BRENDA - Enzyme Database show
show all sequences of 1.1.1.100

Inhibitory effects on bacterial growth and b-ketoacyl-ACP reductase by different species of maple leaf extracts and tannic acid

Wu, D.; Wu, X.D.; You, X.F.; Ma, X.F.; Tian, W.X.; Phytother. Res. 24, 535-541 (2009)
No PubMed abstract available

Data extracted from this reference:

Application
Application
Commentary
Organism
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Acinetobacter calcoaceticus
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Enterobacter aerogenes
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Enterobacter cloacae
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Enterococcus sp.
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Escherichia coli
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Klebsiella pneumoniae
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Proteus vulgaris
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Pseudomonas aeruginosa
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Salmonella enterica subsp. enterica serovar Typhi
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Salmonella enterica subsp. enterica serovar Typhimurium
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Serratia marcescens
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Shigella dysenteriae
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Shigella flexneri
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Shigella sonnei
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Staphylococcus aureus
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Staphylococcus epidermidis
Cloned(Commentary)
Commentary
Organism
His-tagged FabG expressed in Escherichia coli strain BL21 (DE3)
Escherichia coli
Inhibitors
Inhibitors
Commentary
Organism
Structure
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge
Acinetobacter calcoaceticus
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge
Enterobacter aerogenes
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge
Enterobacter cloacae
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge
Enterococcus sp.
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge; inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge. Leaf extracts of Acer saccharum and Acer truncatum Bunge display time-dependent irreversible inhibition of FabG, whereas leaf extracts of Acer platanoides, Acer campestre and Acer rubrum show reversible inhibition
Escherichia coli
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge
Klebsiella pneumoniae
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge. Is inhibited by the leaf extracts from all five kinds of maples more effectively than are other Gram-negative bacteria strains
Proteus vulgaris
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge
Pseudomonas aeruginosa
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge. Is inhibited by the leaf extracts from all five kinds of maples more effectively than are other Gram-negative bacteria strains
Salmonella enterica subsp. enterica serovar Typhi
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge
Salmonella enterica subsp. enterica serovar Typhimurium
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge
Serratia marcescens
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge. Is inhibited by the leaf extracts from all five kinds of maples more effectively than are other Gram-negative bacteria strains
Shigella dysenteriae
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge
Shigella flexneri
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge
Shigella sonnei
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge
Staphylococcus aureus
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge, except strain 04-5
Staphylococcus epidermidis
quercetin
-
Escherichia coli
Tannic acid
-
Acinetobacter calcoaceticus
Tannic acid
-
Enterobacter aerogenes
Tannic acid
-
Enterobacter cloacae
Tannic acid
-
Enterococcus sp.
Tannic acid
; strongest inhibition on FabG, shows time-dependent irreversible inhibition
Escherichia coli
Tannic acid
-
Klebsiella pneumoniae
Tannic acid
-
Proteus vulgaris
Tannic acid
-
Pseudomonas aeruginosa
Tannic acid
-
Salmonella enterica subsp. enterica serovar Typhi
Tannic acid
-
Salmonella enterica subsp. enterica serovar Typhimurium
Tannic acid
-
Serratia marcescens
Tannic acid
-
Shigella dysenteriae
Tannic acid
-
Shigella flexneri
Tannic acid
-
Shigella sonnei
Tannic acid
displays very strong inhibition
Staphylococcus aureus
Tannic acid
displays very strong inhibition
Staphylococcus epidermidis
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Acinetobacter calcoaceticus
-
strain 25001
-
Acinetobacter calcoaceticus 25001
-
strain 25001
-
Enterobacter aerogenes
-
strain 45102
-
Enterobacter aerogenes 45102
-
strain 45102
-
Enterobacter cloacae
-
strain 45301
-
Enterobacter cloacae 45301
-
strain 45301
-
Enterococcus sp.
