Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 5.4.99.7 - Lanosterol synthase and Organism(s) Saccharomyces cerevisiae and UniProt Accession P38604

for references in articles please use BRENDA:EC5.4.99.7
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
     5 Isomerases
         5.4 Intramolecular transferases
             5.4.99 Transferring other groups
                5.4.99.7 Lanosterol synthase
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Saccharomyces cerevisiae
UNIPROT: P38604 not found.
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Saccharomyces cerevisiae
The expected taxonomic range for this enzyme is: Bacteria, Eukaryota
Synonyms
atlas, oxidosqualene cyclase, lanosterol synthase, 2,3-oxidosqualene cyclase, erg7p, oxidosqualene-lanosterol cyclase, 2,3-oxidosqualene-lanosterol cyclase, 2,3-oxidosqualene:lanosterol cyclase, oxidosqualene:lanosterol cyclase, squalene 2,3-oxide-lanosterol cyclase, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
2,3-Epoxysqualene lanosterol-cyclase
-
-
-
-
2,3-epoxysqualene--lanosterol cyclase
-
-
-
-
2,3-Epoxysqualene-lanosterol cyclase
-
-
-
-
2,3-Oxidosqualene cyclase
-
-
-
-
2,3-Oxidosqualene sterol cyclase
-
-
-
-
2,3-Oxidosqualene-lanosterol cyclase
-
-
-
-
Cyclase, 2,3-oxidosqualene-lanosterol
-
-
-
-
Lanosterol 2,3-oxidosqualene cyclase
-
-
-
-
lanosterol synthase
-
-
Oxidosqualene cyclase
oxidosqualene cyclase/lanosterol synthase
-
-
Oxidosqualene--lanosterol cyclase
-
-
-
-
Oxidosqualene-lanosterol cyclase
Squalene 2,3-epoxide:lanosterol cyclase
-
-
-
-
Squalene 2,3-oxide-lanosterol cyclase
-
-
-
-
Squalene epoxidase-cyclase
-
-
-
-
Squalene-2,3-oxide-lanosterol cyclase
-
-
-
-
REACTION
REACTION DIAGRAM
COMMENTARY hide
ORGANISM
UNIPROT
LITERATURE
(3S)-2,3-epoxy-2,3-dihydrosqualene = lanosterol
show the reaction diagram
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
cyclization
-
-
-
-
isomerization
-
-
-
-
SYSTEMATIC NAME
IUBMB Comments
(S)-2,3-Epoxysqualene mutase (cyclizing, lanosterol-forming)
-
CAS REGISTRY NUMBER
COMMENTARY hide
9032-71-7
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
(3S)-2,3-epoxy-2,3-dihydrosqualene
achilleol A
show the reaction diagram
(3S)-2,3-epoxy-2,3-dihydrosqualene
lanosterol
show the reaction diagram
(3S)-2,3-epoxy-2,3-dihydrosqualene
lanosterol + (13alphaH)-isomalabarica-14(26),17E,21-trien-3beta-ol
show the reaction diagram
-
reaction of mutant V454I
-
-
?
(3S)-2,3-epoxy-2,3-dihydrosqualene
lanosterol + (13alphaH)-isomalabarica-14(26),17E,21-trien-3beta-ol + protosta-16,24-dien-3beta-ol
show the reaction diagram
-
reaction of mutant Q450H/V454I
-
-
?
(3S)-2,3-epoxy-2,3-dihydrosqualene
lanosterol + achilleol A
show the reaction diagram
-
reaction of C457G/T509G
achilleol A is the main product
-
?
(3S)-2,3-epoxy-2,3-dihydrosqualene
lanosterol + achilleol A + 13alphaH-isomalabarica-14(26),17E,21-trien-3beta-ol
show the reaction diagram
-
reaction of mutant H234W/Y510V
lanosterol is the main product
-
?
(3S)-2,3-epoxy-2,3-dihydrosqualene
lanosterol + parkeol + 9beta-lanosta-7,24-dien-3beta-ol
show the reaction diagram
-
reaction of mutants T384Y, T384Y/Q450H, and T384Y/V454I
-
-
?
(3S)-2,3-epoxy-2,3-dihydrosqualene
parkeol
show the reaction diagram
-
reaction of mutant T384Y/Q450H/V454I
-
-
?
(3S)-2,3-oxidosqualene
lanosterol
show the reaction diagram
-
-
-
-
?
(S)-2,3-epoxysqualene
lanosterol
show the reaction diagram
(S)-2,3-oxidosqualene
lanosterol
show the reaction diagram
-
-
-
-
?
(S)-squalene-2,3-epoxide
Lanosterol
show the reaction diagram
2,3-oxidosqualene
lanosterol
show the reaction diagram
-
-
-
-
?
2,3:22,23-diepoxysqualene
24(S),25-epoxylanosterol
show the reaction diagram
-
-
-
-
?
dioxidosqualene
24(S),25-epoxylanosterol
show the reaction diagram
-
-
-
-
?
squalene
?
show the reaction diagram
-
-
-
-
?
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
(3S)-2,3-epoxy-2,3-dihydrosqualene
lanosterol
show the reaction diagram
-
-
-
-
?
(3S)-2,3-oxidosqualene
lanosterol
show the reaction diagram
-
-
-
-
?
(S)-2,3-oxidosqualene
lanosterol
show the reaction diagram
-
-
-
-
?
(S)-squalene-2,3-epoxide
Lanosterol
show the reaction diagram
-
-
-
-
?
2,3-oxidosqualene
lanosterol
show the reaction diagram
-
-
-
-
?
additional information
?
-
-
central role in sterol biosynthesis
-
-
?
