
62
167-169
1998
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
639098
Bonete
Glucose dehydrogenase from the ...
Haloferax mediterranei, Haloferax mediterranei DSM 1411
FEBS Lett.
383
227-229
1996
-
-
-
-
-
-
1
3
-
5
2
-
-
9
-
-
1
-
-
-
1
1
4
1
-
-
1
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
1
-
3
-
5
2
-
-
-
-
1
-
-
1
1
4
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
285783
Buckmann
-
A different acceptance of aden ...
Bacillus megaterium, Filobasidium uniguttulatum
Biotechnol. Appl. Biochem.
14
104-113
1991
-
-
-
-
-
-
-
5
-
-
-
-
-
2
-
-
-
-
-
-
-
-
7
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
5
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
-
-
-
-
7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
285782
Adachi
-
Crystallization and characteri ...
Gluconobacter oxydans
Agric. Biol. Chem.
44
301-308
1980
-
-
-
1
-
-
5
2
-
-
2
-
-
1
-
-
1
-
-
-
1
1
2
1
1
-
-
-
1
-
-
2
-
-
-
-
-
-
2
1
-
-
-
5
-
2
-
-
2
-
-
-
-
1
-
-
1
1
2
1
1
-
-
-
1
-
-
-
-
-
-
-
-
-
285781
Avigad
Aldohexose dehydrogenase from ...
Gluconobacter cerinus
Methods Enzymol.
41
142-147
1975
-
-
-
-
-
2
3
5
-
-
-
-
-
1
-
-
1
-
-
-
1
-
4
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
2
-
3
-
5
-
-
-
-
-
-
-
1
-
-
1
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
285780
Avigad
Purification and properties of ...
Gluconobacter cerinus
J. Biol. Chem.
243
1936-1941
1968
-
-
-
-
-
2
4
7
-
-
-
-
-
1
-
-
1
-
-
-
1
2
4
-
-
-
-
-
1
1
-
2
-
-
-
-
-
-
2
-
-
2
-
4
-
7
-
-
-
-
-
-
-
1
-
-
1
2
4
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-