-
strains ATCC29212 and 775
-
Escherichia coli
-
; strains ATCC 25922 and 26
-
Klebsiella pneumoniae
-
strains ATCC700603 and 14
-
Proteus vulgaris
-
-
-
Pseudomonas aeruginosa
-
strains ATCC27853 and 17
-
Salmonella enterica subsp. enterica serovar Typhi
-
strain H901
-
Salmonella enterica subsp. enterica serovar Typhi H901
-
strain H901
-
Salmonella enterica subsp. enterica serovar Typhimurium
-
-
-
Serratia marcescens
-
strain 41002
-
Serratia marcescens 41002
-
strain 41002
-
Shigella dysenteriae
-
-
-
Shigella flexneri
-
-
-
Shigella sonnei
-
strain 51592
-
Shigella sonnei 51592
-
strain 51592
-
Staphylococcus aureus
-
strains ATCC29213, 15 and 05-3
-
Staphylococcus epidermidis
-
strains ATCC12228, 04-5 and 05-1
-
Purification (Commentary)
Commentary
Organism
by nickel chelation affinity chromatography
Escherichia coli
Storage Stability
Storage Stability
Organism
-80°C, 50% glycerol
Escherichia coli
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
ethyl acetoacetate + NADPH
-
706142
Escherichia coli
? + NADP+
-
-
-
?
Cofactor
Cofactor
Commentary
Organism
Structure
NADPH
-
Escherichia coli
IC50 Value
IC50 Value
IC50 Value Maximum
Commentary
Organism
Inhibitor
Structure
0.00078
-
-
Escherichia coli
Tannic acid
Application (protein specific)
Application
Commentary
Organism
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Acinetobacter calcoaceticus
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Enterobacter aerogenes
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Enterobacter cloacae
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Enterococcus sp.
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Escherichia coli
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Klebsiella pneumoniae
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Proteus vulgaris
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Pseudomonas aeruginosa
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Salmonella enterica subsp. enterica serovar Typhi
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Salmonella enterica subsp. enterica serovar Typhimurium
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Serratia marcescens
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Shigella dysenteriae
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Shigella flexneri
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Shigella sonnei
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Staphylococcus aureus
drug development
FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect
Staphylococcus epidermidis
Cloned(Commentary) (protein specific)
Commentary
Organism
His-tagged FabG expressed in Escherichia coli strain BL21 (DE3)
Escherichia coli
Cofactor (protein specific)
Cofactor
Commentary
Organism
Structure
NADPH
-
Escherichia coli
IC50 Value (protein specific)
IC50 Value
IC50 Value Maximum
Commentary
Organism
Inhibitor
Structure
0.00078
-
-
Escherichia coli
Tannic acid
Inhibitors (protein specific)
Inhibitors
Commentary
Organism
Structure
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge
Acinetobacter calcoaceticus
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge
Enterobacter aerogenes
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge
Enterobacter cloacae
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge
Enterococcus sp.
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge; inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge. Leaf extracts of Acer saccharum and Acer truncatum Bunge display time-dependent irreversible inhibition of FabG, whereas leaf extracts of Acer platanoides, Acer campestre and Acer rubrum show reversible inhibition
Escherichia coli
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge
Klebsiella pneumoniae
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge. Is inhibited by the leaf extracts from all five kinds of maples more effectively than are other Gram-negative bacteria strains
Proteus vulgaris
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge
Pseudomonas aeruginosa
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge. Is inhibited by the leaf extracts from all five kinds of maples more effectively than are other Gram-negative bacteria strains
Salmonella enterica subsp. enterica serovar Typhi
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge
Salmonella enterica subsp. enterica serovar Typhimurium
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge
Serratia marcescens
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge. Is inhibited by the leaf extracts from all five kinds of maples more effectively than are other Gram-negative bacteria strains
Shigella dysenteriae
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge
Shigella flexneri
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge
Shigella sonnei
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge
Staphylococcus aureus
additional information
inhibition by leaf extracts from Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge, except strain 04-5
Staphylococcus epidermidis
quercetin
-
Escherichia coli
Tannic acid
-
Acinetobacter calcoaceticus
Tannic acid
-
Enterobacter aerogenes
Tannic acid
-
Enterobacter cloacae
Tannic acid
-
Enterococcus sp.
Tannic acid
; strongest inhibition on FabG, shows time-dependent irreversible inhibition
Escherichia coli
Tannic acid
-
Klebsiella pneumoniae
Tannic acid
-
Proteus vulgaris
Tannic acid
-
Pseudomonas aeruginosa
Tannic acid
-
Salmonella enterica subsp. enterica serovar Typhi
Tannic acid
-
Salmonella enterica subsp. enterica serovar Typhimurium
Tannic acid
-
Serratia marcescens
Tannic acid
-
Shigella dysenteriae
Tannic acid
-
Shigella flexneri
Tannic acid
-
Shigella sonnei
Tannic acid
displays very strong inhibition
Staphylococcus aureus
Tannic acid
displays very strong inhibition
Staphylococcus epidermidis
Purification (Commentary) (protein specific)
Commentary
Organism
by nickel chelation affinity chromatography
Escherichia coli
Storage Stability (protein specific)
Storage Stability
Organism
-80°C, 50% glycerol
Escherichia coli
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
ethyl acetoacetate + NADPH
-
706142
Escherichia coli
? + NADP+
-
-
-
?