METALS and IONS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
potassium phosphate
-
high concentrations stimulate
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
(14-trans)-28-methylidene-2,3:14,15-dioxidoundecanorsqualene
-
IC50: 0.0015 mM
(18E)-29-Methylidene-2,3-oxidohexanorsqualene
(18E)-29-methylidene-2,3-oxidosqualene
-
IC50: 0.0015 mM
(18E)-29-methylidene-20,21,22,23,24,30-hexanor-2,3-oxidosqualene
-
IC50: 0.03 mM
(18Z)-29-Methylidene-2,3-oxidohexanorsqualene
(18Z)-29-methylidene-2,3-oxidosqualene
-
IC50: 0.001 mM
(18Z)-29-methylidene-20,21,22,23,24,30-hexanor-2,3-oxidosqualene
-
IC50: 0.05 mM
(2-trans)-1-methylidene-2,3-oxido-1'-norsqualene
-
IC50: 0.05 mM
(22E)-24-methylidene-30-nor-2,3-oxidosqualene
-
IC50: above 0.1 mM
(22Z)-24-methylidene-30-nor-2,3-oxidosqualene
-
IC50: above 0.1 mM
(2E,6E)-10-(dimethylamino)-3,7-dimethyl-2,6-decadien-1-yl 3-biphenyl-4-ylpropyl ether
-
comparison with inhibitory effect on Trypanosoma cruzi, Pneumocystis carini, and human enzyme
(2E,6E)-10-(dimethylamino)-3,7-dimethyl-2,6-decadien-1-yl 3-phenylpropyl ether
-
comparison with inhibitory effect on Trypanosoma cruzi, Pneumocystis carini, and human enzyme
(2E,6E)-10-(dimethylamino)-3,7-dimethyl-2,6-decadien-1-yl hexyl ether
-
comparison with inhibitory effect on Trypanosoma cruzi, Pneumocystis carini, and human enzyme
(3-trans-7E,11E,15E)-3,4:19,20-diepoxy-7,12,16,20-tetramethyl-1,7,11,15-henicosatetraene
-
IC50: 0.0015 mM
(3R,4S,7E)-15,16-epoxy-3-ethylthio-8,12,16-trimethyl-1,7,11-heptadecatrien-4-ol
-
IC50: 0.025 mM
(3R,4S,7E,11E)-15,16-epoxy-8,12,16-trimethyl-3-phenylthio-1,7,11-heptadecatrien-4-ol
-
IC50: 0.04 mM
(3R,4S,7E,11E,15E)-19,20-epoxy-3-ethylthio-7,12,16,20-tetramethyl-1,7,11,15-henicosatetraen-4-ol
-
IC50: 0.0025 mM
(5E,9E)-13,14-epoxy-6,10,14-trimethyl-1-methylthio-1,5,9-pentadecatriene
-
IC50: 0.0015 mM
(5E,9E,13E)-17,18-epoxy-5,10,14,18-tetramethyl-1-methylthio-1,5,9,13-nonadecatetraene
-
IC50: 0.00005 mM
(5E,9E,13E,17E)-21,22-epoxy-2,9,14,18,22-pentamethyl-5-vinyl-2,5,9,13,17-tricosapentaene
-
IC50: 0.018 mM
(5E,9E,13E,17E)-21,22-epoxy-5-ethynyl-2,9,14,18,22-pentamethyltricosa-2,5,9,13,17-pentaene
-
+ (5Z,9E,13E,17E)-21,22-epoxy-5-ethynyl-2,9,14,18,22-pentamethyltricosa-2,5,9,13,17-pentaene, IC50: 0.05 mM
(5Z,9E,13E,17E)-21,22-epoxy-5-ethynyl-2,9,14,18,22-pentamethyltricosa-2,5,9,13,17-pentaene
-
+ (5E,9E,13E,17E)-21,22-epoxy-5-ethynyl-2,9,14,18,22-pentamethyltricosa-2,5,9,13,17-pentaene, IC50: 0.05 mM
(6E)-10-Aza-10,11-dihydrosqualene-2,3-epoxide
(6E,10E,14E,18E)-22,23-epoxy-2,10,15,19,23-pentamethyl-6-vinyl-2,6,10,14,18-tetracosapentaene
-
IC50: 0.005 mM
(6E,10E,14E,18E)-22,23-epoxy-6-ethynyl-2,10,15,19,23-pentamethyltetracosa-2,6,10,14,18-pentaene
-
+ (6Z,10E,14E,18E)-22,23-epoxy-6-ethynyl-2,10,15,19,23-pentamethyltetracosa-2,6,10,14,18-pentaene, IC50: 0.03 mM
(6Z)-10-aza-10,11-dihydrosqualene-2,3-epoxide
-
IC50: above 0.1 mM, at a protein concentration of 2 mg/ml
(6Z,10E,14E,18E)-22,23-epoxy-2,10,15,19,23-pentamethyl-6-(2-methylthiovinyl)-2,6,10,14,18-tetracosapentaene
-
IC50: 0.012 mM
(6Z,10E,14E,18E)-22,23-epoxy-2,10,15,19,23-pentamethyl-6-vinyl-2,6,10,14,18-tetracosapentaene
-
IC50: 0.001 mM
(6Z,10E,14E,18E)-22,23-epoxy-6-ethynyl-2,10,15,19,23-pentamethyltetracosa-2,6,10,14,18-pentaene
-
+ (6E,10E,14E,18E)-22,23-epoxy-6-ethynyl-2,10,15,19,23-pentamethyltetracosa-2,6,10,14,18-pentaene, IC50: 0.03 mM
10,15-desdimethyl-2,3-oxidosqualene
-
-
10-desmethyl-2,3-oxidosqualene
-
-
18-heptanor-2,3-oxidosqualene
-
IC50: 0.07 mM
19-aza-18,19,22,23-tetrahydrosqualene-2,3-epoxide
-
IC50: 0.035 mM, at a protein concentration of 2 mg/ml
19-Aza-18,19,22,3-tetrahydrosqualene-2,3-epoxide
-
-
19-Aza-18,19,22,3-tetrahydrosqualene-2,3-epoxide N-oxide
-
-
19-Azasqualene
-
-
19-Azasqualene-2,3-epoxide
-
-
2,3-Epoxy-10-aza-10,11-dehydrosqualene
2-Aza-2,3-dihydrosqualene
2-Aza-2,3-dihydrosqualene N-oxide
-
IC50: 16 mM
2-[(4E,8E)-12,13-epoxy-5,9,13-trimethyl-4,8-tetradecadienylidene]-1,3-dithiane
-
IC50: 0.0025 mM
2-[(4E,8E,12E)-16,17-epoxy-4,9,13,17-tetramethyl-4,8,12-octadecatrienylidene]-1,3-benzodithiole
-
IC50: 0.0035 mM
2-[(4E,8E,12E)-16,17-epoxy-4,9,13,17-tetramethyl-4,8,12-octadecatrienylidene]-1,3-dithiane
-
IC50: 0.00017 mM
2-[(4E,8E,12E,16E)-20,21-epoxy-4,8,13,17,21-pentamethyl-4,8,12,16-docosatetraenylidene]-1,3-dithiane
-
IC50: 0.035 mM
29-methylidene-2,3-oxidohexanorsqualene
-
-
3-(3,7-Dimethyl-octadeca-3,7,11,15-tetraenyl)-2,2-dimethyl-oxirane
-
IC50: 0.0015 mM
3-beta-(beta-dimethylaminoethoxy)-androst-5en-17one
-
DMAE-DHA
3-carboxy-4-nitrophenyldithio-1,1',2-tris-nor-squalene
-
-
6-desmethyl-2,3-oxidosqualene
-
-
7-(4-allylmethylamino-but-2-ynyloxy)chromen-2-one
-
-
7-(morpholinyl-N-hexyloxy)chromen-2-one
-
-
7-(morpholinyl-N-octanyloxy)chromen-2-one
-
-
7-(piperidinyl-N-hexyloxy)chromen-2-one
-
-
7-[10-(allylmethylamino)-decyloxy]chromen-2-one
-
-
7-[4'-(N-diethylamino)-but-2-ynyloxy]chromen-2-one
-
-
7-[4'-(N-pyrrolidyn)-but-2-ynyloxy]chromen-2-one
-
-
7-[6-(allylmethylamino)-hexyloxy]-chromen-2-one
-
-
7-[8'(dimethylamino-N-octyloxy)]chromen-2-one
-
-
azasqualene alcohol N-oxide
-
IC50: 0.055 mM, at a protein concentration of 2 mg/ml
diethyl-(4,8,13,17,21-pentamethyl-docosa-4,8,12,16,20-pentaenyl)-aminoxide
-
IC50: 14 mM
Diethyl-(4,8,13,17,21-pentamethyl-docosa-4,8,12,16,20-pentaenyl)-ammonium
-
IC50: 12.5 mM
dodecyl-maleimide
-
mutant C457D shows 41.6% inhibition at 1 mM, 10.0% at 0.2 mM, and 7.2% at 0.025 mM, mutant C457D/E526A shows 9.0% inhibition at 0.2 mM and 0.0% at 0.025 mM, mutant C457D/A525C shows 86.0% inhibition at 1 mM, 30.5% at 0.2 mM, and 1.0% at 0.025 mM, mutant C457D/E526C shows 89.6% inhibition at 0.2 mM, 74.7% at 0.025 mM, and 45.1% at 0.01 mM