Other publictions for EC 1.1.1.100
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
735600
Zhao
In vitro inhibition of fatty a ...
Homo sapiens
Biochem. Biophys. Res. Commun.
445
346-351
2014
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
735850
Liang
Inhibitory effects of grape sk ...
Gallus gallus
BMC Complement. Altern. Med.
13
361
2013
-
-
-
-
-
-
2
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
2
2
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
724676
Rosado
Role of Serine140 in the mode ...
Mycobacterium tuberculosis
BMC Res. Notes
5
526
2012
-
-
1
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
723843
Subramanian
Structure of 3-ketoacyl-(acyl- ...
Rickettsia prowazekii
Acta Crystallogr. Sect. F
67
1118-1122
2011
-
-
1
1
-
-
-
-
-
-
-
-
-
7
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
700827
Beaudoin
Functional characterization of ...
Arabidopsis thaliana
Plant Physiol.
150
1174-1191
2009
-
-
1
-
1
-
1
-
1
-
1
-
-
4
-
-
-
-
-
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
1
-
-
1
-
1
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
701808
Han
Identification of the polyhydr ...
Haloarcula hispanica, Haloarcula hispanica AS2049, Haloferax volcanii
Appl. Environ. Microbiol.
75
6168-6175
2009
-
-
2
-
-
-
-
-
-
-
-
-
-
8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
3
-
-
-
703163
Kristan
Novel inhibitors of beta-ketoa ...
Escherichia coli
Chem. Biol. Interact.
178
310-316
2009
-
-
1
-
-
-
8
-
-
-
-
-
-
2
-
-
1
-
-
-
-
1
1
-
-
-
-
-
-
-
-
1
-
-
4
-
-
1
1
-
-
-
4
8
-
-
-
-
-
-
-
-
-
1
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
704725
Gurvitz
Caenorhabditis elegans F09E10. ...
Caenorhabditis elegans, Saccharomyces cerevisiae
J. Biomed. Biotechnol.
FEHLT
0000
2009
-
-
1
-
1
-
-
-
4
-
-
-
-
7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
705747
Gurvitz
The essential mycobacterial ge ...
Mycobacterium tuberculosis, Mycobacterium tuberculosis H37Rv, Saccharomyces cerevisiae
Mol. Genet. Genomics
282
407-416
2009
-
-
1
-
1
-
-
-
3
-
-
-
-
9
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
1
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
706142
Wu
-
Inhibitory effects on bacteria ...
Acinetobacter calcoaceticus, Acinetobacter calcoaceticus 25001, Enterobacter aerogenes, Enterobacter aerogenes 45102, Enterobacter cloacae, Enterobacter cloacae 45301, Enterococcus sp., Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella enterica subsp. enterica serovar Typhi, Salmonella enterica subsp. enterica serovar Typhi H901, Salmonella enterica subsp. enterica serovar Typhimurium, Serratia marcescens, Serratia marcescens 41002, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Shigella sonnei 51592, Staphylococcus aureus, Staphylococcus epidermidis
Phytother. Res.
24
535-541
2009
-
16
1
-
-
-
33
-
-
-
-
-
-
22
-
-
1
-
-
-
-
1
1
-
-
-
-
-
-
-
-
1
-
-
1
-
16
1
1
-
-
-
1
33
-
-
-
-
-
-
-
-
-
1
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
684702
Silva
Mycobacterium tuberculosis bet ...
Mycobacterium tuberculosis
Arch. Biochem. Biophys.
471
1-10
2008
-
-
1
-
-
-
-
-
-
-
-
-
-
3
-
-
1
1
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
685704
Zhang
The antibacterial efficacy of ...
Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis
Biotechnol. Appl. Biochem.
51
73-78
2008
-
-
-
-
-
-
3
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
685775
Nomura
FabG mediates polyhydroxyalkan ...
Escherichia coli
Biotechnol. Prog.
24
342-351
2008
-
1
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
689435
Karioti
Inhibiting enoyl-ACP reductase ...
Plasmodium falciparum K1
Phytomedicine
15
1125-1129
2008
-
-
-
-
-
-
3
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
3
-
-
-
1
-
-
-
3
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
693287
Vo
Comparative effect of overexpr ...
Pseudomonas putida
J. Biosci. Bioeng.
106
95-98
2008
-
-
1
-
-
-
-
-
-
-
1
2
-
3
-
-
-
-
-
1
1
-
2
-
1
-
-
-
-
-
-
1
-
1
-
-
-
1
1
-
-
-
-
-
-
-
-
-
1
2
-
-
-
-
-
1
1
-
2
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
701783
Hoelsch
Identification, cloning, and c ...
Synechococcus elongatus PCC 7942
Appl. Environ. Microbiol.
74
6697-6702
2008
1
-
1
-
-
-
-
10
-
-
2
-
-
4
-
-
1
-
-
-
10
-
11
1
1
1
-
-
1
1
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
10
-
-
2
-
-
-
-
1
-
-
10
-
11
1
1
1
-
-
1
1
-
-
-
-
-
-
-
-
703630
Karmodiya
Deciphering the key residues i ...
Plasmodium falciparum
FEBS J.
275
4756-4766
2008
-
-
1
-
7
-
1
6
-
-
2
-
-
3
-
-
1
-
-
-
14
-
2
1
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
7
-
-
1
-
6
-
-
2
-
-
-
-
1
-
-
14
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
704337
Sun
A substitutive substrate for m ...
Escherichia coli
J. Biochem. Biophys. Methods
70
850-856
2008
-
-
1
-
-
-
1
2
-
-
-
-
-
1
-
-
1
-
-
-
-
1
3
-
1
-
-
2
1
-
-
1
-
-
7
-
-
1
1
-
-
-
7
1
-
2
-
-
-
-
-
-
-
1
-
-
-
1
3
-
1
-
-
2
1
-
-
-
-
-
-
-
-
-
704843
Huang
Antimicrobial effect by extrac ...
Pseudomonas aeruginosa, Pseudomonas aeruginosa ATCC27853, Staphylococcus aureus, Staphylococcus aureus ATCC25923, Streptococcus pneumoniae, Streptococcus sp., synthetic construct
J. Enzyme Inhib. Med. Chem.
23
362-368
2008
-
5
1
-
-
-
7
-
-
-
-
-
-
14
-
-
1
-
-
1
-
1
1
-
-
-
-
-
1
-
-
1
-
-
3
-
5
1
1
-
-
-
3
7
-
-
-
-
-
-
-
-
-
1
-
1
-
1
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
706639
Karmodiya
A unique and differential effe ...
Plasmodium falciparum
Proteins Struct. Funct. Genet.
70
528-538
2008
1
-
1
-
-
-
2
4
-
-
-
-
-
3
-
-
1
-
-
-
-
-
2
1
-
-
-
4
-
-
-
1
-
-
-
1
-
1
1
-
-
-
-
2
-
4
-
-
-
-
-
-
-
1
-
-
-
-
2
1
-
-
-
4
-
-
-
-
-
-
-
-
-
-
706640
Zaccai
Crystal structure of a 3-oxoac ...
Bacillus anthracis
Proteins Struct. Funct. Genet.
70
562-567
2008
-
-
1
1
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
684165
Mao
Crystallization and X-ray diff ...
Aquifex aeolicus VF5
Acta Crystallogr. Sect. F
63
106-109
2007
-
-
1
1
-
-
-
-
-
-
-
-
-
4
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
687216
Karmodiya
Conformational stability and t ...
Plasmodium falciparum
IUBMB Life
59
441-449
2007
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
689500
OHara
Antisense expression of 3-oxoa ...
Brassica napus
Plant Cell Physiol.
48
736-744
2007
-
-
1
-
1
-
-
-
-
-
-
-
-
4
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
689973
Zaccai
-
Crystal structure of a 3-oxoac ...
Bacillus anthracis
Proteins Struct. Funct. Bioinform.
70
562-567
2007
-
-
1
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
667520
Wickramasinghe
Kinetic, inhibition and struct ...
Plasmodium falciparum
Biochem. J.
393
447-457
2006
-
-
1
1
-
1
6
3
-
1
-
-
-
4
-
1
1
1
-
-
-
-
1
1
1
-
-
2
1
-
-
1
1
-
4
-
-
1
1
1
-
1
4
6
1
3
-
1
-
-
-
-
1
1
-
-
-
-
1
1
1
-
-
2
1
-
-
-
-
-
-
-
-
-
667708
Silva
Mycobacterium tuberculosis bet ...