KCl
-
at high concentrations
N,N-Diethylazasqualene
-
non-competitive
N,N-Diethylazasqualene N-oxide
-
competitive
N,N-Dimethylformamide
-
-
N-(Ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline
-
slight
NaCl
-
at high concentrations
additional information
-
no inhibition: EDTA, diethyldicarbonate, phenylmethylsulfonyl fluoride
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
Erg27p
-
required for activity of Erg7p
-
steroid-3-ketoreductase
-
-
-
Triton X-100
-
concentration range for optimal activity: 0.7-1.2%
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.035
2,3-epoxysqualene
-
-
Ki VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.00342
7-(4-allylmethylamino-but-2-ynyloxy)chromen-2-one
-
-
0.1028
7-(morpholinyl-N-hexyloxy)chromen-2-one
-
-
0.03067
7-(morpholinyl-N-octanyloxy)chromen-2-one
-
-
0.03154
7-(piperidinyl-N-hexyloxy)chromen-2-one
-
-
0.00321
7-[10-(allylmethylamino)-decyloxy]chromen-2-one
-
-
0.02035
7-[4'-(N-diethylamino)-but-2-ynyloxy]chromen-2-one
-
-
0.01028
7-[4'-(N-pyrrolidyn)-but-2-ynyloxy]chromen-2-one
-
-
0.00104
7-[6-(allylmethylamino)-hexyloxy]-chromen-2-one
-
-
0.00603
7-[8'(dimethylamino-N-octyloxy)]chromen-2-one
-
-
IC50 VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.0015
(14-trans)-28-methylidene-2,3:14,15-dioxidoundecanorsqualene
Saccharomyces cerevisiae
-
IC50: 0.0015 mM
0.0015
(18E)-29-Methylidene-2,3-oxidohexanorsqualene
Saccharomyces cerevisiae
-
IC50: 0.0015 mM, irreversible
0.0015
(18E)-29-methylidene-2,3-oxidosqualene
Saccharomyces cerevisiae
-
IC50: 0.0015 mM
0.03
(18E)-29-methylidene-20,21,22,23,24,30-hexanor-2,3-oxidosqualene
Saccharomyces cerevisiae
-
IC50: 0.03 mM
0.015
(18Z)-29-Methylidene-2,3-oxidohexanorsqualene
Saccharomyces cerevisiae
-
IC50: 0.015 mM
0.001
(18Z)-29-methylidene-2,3-oxidosqualene
Saccharomyces cerevisiae
-
IC50: 0.001 mM
0.05
(18Z)-29-methylidene-20,21,22,23,24,30-hexanor-2,3-oxidosqualene
Saccharomyces cerevisiae
-
IC50: 0.05 mM
0.05
(2-trans)-1-methylidene-2,3-oxido-1'-norsqualene
Saccharomyces cerevisiae
-
IC50: 0.05 mM
0.1
(22E)-24-methylidene-30-nor-2,3-oxidosqualene
Saccharomyces cerevisiae
-
IC50: above 0.1 mM
0.1
(22Z)-24-methylidene-30-nor-2,3-oxidosqualene
Saccharomyces cerevisiae
-
IC50: above 0.1 mM
0.00045
(2E,6E)-10-(dimethylamino)-3,7-dimethyl-2,6-decadien-1-yl 3-phenylpropyl ether
Saccharomyces cerevisiae
-
-
0.00178
(2E,6E)-10-(dimethylamino)-3,7-dimethyl-2,6-decadien-1-yl hexyl ether
Saccharomyces cerevisiae
-
-
0.0015
(3-trans-7E,11E,15E)-3,4:19,20-diepoxy-7,12,16,20-tetramethyl-1,7,11,15-henicosatetraene
Saccharomyces cerevisiae
-
IC50: 0.0015 mM
0.025
(3R,4S,7E)-15,16-epoxy-3-ethylthio-8,12,16-trimethyl-1,7,11-heptadecatrien-4-ol
Saccharomyces cerevisiae
-
IC50: 0.025 mM
0.04
(3R,4S,7E,11E)-15,16-epoxy-8,12,16-trimethyl-3-phenylthio-1,7,11-heptadecatrien-4-ol
Saccharomyces cerevisiae
-
IC50: 0.04 mM
0.0025
(3R,4S,7E,11E,15E)-19,20-epoxy-3-ethylthio-7,12,16,20-tetramethyl-1,7,11,15-henicosatetraen-4-ol
Saccharomyces cerevisiae
-
IC50: 0.0025 mM
0.0015
(5E,9E)-13,14-epoxy-6,10,14-trimethyl-1-methylthio-1,5,9-pentadecatriene
Saccharomyces cerevisiae
-
IC50: 0.0015 mM
0.00005
(5E,9E,13E)-17,18-epoxy-5,10,14,18-tetramethyl-1-methylthio-1,5,9,13-nonadecatetraene
Saccharomyces cerevisiae
-
IC50: 0.00005 mM
0.018
(5E,9E,13E,17E)-21,22-epoxy-2,9,14,18,22-pentamethyl-5-vinyl-2,5,9,13,17-tricosapentaene
Saccharomyces cerevisiae
-
IC50: 0.018 mM
0.05
(5E,9E,13E,17E)-21,22-epoxy-5-ethynyl-2,9,14,18,22-pentamethyltricosa-2,5,9,13,17-pentaene
Saccharomyces cerevisiae
-
+ (5Z,9E,13E,17E)-21,22-epoxy-5-ethynyl-2,9,14,18,22-pentamethyltricosa-2,5,9,13,17-pentaene, IC50: 0.05 mM
0.05
(5Z,9E,13E,17E)-21,22-epoxy-5-ethynyl-2,9,14,18,22-pentamethyltricosa-2,5,9,13,17-pentaene
Saccharomyces cerevisiae
-
+ (5E,9E,13E,17E)-21,22-epoxy-5-ethynyl-2,9,14,18,22-pentamethyltricosa-2,5,9,13,17-pentaene, IC50: 0.05 mM
0.005
(6E)-10-Aza-10,11-dihydrosqualene-2,3-epoxide
Saccharomyces cerevisiae
-
IC50: 0.005 mM, at a protein concentration of 2 mg/ml
0.005
(6E,10E,14E,18E)-22,23-epoxy-2,10,15,19,23-pentamethyl-6-vinyl-2,6,10,14,18-tetracosapentaene
Saccharomyces cerevisiae
-
IC50: 0.005 mM
0.03
(6E,10E,14E,18E)-22,23-epoxy-6-ethynyl-2,10,15,19,23-pentamethyltetracosa-2,6,10,14,18-pentaene
Saccharomyces cerevisiae
-
+ (6Z,10E,14E,18E)-22,23-epoxy-6-ethynyl-2,10,15,19,23-pentamethyltetracosa-2,6,10,14,18-pentaene, IC50: 0.03 mM
0.1
(6Z)-10-aza-10,11-dihydrosqualene-2,3-epoxide
Saccharomyces cerevisiae
-
IC50: above 0.1 mM, at a protein concentration of 2 mg/ml
0.012
(6Z,10E,14E,18E)-22,23-epoxy-2,10,15,19,23-pentamethyl-6-(2-methylthiovinyl)-2,6,10,14,18-tetracosapentaene
Saccharomyces cerevisiae
-
IC50: 0.012 mM
0.001
(6Z,10E,14E,18E)-22,23-epoxy-2,10,15,19,23-pentamethyl-6-vinyl-2,6,10,14,18-tetracosapentaene
Saccharomyces cerevisiae
-
IC50: 0.001 mM
0.03
(6Z,10E,14E,18E)-22,23-epoxy-6-ethynyl-2,10,15,19,23-pentamethyltetracosa-2,6,10,14,18-pentaene
Saccharomyces cerevisiae
-
+ (6E,10E,14E,18E)-22,23-epoxy-6-ethynyl-2,10,15,19,23-pentamethyltetracosa-2,6,10,14,18-pentaene, IC50: 0.03 mM
0.07
18-heptanor-2,3-oxidosqualene
Saccharomyces cerevisiae
-
IC50: 0.07 mM
0.035
19-aza-18,19,22,23-tetrahydrosqualene-2,3-epoxide
Saccharomyces cerevisiae
-
IC50: 0.035 mM, at a protein concentration of 2 mg/ml
10
2-Aza-2,3-dihydrosqualene
Saccharomyces cerevisiae
-
IC50: 10 mM
16
2-Aza-2,3-dihydrosqualene N-oxide
Saccharomyces cerevisiae
-
IC50: 16 mM
0.0025
2-[(4E,8E)-12,13-epoxy-5,9,13-trimethyl-4,8-tetradecadienylidene]-1,3-dithiane
Saccharomyces cerevisiae
-
IC50: 0.0025 mM
0.0035
2-[(4E,8E,12E)-16,17-epoxy-4,9,13,17-tetramethyl-4,8,12-octadecatrienylidene]-1,3-benzodithiole
Saccharomyces cerevisiae
-
IC50: 0.0035 mM