Mycobacterium tuberculosis
Biochemistry
45
13064-13073
2006
-
-
-
-
-
-
2
3
-
-
-
1
-
1
-
-
-
1
-
-
-
-
2
-
1
1
-
2
1
1
-
2
1
-
-
-
-
-
2
-
-
-
-
2
1
3
-
-
-
1
-
-
-
-
-
-
-
-
2
-
1
1
-
2
1
1
-
-
-
-
-
-
-
-
668574
Karmodiya
Analyses of co-operative trans ...
Plasmodium falciparum
FEBS J.
273
4093-4103
2006
-
1
1
-
-
-
-
3
-
-
-
1
-
3
-
-
1
1
-
-
1
-
3
-
1
-
-
2
1
-
-
2
-
-
-
-
1
1
2
-
-
-
-
-
-
3
-
-
-
1
-
-
-
1
-
-
1
-
3
-
1
-
-
2
1
-
-
-
-
-
-
-
-
-
669013
Li
Inhibitory activity of chlorog ...
Escherichia coli
IUBMB Life
58
39-46
2006
-
-
1
-
-
-
2
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
1
-
1
-
-
-
1
-
-
1
1
-
1
-
-
1
1
-
-
-
1
2
1
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
669470
Miller
Structure of RhlG, an essentia ...
Pseudomonas aeruginosa
J. Biol. Chem.
281
18025-18032
2006
-
-
1
1
-
-
-
-
-
-
4
1
-
3
-
-
1
-
-
-
-
-
1
2
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
4
1
-
-
-
1
-
-
-
-
1
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
667257
Nomura
Expression of 3-ketoacyl-acyl ...
Escherichia coli, Pseudomonas sp.
Appl. Environ. Microbiol.
71
4297-4306
2005
-
-
2
-
-
-
-
-
-
-
-
-
-
5
-
-
2
-
-
-
-
-
12
-
2
-
-
-
2
-
-
2
-
-
-
-
-
2
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
12
-
2
-
-
-
2
-
-
-
-
-
-
-
-
-
667646
Patel
Kinetic and chemical mechanism ...
Streptococcus pneumoniae
Biochemistry
44
16753-16765
2005
-
-
-
-
-
-
2
3
-
-
-
1
-
2
-
-
-
1
-
-
-
-
1
-
1
-
-
2
1
1
-
1
-
-
-
-
-
-
1
-
-
-
-
2
-
3
-
-
-
1
-
-
-
-
-
-
-
-
1
-
1
-
-
2
1
1
-
-
-
-
-
-
-
-
670774
Karmodiya
Production and purification of ...
Plasmodium falciparum
Protein Expr. Purif.
42
131-136
2005
-
-
1
-
-
-
-
-
1
-
-
-
-
3
-
-
1
-
1
-
2
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
1
-
2
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
654725
Wang
Only one of the two annotated ...
Lactococcus lactis
Biochemistry
43
11782-11789
2004
-
-
1
-
-
-
1
2
-
-
2
1
-
4
-
-
-
-
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
2
-
-
2
1
-
-
-
-
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
655871
Lai
Isolation and characterization ...
Escherichia coli, Salmonella enterica subsp. enterica serovar Typhimurium
J. Bacteriol.
186
1869-1878
2004
-
-
-
-
5
-
-
-
-
-
-
2
-
4
-
-
-
-
-
-
-
-
4
-
-
-
3
-
-
-
-
2
-
-
-
-
-
-
2
-
5
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
4
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
657270
Poletto
Selection of an Escherichia co ...
Mycobacterium tuberculosis
Protein Expr. Purif.
34
118-125
2004
-
-
1
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
654432
Pillai
Functional characterization of ...
Plasmodium falciparum
Biochem. Biophys. Res. Commun.
303
387-392
2003
-
-
1
-
-
-
-
1
1
-
1
-
-
6
-
-
-
-
-
-
-
-
1
1
-
-
-
1
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
1
1
-
1
-
-
-
-
-
-
-
-
-
1
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
656723
Hoang
beta-Ketoacyl acyl carrier pro ...
Pseudomonas aeruginosa
Microbiology
148
3849-3856
2002
-
-
-
-
-
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
285682
Fisher
Crystallization of the NADP-de ...
Brassica napus
Acta Crystallogr. Sect. D
56
86-88
2000
-
-
1
1
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
285683
Fisher
The x-ray structure of Brassic ...