0.00017
2-[(4E,8E,12E)-16,17-epoxy-4,9,13,17-tetramethyl-4,8,12-octadecatrienylidene]-1,3-dithiane
Saccharomyces cerevisiae
-
IC50: 0.00017 mM
0.035
2-[(4E,8E,12E,16E)-20,21-epoxy-4,8,13,17,21-pentamethyl-4,8,12,16-docosatetraenylidene]-1,3-dithiane
Saccharomyces cerevisiae
-
IC50: 0.035 mM
0.0015
3-(3,7-Dimethyl-octadeca-3,7,11,15-tetraenyl)-2,2-dimethyl-oxirane
Saccharomyces cerevisiae
-
IC50: 0.0015 mM
0.055
azasqualene alcohol N-oxide
Saccharomyces cerevisiae
-
IC50: 0.055 mM, at a protein concentration of 2 mg/ml
14
diethyl-(4,8,13,17,21-pentamethyl-docosa-4,8,12,16,20-pentaenyl)-aminoxide
Saccharomyces cerevisiae
-
IC50: 14 mM
12.5
Diethyl-(4,8,13,17,21-pentamethyl-docosa-4,8,12,16,20-pentaenyl)-ammonium
Saccharomyces cerevisiae
-
IC50: 12.5 mM
SPECIFIC ACTIVITY [µmol/min/mg]
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
0.0000015
0.0000025
-
mutant C457/E526C at 35°C
0.0000048
-
mutant C457/E526A at 35°C
0.0000063
-
mutant C457 at 25°C
0.0000087
-
mutant C457/E526D at 25°C
0.0000097
-
mutant C457/E526Q at 25°C
0.0000113
-
mutant C457/E525C at 25°C
0.0000128
-
mutant C457/E526D at 35°C
0.0000172
-
wild-type, at 25°C
0.0000192
-
mutant C457/E526Q at 35°C
0.000021
-
mutant C457/E525C at 35°C
0.0000213
-
mutant C457 at 35°C
0.0000292
-
wild-type, at 35°C
additional information
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
physiological function
-
functional role of the Cys703 residue in stabilizing the bicyclic C-8 cation and the rearranged intermediate or interacting with Phe699
additional information
-
structure-function-mechanism relationships, overview
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
26000
-
x * 26000, SDS-PAGE
80000
-
x * 80000, SDS-PAGE
83000
-
x * 83000, calculation from nucleotide sequence
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
C457D
-
less active than the wild-type
C457D/A525C
-
similar activity as the wild-type
C457D/E526A
-
decrease in enzyme functionality
C457D/E526C
-
very sensitive to the thiol-reacting agent dodecylmaleimide, specific activity and thermal stability are severely reduced
C457D/E526D
-
no effect on catalytic avtivity
C457D/E526Q
-
no effect on catalytic avtivity
C457G
-
site-directed mutagenesis, the mutant shows an altered product profile compared to the wild-type enzyme, overview
C457G/T509G
-
site-directed mutagenesis, the mutations disrupt the pre-existing H-bond to the protonating Asp456 and the intrinsic His234-Tyr510 H-bond network, respectively, and generates achilleol A as the major product
C703D
-
site-directed mutagenesis, the mutant shows unaltered product spectrum compared to the wild-type enzyme
C703G
-
site-directed mutagenesis, the mutant shows altered product spectrum compared to the wild-type enzyme, but not as diverse as mutants C703I and C703H
C703H
-
site-directed mutagenesis, the mutant generates an unusual truncated bicyclic rearranged intermediate, (8R,9R,10R)-polypoda-5,13E,17E,21-tetraen-3beta-ol, related to iridal-skeleton triterpenoid. Numerous oxidosqualene-cyclized truncated intermediates, including tricyclic, unrearranged tetracyclic with 17alpha/beta exocyclic hydrocarbon side chain, rearranged tetracyclic, and chair-chair-chair tricyclic intermediates, are also isolated from the mutant
C703I
-
site-directed mutagenesis, the mutant generates an unusual truncated bicyclic rearranged intermediate, (8R,9R,10R)-polypoda-5,13E,17E,21-tetraen-3beta-ol, related to iridal-skeleton triterpenoid. Numerous oxidosqualene-cyclized truncated intermediates, including tricyclic, unrearranged tetracyclic with 17alpha/beta exocyclic hydrocarbon side chain, rearranged tetracyclic, and chair-chair-chair tricyclic intermediates, are also isolated from the mutant
C703N
-
site-directed mutagenesis, the mutant shows unaltered product spectrum compared to the wild-type enzyme
C703S
-
site-directed mutagenesis, the mutant shows altered product spectrum compared to the wild-type enzyme, but not as diverse as mutants C703I and C703H
C703T
-
site-directed mutagenesis, the mutant shows altered product spectrum compared to the wild-type enzyme, but not as diverse as mutants C703I and C703H
C703V
-
site-directed mutagenesis, the mutant shows altered product spectrum compared to the wild-type enzyme, but not as diverse as mutants C703I and C703H
F445C
-
produces 10% (13alphaH)-iso-malabarica-14(16)-17E,21-trien-3beta-ol, 69% lanosterol, 13% parkeol, 8% 9beta-lanosta-7,24-dien-3beta-ol from substrate (S)-2,3-epoxysqualene
F445D
-
produces 21% (13alphaH)-iso-malabarica-14(16)-17E,21-trien-3beta-ol, 63% lanosterol, 11% parkeol, 5% 9beta-lanosta-7,24-dien-3beta-ol from substrate (S)-2,3-epoxysqualene
F445M
-
produces 7% (13alphaH)-iso-malabarica-14(16)-17E,21-trien-3beta-ol, 65% lanosterol, 18% parkeol, 10% 9beta-lanosta-7,24-dien-3beta-ol from substrate (S)-2,3-epoxysqualene
F445N
-
produces 10% (13alphaH)-iso-malabarica-14(16)-17E,21-trien-3beta-ol, 63% lanosterol, 9% parkeol, 18% 9beta-lanosta-7,24-dien-3beta-ol from substrate (S)-2,3-epoxysqualene
F445T
-
produces 49% (13alphaH)-iso-malabarica-14(16)-17E,21-trien-3beta-ol, 46% lanosterol, 5% 9beta-lanosta-7,24-dien-3beta-ol from substrate (S)-2,3-epoxysqualene
F699A/C703I
-
site-directed mutagenesis, inactive mutant
F699C
F699C/I705F
-
the mutant is inactive
F699H
-
the mutant produces lanosterol (13%), protosta-13(17)-dien-3beta-ol (70%), and (17Z)-protosta-17(20),24-dien-3beta-ol (17%)
F699I
-
the mutant produces lanosterol (100%) as the wild type enzyme
F699L
-
the mutant produces lanosterol (100%) as the wild type enzyme
F699M
F699M/C703I
-
site-directed mutagenesis, inactive mutant
F699M/I705F
-
the mutant produces 53% lanosterol, 17% (13alphaH)-isomalabarica-14E,17E,21-dien-3beta-ol, 12% (13alphaH)-isomalabarica-14Z,17E,21-dien-3beta-ol, 15% protosta-13(17),24-dien-3beta-ol, and 3% 17alpha-protosta-20(22),24-dien-3beta-ol from (3S)-2,3-oxidosqualene
F699N
-
nonviable mutant, does not produce lanosterol, but protosta-13(17)-dien-3beta-ol (55%), malabarica-14E,17E,21-trien-3beta-ol (5%), 17alpha-protosta-20,24-dien-3beta-ol (24%), and (17Z)-protosta-17(20),24-dien-3beta-ol (16%)
F699P
-
the mutant produces lanosterol (100%) as the wild type enzyme
F699Q
-
inactive
F699S
-
inactive
F699T
F699T/C703I
-
site-directed mutagenesis, different oxidosqualene-cyclized truncated intermediates, including tricyclic, unrearranged tetracyclic with 17alpha/beta exocyclic hydrocarbon side chain, rearranged tetracyclic, and chair-chair-chair tricyclic intermediates, are isolated from the mutant
F699T/I105F
-
the mutant produces 36% lanosterol, 45% protosta-13(17),24-dien-3beta-ol, 7% 17alpha-protosta-20,24-dien-3beta-ol, and 12% 17alpha-protosta-20(22),24-dien-3beta-ol from (3S)-2,3-oxidosqualene
F699X
-
TKW14[pERG7F699X] site-saturated mutants allow for ergosterol-independent growth, with the exception of Leu, Ile, His, Met, Pro, and Thr substitutions
F699Y
-
inactive
H234A
-
products are 17% protosta-12,24-dien-3beta-ol, 13% protosta-20,24-dien-3beta-ol, 30% lanosterol, 40% parkeol
H234C
-
products are 7% protosta-12,24-dien-3beta-ol, 4% protosta-20,24-dien-3beta-ol, 67% lanosterol, 22% parkeol
H234D
-
products are 58% iso-malabarica-14(16),17,21-trien-3beta-ol, 30% lanosterol, 12% parkeol
H234E
-
products are 49% lanosterol, 51% parkeol
H234F
-
products are 66% achilleol A, 14% lanosterol, 20% parkeol
H234G
-
products are 29% protosta-12,24-dien-3beta-ol, 7% protosta-20,24-dien-3beta-ol, 17% lanosterol, 47% parkeol
H234I
-
products are 70% lanosterol, 30% parkeol
H234K
-
no catalytic activity
H234L
-
products are 39% lanosterol, 31% parkeol, 30% iso-malabarica-14(16),17,21-trien-3beta-ol
H234M
-
products are 17% achilleol A, 10% iso-malabarica-14(16),17,21-trien-3beta-ol, 30% lanosterol, 40% parkeol
H234N
-
products are 23% protosta-12,24-dien-3beta-ol, 14% protosta-20,24-dien-3beta-ol, 27% lanosterol, 10% parkeol, 26% iso-malabarica-14(16),17,21-trien-3beta-ol
H234P
-
products are 64% lanosterol, 36% parkeol
H234Q
-
product is 100% lanosterol, like wild-type
H234R
-
no catalytic activity
H234S
-
product is 100% protosta-12,24-dien-3beta-ol
H234T
-
product is 100% parkeol
H234V
-
products are 42% lanosterol, 58% parkeol
H234W
-
product is 100% parkeol
H234W/Y510V
-
the mutant produces achilleol A, (13H)-isomalabarica-14(26),17E,21-trien-3beta-ol, and lanosterol at a 2:8:90 ratio from (S)-2,3-oxidosqualene
H234W/Y510W
H234Y
-
products are 14% achilleol A, 26% protosta-12,24-dien-3beta-ol, 51% lanosterol, 9% parkeol
H234Y/Y510A
-
the mutant produces lanosterol from (S)-2,3-oxidosqualene (wild type reaction)
I705A
-
the mutant produces 78% lanosterol, 13% (13alphaH)-isomalabarica-14E,17E,21-dien-3beta-ol, 8% (13alphaH)-isomalabarica-14Z,17E,21-dien-3beta-ol, 0.3% protosta-13(17),24-dien-3beta-ol, and 0.7% protosta-16,24-dien-3beta-ol from (3S)-2,3-oxidosqualene
I705C
-
the mutant produces 72% lanosterol, 16% (13alphaH)-isomalabarica-14E,17E,21-dien-3beta-ol, 11.7% (13alphaH)-isomalabarica-14Z,17E,21-dien-3beta-ol, and 0.3% protosta-13(17),24-dien-3beta-ol from (3S)-2,3-oxidosqualene
I705D
-
the mutant produces 37% lanosterol, 32% (13alphaH)-isomalabarica-14E,17E,21-dien-3beta-ol, 30% (13alphaH)-isomalabarica-14Z,17E,21-dien-3beta-ol, and 1% protosta-13(17),24-dien-3beta-ol from (3S)-2,3-oxidosqualene
I705F
-
the mutant produces 25% lanosterol, 21(13alphaH)-isomalabarica-14(26),17E,21-trien-3beta-ol, 6% 17alpha-protosta-20,24-dien-3beta-ol, 42% 17alpha-protosta-20(22),24-dien-3beta-ol from, and 6% protosta-16,24-dien-3beta-ol from (3S)-2,3-oxidosqualene
I705G
-
the mutant produces 35% lanosterol, 23% (13alphaH)-isomalabarica-14E,17E,21-dien-3beta-ol, 34% (13alphaH)-isomalabarica-14Z,17E,21-dien-3beta-ol, 6% protosta-13(17),24-dien-3beta-ol, 1% 17alpha-protosta-20(22),24-dien-3beta-ol and 1% protosta-16,24-dien-3beta-ol from (3S)-2,3-oxidosqualene
I705K
-
the mutant produces 12% lanosterol, 26.5% (13alphaH)-isomalabarica-14E,17E,21-dien-3beta-ol, 53.1% (13alphaH)-isomalabarica-14Z,17E,21-dien-3beta-ol, 7.6% protosta-13(17),24-dien-3beta-ol, and 0.8% protosta-16,24-dien-3beta-ol from (3S)-2,3-oxidosqualene
I705L
-
the mutant produces 100% lanosterol from (3S)-2,3-oxidosqualene (wild-type activity)
I705M
-
the mutant produces 88% lanosterol, 6% (13alphaH)-isomalabarica-14E,17E,21-dien-3beta-ol, and 6% (13alphaH)-isomalabarica-14Z,17E,21-dien-3beta-ol from (3S)-2,3-oxidosqualene
I705N
-
the mutant produces 19% lanosterol, 41% (13alphaH)-isomalabarica-14E,17E,21-dien-3beta-ol, 37% (13alphaH)-isomalabarica-14Z,17E,21-dien-3beta-ol, and 3% protosta-13(17),24-dien-3beta-ol from (3S)-2,3-oxidosqualene
I705P
-
the mutant produces 81.9% lanosterol, 0.1% (13alphaH)-isomalabarica-14E,17E,21-dien-3beta-ol, 15% (13alphaH)-isomalabarica-14Z,17E,21-dien-3beta-ol, and 3% protosta-16,24-dien-3beta-ol from (3S)-2,3-oxidosqualene
I705Q
-
the mutant produces 25% lanosterol, 39% (13alphaH)-isomalabarica-14E,17E,21-dien-3beta-ol, 31% (13alphaH)-isomalabarica-14Z,17E,21-dien-3beta-ol, and 5% protosta-13(17),24-dien-3beta-ol from (3S)-2,3-oxidosqualene
I705S
-
the mutant produces 12% lanosterol, 42% (13alphaH)-isomalabarica-14E,17E,21-dien-3beta-ol, 44% (13alphaH)-isomalabarica-14Z,17E,21-dien-3beta-ol, 1% protosta-13(17),24-dien-3beta-ol, and 1%protosta-16,24-dien-3beta-ol from (3S)-2,3-oxidosqualene
I705T
-