Brassica napus, Escherichia coli
Structure
8
339-347
2000
-
-
-
1
-
-
-
-
-
-
-
4
-
2
-
-
-
1
-
-
-
-
12
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
12
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
285681
Rafferty
Crystallization of the NADP-de ...
Escherichia coli
Acta Crystallogr. Sect. D
54
427-429
1998
-
-
1
1
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
285680
Morbidoni
Bacillus subtilis acyl carrier ...
Bacillus subtilis
J. Bacteriol.
178
4794-4800
1996
-
-
1
-
-
-
-
-
-
-
1
-
-
3
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
285673
Sheldon
-
3-Oxoacyl-[ACP] reductase from ...
Brassica napus
Biochim. Biophys. Acta
1130
151-159
1992
-
-
-
-
-
1
-
4
-
-
1
-
-
1
-
-
1
-
-
-
1
2
4
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
1
-
-
-
4
-
-
1
-
-
-
-
1
-
-
1
2
4
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
285679
Klein
Isolation and characterization ...
Cuphea lanceolata
Mol. Gen. Genet.
233
122-128
1992
-
-
1
-
1
-
1
-
-
-
1
-
-
5
-
-
-
-
-
4
3
-
1
1
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
1
-
-
1
-
-
-
-
1
-
-
-
-
-
-
4
3
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
285674
Sheldon
3-Oxoacyl-(acyl-carrier protei ...
Persea americana
Biochem. J.
271
713-720
1990
-
-
-
-
-
1
1
4
-
-
2
-
-
6
-
-
1
-
-
3
4
1
4
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
1
-
1
-
4
-
-
2
-
-
-
-
1
-
3
4
1
4
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
285670
Sheldon
-
3-Oxoacyl-[acyl carrier protei ...
Brassica napus, Persea americana
Biochem. Soc. Trans.
16
392-393
1988
-
-
-
-
-
-
-
-
-
-
-
2
-
2
-
-
2
-
-
1
-
-
12
4
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
2
-
-
-
2
-
1
-
-
12
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
285675
Shimakata
The purification and function ...
Brassica juncea, Carthamus tinctorius, Cuphea lutea, Persea americana, Pisum sativum, Spinacia oleracea
J. Biol. Chem.
258
3592-3598
1983
-
-
-
-
-
-
-
-
-
-
-
-
-
6
-
-
-
-
-
6
5
-
6
-
-
-
-
-
-
-
-
6
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
6
5
-
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
285668
Shimakata
Purification and characterizat ...
Escherichia coli, Spinacia oleracea
Arch. Biochem. Biophys.
218
77-91
1982
-
-
-
-
-
-
2
3
-
-
2
-
-
2
-
-
1
-
-
1
3
1
8
1
-
-
-
-
-
1
-
5
-
-
-
-
-
-
5
-
-
-
-
2
-
3
-
-
2
-
-
-
-
1
-
1
3
1
8
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
285669
Shimakata
The procaryotic nature of the ...
Carthamus tinctorius
Arch. Biochem. Biophys.
217
144-154
1982
-
-
-
-
-
-
-
2
-
-
-
1
-
1
-
-
-
-
-
1
1
-
3
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
2
-
-
-
1
-
-
-
-
-
1
1
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
285677
Shimakata
Fatty acid synthetase of Spina ...
Spinacia oleracea
Plant Physiol.
69
1257-1262
1982
-
-
-
-
-
-
-
3
-
-
1
1
-
5
-
-
1
-
-
1
-
-
3
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
3
-
-
1
1
-
-
-
1
-
1
-
-
3
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
285678
Caughey
The characteristics of some co ...
Persea americana
Eur. J. Biochem.
123
553-561
1982
-
-
-
-
-
-
-
1
1
-
1
-
-
4
-
-
1
-
-
2
-
-
1
-
-
-
-
-
1
1
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
1
1
-
1
-
-
-
-
1
-
2
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
285676
Hendren
Fatty acid synthetases from Eu ...
Euglena gracilis
J. Biol. Chem.
255
1504-1508
1980
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
285671
Volpe
Saturated fatty acid biosynthe ...
Escherichia coli
Annu. Rev. Biochem.
42
21-60
1973
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
7
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
285672
Toomey
Studies on the mechanism of fa ...
Escherichia coli
Biochim. Biophys. Acta
116
189-197
1966
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
1
-
-
-
1
-
4
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
4
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-