the mutant produces 22% lanosterol, 36% (13alphaH)-isomalabarica-14E,17E,21-dien-3beta-ol, 41% (13alphaH)-isomalabarica-14Z,17E,21-dien-3beta-ol, and 1% protosta-13(17),24-dien-3beta-ol from (3S)-2,3-oxidosqualene
I705V
-
the mutant produces 75% lanosterol, 10% (13alphaH)-isomalabarica-14E,17E,21-dien-3beta-ol, and 15% (13alphaH)-isomalabarica-14Z,17E,21-dien-3beta-ol from (3S)-2,3-oxidosqualene
Q450H
-
site-directed mutagenesis, the mutant shows an altered product profile compared to the wild-type enzyme produng exclusively achilleol A as product
Q450H/V454I
-
site-directed mutagenesis, the mutant shows an altered product profile compared to the wild-type enzyme producing lanosterol, (13alphaH)-isomalabarica-14(26),17E,21-trien-3beta-ol, and protosta-16,24-dien-3beta-ol
T384Y
-
site-directed mutagenesis, the mutant shows an altered product profile compared to the wild-type enzyme producing lanosterol, parkeol, and 9beta-lanosta-7,24-dien-3beta-ol
T384Y/Q450H
-
site-directed mutagenesis, the mutant shows an altered product profile compared to the wild-type enzyme producing mainly parkeol and very low amounts of 9beta-lanosta-7,24-dien-3beta-ol and lanosterol
T384Y/Q450H/V454I
-
site-directed mutagenesis, the mutant produces exclusively reaction intermediate parkeol but not lanosterol as the sole end product
T384Y/V454I
-
site-directed mutagenesis, the mutant shows an altered product profile compared to the wild-type enzyme producing mainly parkeol and lower amounts of 9beta-lanosta-7,24-dien-3beta-ol and lanosterol
T509G
-
site-directed mutagenesis, the mutant shows an altered product profile compared to the wild-type enzyme, overview
V454A
-
results in the production of an additional truncated monocyclic achilleol A
V454G
-
results in the production of an additional truncated monocyclic achilleol A
V454I
-
site-directed mutagenesis, the mutant shows an altered product profile compared to the wild-type enzyme producing mainly lanosterol and a low amount of (13alphaH)-isomalabarica-14(26),17E,21-trien-3beta-ol
W232A
-
products are 18.1% protosta-12,24-dien-3beta-ol, 47.1% lanosterol, 34.8% parkeol
W232C
-
products are 18% protosta-12,24-dien-3beta-ol, 31.8% lanosterol, 50.2% parkeol
W232D
-
products are 7.9% protosta-12,24-dien-3beta-ol, 84.8% lanosterol, 7.3% parkeol
W232E
-
products are 14% protosta-12,24-dien-3beta-ol, 49.2% lanosterol, 36.8% parkeol
W232F
-
products are 8.4% protosta-12,24-dien-3beta-ol, 74.4% lanosterol, 17,2% parkeol
W232G
-
products are 8.4% protosta-12,24-dien-3beta-ol, 74.4% lanosterol, 17.2% parkeol
W232H
-
products are 27.8% protosta-12,24-dien-3beta-ol, 35% lanosterol, 37.2% parkeol
W232I
-
products are 23.5% protosta-12,24-dien-3beta-ol, 33% lanosterol, 43.5% parkeol
W232K
-
no catalytic activity
W232L
-
products are 14.5% protosta-12,24-dien-3beta-ol, 27.8% lanosterol, 57.7% parkeol
W232M
-
products are 10.9% protosta-12,24-dien-3beta-ol, 40.6% lanosterol, 48.5% parkeol
W232N
-
products are 10.7% protosta-12,24-dien-3beta-ol, 59.5% lanosterol, 29.8% parkeol
W232P
-
products are 4.4% protosta-12,24-dien-3beta-ol, 82.9% lanosterol, 12.7% parkeol
W232Q
-
products are 24.6% protosta-12,24-dien-3beta-ol, 32.1% lanosterol, 43.3% parkeol
W232R
-
no catalytic activity
W232S
-
products are 10.7% protosta-12,24-dien-3beta-ol, 59% lanosterol, 30.3% parkeol
W232T
-
products are 14.3% protosta-12,24-dien-3beta-ol, 61.7% lanosterol, 24% parkeol
W232V
-
products are 19.3% protosta-12,24-dien-3beta-ol, 34% lanosterol, 46.7% parkeol
W232Y
-
products are 4.2% protosta-12,24-dien-3beta-ol, 94.2% lanosterol, 1.6% parkeol
W587F
-
site-directed mutagenesis, the mutant shows an altered product profile compared to the wild-type enzyme, overview
W587Y
-
site-directed mutagenesis, the mutant shows an altered product profile compared to the wild-type enzyme, overview
Y510A
Y510C
-
site-directed mutagenesis, the mutant shows an altered product profile compared to the wild-type enzyme, overview
Y510F
-
produces lanosterol and isomalabaricatrienol in a 95:5 ratio in strain RXY6, while in strain SMY8, the ratio is 10:90
Y510H
Y510K
Y510L
-
site-directed mutagenesis, the mutant shows an altered product profile compared to the wild-type enzyme, overview
Y510S
-
site-directed mutagenesis, the mutant shows an altered product profile compared to the wild-type enzyme, overview
Y510W
Y707A
-
the mutant produces 18.9% (9R,10S)-polypoda-8(26),13E,17E,21-tetraen-3beta-ol, 56.9% lanosterol, 19.9% 9beta-lanosta-7,24-dien-3beta-ol, and 4.3% parkeol from (S)-2,3-oxidosqualene
Y707C
-
the mutant produces 6% (9R,10S)-polypoda-8(26),13E,17E,21-tetraen-3beta-ol, 47.1% lanosterol, 42.6% 9beta-lanosta-7,24-dien-3beta-ol, and 4.3% parkeol from (S)-2,3-oxidosqualene
Y707D
-
the mutant produces 21.8% (9R,10S)-polypoda-8(26),13E,17E,21-tetraen-3beta-ol, 67.3% lanosterol, 7.6% 9beta-lanosta-7,24-dien-3beta-ol, and 3.3% parkeol from (S)-2,3-oxidosqualene
Y707E
-
the mutant produces 12.3% (9R,10S)-polypoda-8(26),13E,17E,21-tetraen-3beta-ol, 70.8% lanosterol, 10.5% 9beta-lanosta-7,24-dien-3beta-ol, and 6.4% parkeol from (S)-2,3-oxidosqualene
Y707F
-
the mutant produces 89.2% lanosterol, 3.1% parkeol, and 7.7% 9beta-lanosta-7,24-dien-3beta-ol from (S)-2,3-oxidosqualene
Y707G
-
the mutant produces 28.3% (9R,10S)-polypoda-8(26),13E,17E,21-tetraen-3beta-ol, 48.2% lanosterol, 16.3% 9beta-lanosta-7,24-dien-3beta-ol, and 7.2% parkeol from (S)-2,3-oxidosqualene
Y707H
-
the mutant produces 83.6% (9R,10S)-polypoda-8(26),13E,17E,21-tetraen-3beta-ol, 4.7% lanosterol, 6.2% 9beta-lanosta-7,24-dien-3beta-ol, and 5.5% parkeol from (S)-2,3-oxidosqualene
Y707I
-
the mutant produces 87.9% lanosterol and 12.1% 9beta-lanosta-7,24-dien-3beta-ol from (S)-2,3-oxidosqualene
Y707K
-
the mutant produces 100% lanosterol from (S)-2,3-oxidosqualene (wild type reaction)
Y707L
-
the mutant produces 85.3% lanosterol and 14.7% 9beta-lanosta-7,24-dien-3beta-ol from (S)-2,3-oxidosqualene
Y707M
-
the mutant produces 100% lanosterol from (S)-2,3-oxidosqualene (wild type reaction)
Y707N
-
the mutant produces 100% lanosterol from (S)-2,3-oxidosqualene (wild type reaction)
Y707P
-
the mutant produces 100% lanosterol from (S)-2,3-oxidosqualene (wild type reaction)
Y707Q
-
the mutant produces 82% (9R,10S)-polypoda-8(26),13E,17E,21-tetraen-3beta-ol, 4.3% lanosterol, and 13.7% parkeol from (S)-2,3-oxidosqualene
Y707R
-
inactive
Y707S
-
the mutant produces 21.3% (9R,10S)-polypoda-8(26),13E,17E,21-tetraen-3beta-ol, 42.9% lanosterol, 20.5% 9beta-lanosta-7,24-dien-3beta-ol, and 15.3% parkeol from (S)-2,3-oxidosqualene
Y707T
-
the mutant produces 9.8% (9R,10S)-polypoda-8(26),13E,17E,21-tetraen-3beta-ol, 65.1% lanosterol, 13.5% 9beta-lanosta-7,24-dien-3beta-ol, and 11.6% parkeol from (S)-2,3-oxidosqualene
Y707V
-
the mutant produces 100% lanosterol from (S)-2,3-oxidosqualene (wild type reaction)
Y707W
-
the mutant produces 100% lanosterol from (S)-2,3-oxidosqualene (wild type reaction)
Y707X
-
the mutant produces (9R,10S)-polypoda-8(26),13E,17E,21-tetraen-3beta-ol, in addition to lanosterol, parkeol, and 9beta-lanosta-7,24-dien-3beta-ol from (S)-2,3-oxidosqualene
additional information
-
only polar side-chain group substitutions of F445 genetically complement yeast viability and produce spatially related product diversity
GENERAL STABILITY
ORGANISM
UNIPROT
LITERATURE
mutants C457D/E526C and C457D/E526A are not stable at 35°C
-
STORAGE STABILITY
ORGANISM
UNIPROT
LITERATURE
0°C, 2 weeks, stable
-
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
expression in yeast strains RXY6 and SMY8
-
mutants are expressed in Saccharomyces cerevisiae strain TKW14
-
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
drug development
-
results identify a particularly promising new family of OSC inhibitors, for the development of novel antiparasitic agents
synthesis
-
engineering ERG7 for producing biological active agents is promising
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Balliano, G.; Milla, P.; Ceruti, M.; Viola, F.; Carrano, L.; Cattel, L.
Differential inhibition of fungal oxidosqualene cyclase by 6E and 6Z isomers of 2,3-epoxy-10-aza-10,11-dihydrosqualene
FEBS Lett.
320
203-206
1993
Saccharomyces cerevisiae, Candida albicans
Manually annotated by BRENDA team
Shi, Z.; Buntel, C.J.; Griffin, J.H.
Isolation and characterization of the gene encoding 2,3-oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae
Proc. Natl. Acad. Sci. USA
91
7370-7374
1994
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Corey, E.J.; Matsuda, S.P.T.; Bartel, B.
Molecular cloning, characterization, and overexpression of ERG7, the Saccharomyces cerevisiae gene encoding lanosterol synthase
Proc. Natl. Acad. Sci. USA
91
2211-2215
1994
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Balliano, G.; Viola, F.; Ceruti, M.; Cattel, L.
Inhibition of sterol biosynthesis in Saccharomyces cerevisiae by N,N-diethylazasqualene and derivatives
Biochim. Biophys. Acta
959
9-19
1988
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Hoshino, T.; Williams, H.J.; Chung, Y.; Ian Scott, A.
Partial purification and characterization of oxidosqualene-lanosterol cyclase from baker's yeast
Tetrahedron
47
5925-5932
1991
Saccharomyces cerevisiae
-
Manually annotated by BRENDA team
Corey, E.J.; Matsuda, S.P.T.
Purification of the 2,3-oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae
J. Am. Chem. Soc.
113
8172-8174
1991
Saccharomyces cerevisiae
-
Manually annotated by BRENDA team
Balliano, G.; Viola, F.; Ceruti, M.; Cattel, L.
Characterization and partial purification of squalene-2,3-oxide cyclase from Saccharomyces cerevisiae
Arch. Biochem. Biophys.
293
122-129
1992
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Cattel, L.; Ceruti, M.; Balliano, G.; Viola, F.; Grosa, G.; Rocco, F.; Brusa, P.
2,3-Oxidosqualene cyclase: from azasqualenes to new site-directed inhibitors
Lipids
30
235-246
1995
Saccharomyces cerevisiae, Candida albicans, Rattus norvegicus, Sus scrofa
Manually annotated by BRENDA team
Viola, F.; Brusa, P.; Balliano, G.; Ceruti, M.; Boutaud, O.; Schuber, F.; Cattel, L.
Inhibition of 2,3-oxidosqualene cyclase and sterol biosynthesis by 10- and 19-azasqualene derivatives
Biochem. Pharmacol.
50
787-796
1995
Saccharomyces cerevisiae, Candida albicans, Homo sapiens, Rattus norvegicus, Sus scrofa
Manually annotated by BRENDA team
Ceruti, M.; Rocco, F.; Viola, F.; Balliano, G.; Milla, P.; Arpicco, S.; Cattel, L.
9-Methylidine-2,3-oxidosqualene derivatives as stereospecific mechanism-based inhibitors of liver and yeast oxidosqualene cyclase
J. Med. Chem.
41
540-554
1998
Saccharomyces cerevisiae, Sus scrofa
Manually annotated by BRENDA team
Ceruti, M.; Balliano, G.; Rocco, F.; Milla, P.; Arpicco, S.; Cattel, L.; Viola, F.
Vinyl sulfide derivatives of truncated oxidosqualene as selective inhibitors of oxidosqualene and squalene-hopene cyclases
Lipids
36
629-636
2001
Saccharomyces cerevisiae, Sus scrofa
Manually annotated by BRENDA team
Viola, F.; Balliano, G.; Milla, P.; Cattel, L.; Rocco, F.; Ceruti, M.
Stereospecific syntheses of trans-vinyldioxidosqualene and 3-hydroxysulfide derivatives, as potent and time-dependent 2,3-oxidosqualene cyclase inhibitors
Bioorg. Med. Chem.
8
223-232
2000
Saccharomyces cerevisiae, Sus scrofa
Manually annotated by BRENDA team
Cattel, L.; Ceruti, M.
Inhibitors of 2,3-oxidosqualene cyclase as tools for studying the mechanism and function of the enzyme
Crit. Rev. Biochem. Mol. Biol.
33
353-373
1998
Saccharomyces cerevisiae, Candida albicans, Canis lupus familiaris, Rattus norvegicus, Sus scrofa
Manually annotated by BRENDA team
Ceruti, M.; Viola, F.; Balliano, G.; Milla, P.; Roma, G.; Grossi, G.; Rocco, F.
Synthesis of (E)- and (Z)-29-methylidyne-2,3-oxidosqualene derivatives as inhibitors of liver and yeast oxidosqualene cyclase
J. Chem. Soc. Perkin Trans.
1
1477-1486
2002
Saccharomyces cerevisiae, Sus scrofa
-
Manually annotated by BRENDA team
Wu, T.K.; Chang, C.H.
Enzymatic formation of multiple triterpenes by mutation of tyrosine 510 of the oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae
ChemBioChem
5
1712-1715
2004
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Oliaro-Bosso, S.; Schulz-Gasch, T.; Balliano, G.; Viola, F.
Access of the substrate to the active site of yeast oxidosqualene cyclase: an inhibition and site-directed mutagenesis approach
ChemBioChem
6
2221-2228
2005
Saccharomyces cerevisiae, Saccharomyces cerevisiae SMY8
Manually annotated by BRENDA team
Oliaro-Bosso, S.; Viola, F.; Matsuda, S.; Cravotto, G.; Tagliapietra, S.; Balliano, G.
Umbelliferone aminoalkyl derivatives as inhibitors of oxidosqualene cyclases from Saccharomyces cerevisiae, Trypanosoma cruzi, and Pneumocystis carinii
Lipids
39
1007-1012
2004
Saccharomyces cerevisiae, Pneumocystis carinii, Trypanosoma cruzi
Manually annotated by BRENDA team
Lodeiro, S.; Wilson, W.K.; Shan, H.; Matsuda, S.P.
A putative precursor of isomalabaricane triterpenoids from lanosterol synthase mutants
Org. Lett.
8
439-442
2006
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Galli, U.; Oliaro-Bosso, S.; Taramino, S.; Venegoni, S.; Pastore, E.; Tron, G.C.; Balliano, G.; Viola, F.; Sorba, G.
Design, synthesis, and biological evaluation of new (2E,6E)-10-(dimethylamino)-3,7-dimethyl-2,6-decadien-1-ol ethers as inhibitors of human and Trypanosoma cruzi oxidosqualene cyclase
Bioorg. Med. Chem. Lett.
17
220-224
2007
Saccharomyces cerevisiae, Homo sapiens, Pneumocystis carinii, Trypanosoma cruzi
Manually annotated by BRENDA team
Wu, T.K.; Liu, Y.T.; Chang, C.H.; Yu, M.T.; Wang, H.J.
Site-saturated mutagenesis of histidine 234 of Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase demonstrates dual functions in cyclization and rearrangement reactions
J. Am. Chem. Soc.
128
6414-6419
2006
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Wu, T.K.; Yu, M.T.; Liu, Y.T.; Chang, C.H.; Wang, H.J.; Diau, E.W.
Tryptophan 232 within oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae influences rearrangement and deprotonation but not cyclization reactions
Org. Lett.
8
1319-1322
2006
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Wu, T.K.; Liu, Y.T.; Chiu, F.H.; Chang, C.H.
Phenylalanine 445 within oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae influences C-Ring cyclization and deprotonation reactions
Org. Lett.
8
4691-4694
2006
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Teske, B.; Taramino, S.; Bhuiyan, M.S.; Kumaraswami, N.S.; Randall, S.K.; Barbuch, R.; Eckstein, J.; Balliano, G.; Bard, M.
Genetic analyses involving interactions between the ergosterol biosynthetic enzymes, lanosterol synthase (Erg7p) and 3-ketoreductase (Erg27p), in the yeast Saccharomyces cerevisiae
Biochim. Biophys. Acta
1781
359-366
2008
Saccharomyces cerevisiae, Saccharomyces cerevisiae SCY876
Manually annotated by BRENDA team
Wu, T.K.; Chang, C.H.; Liu, Y.T.; Wang, T.T.
Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase: a chemistry-biology interdisciplinary study of the proteins structure-function-reaction mechanism relationships
Chem. Rec.
8
302-325
2008
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Wu, T.K.; Wen, H.Y.; Chang, C.H.; Liu, Y.T.
Protein plasticity: a single amino acid substitution in the Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase generates protosta-13(17),24-dien-3beta-ol, a rearrangement product
Org. Lett.
10
2529-2532
2008
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Wu, T.K.; Wang, T.T.; Chang, C.H.; Liu, Y.T.; Shie, W.S.
Importance of Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase tyrosine 707 residue for chair-boat bicyclic ring formation and deprotonation reactions
Org. Lett.
10
4959-4962
2008
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Taramino, S.; Valachovic, M.; Oliaro-Bosso, S.; Viola, F.; Teske, B.; Bard, M.; Balliano, G.
Interactions of oxidosqualene cyclase (Erg7p) with 3-keto reductase (Erg27p) and other enzymes of sterol biosynthesis in yeast
Biochim. Biophys. Acta
1801
156-162
2010
Saccharomyces cerevisiae, Saccharomyces cerevisiae STY2
Manually annotated by BRENDA team
Wu, T.K.; Chang, C.H.; Wen, H.Y.; Liu, Y.T.; Li, W.H.; Wang, T.T.; Shie, W.S.
Alteration of the substrates prefolded conformation and cyclization stereochemistry of oxidosqualene-lanosterol cyclase of Saccharomyces cerevisiae by substitution at phenylalanine 699
Org. Lett.
12
500-503
2010
Saccharomyces cerevisiae, Saccharomyces cerevisiae TKW14
Manually annotated by BRENDA team
Taramino, S.; Teske, B.; Oliaro-Bosso, S.; Bard, M.; Balliano, G.
Divergent interactions involving the oxidosqualene cyclase and the steroid-3-ketoreductase in the sterol biosynthetic pathway of mammals and yeasts
Biochim. Biophys. Acta
1801
1232-1237
2010
Saccharomyces cerevisiae, Homo sapiens, Saccharomyces cerevisiae SCY876 and BTY6-5-3
Manually annotated by BRENDA team
Wu, T.K.; Chang, Y.C.; Liu, Y.T.; Chang, C.H.; Wen, H.Y.; Li, W.H.; Shie, W.S.
Mutation of isoleucine 705 of the oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae affects lanosterols C/D-ring cyclization and 17alpha/beta-exocyclic side chain stereochemistry
Org. Biomol. Chem.
9
1092-1097
2011
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Chang, C.H.; Chen, Y.C.; Tseng, S.W.; Liu, Y.T.; Wen, H.Y.; Li, W.H.; Huang, C.Y.; Ko, C.Y.; Wang, T.T.; Wu, T.K.
The cysteine 703 to isoleucine or histidine mutation of the oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae generates an iridal-type triterpenoid
Biochimie
94
2376-2381
2012
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Chang, C.H.; Wen, H.Y.; Shie, W.S.; Lu, C.T.; Li, M.E.; Liu, Y.T.; Li, W.H.; Wu, T.K.
Protein engineering of oxidosqualene-lanosterol cyclase into triterpene monocyclase
Org. Biomol. Chem.
11
4214-4219
2013
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Liu, Y.T.; Hu, T.C.; Chang, C.H.; Shie, W.S.; Wu, T.K.
Protein engineering of Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase into parkeol synthase
Org. Lett.
14
5222-5225
2012
Saccharomyces cerevisiae
Manually annotated by BRENDA team