Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 3.6.4.13 - RNA helicase and Organism(s) Rattus norvegicus and UniProt Accession Q9QY16

for references in articles please use BRENDA:EC3.6.4.13
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
IUBMB Comments
RNA helicases utilize the energy from ATP hydrolysis to unwind RNA. Some of them unwind RNA with a 3' to 5' polarity , other show 5' to 3' polarity . Some helicases unwind DNA as well as RNA [7,8]. May be identical with EC 3.6.4.12 (DNA helicase).
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Rattus norvegicus
UNIPROT: Q9QY16
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Rattus norvegicus
The enzyme appears in selected viruses and cellular organisms
Synonyms
helicase, rig-i, rna helicase, eif4a, ddx3x, dead-box rna helicase, ns3 helicase, dead-box helicase, ddx21, rna helicase a, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SYSTEMATIC NAME
IUBMB Comments
ATP phosphohydrolase (RNA helix unwinding)
RNA helicases utilize the energy from ATP hydrolysis to unwind RNA. Some of them unwind RNA with a 3' to 5' polarity [3], other show 5' to 3' polarity [8]. Some helicases unwind DNA as well as RNA [7,8]. May be identical with EC 3.6.4.12 (DNA helicase).
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
ATP + H2O
ADP + phosphate
show the reaction diagram
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
ATP + H2O
ADP + phosphate
show the reaction diagram
the ability of RNA helicases to modulate the structure and thus availability of critical RNA molecules for processing leading to protein expression is the likely mechanism by which RNA helicases contribute to differentiation. DDX17 is involved in mRNA splicing
-
-
?
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
-
SwissProt
Manually annotated by BRENDA team
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
highly expressed in
Manually annotated by BRENDA team
UNIPROT
ENTRY NAME
ORGANISM
NO. OF AA
NO. OF TRANSM. HELICES
MOLECULAR WEIGHT[Da]
SOURCE
SEQUENCE
LOCALIZATION PREDICTION?
DDX25_RAT
483
0
54791
Swiss-Prot
other Location (Reliability: 4)
POSTTRANSLATIONAL MODIFICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
phosphoprotein
helicase activity of DDX5 is regulated by phosphorylation and calmodulin binding
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
medicine
DDX4 can serve as a useful and highly specific biomarker for the diagnosis of germ cell tumors
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Abdelhaleem, M.
RNA helicases: regulators of differentiation
Clin. Biochem.
38
499-503
2005
Homo sapiens (O00571), Homo sapiens (O15523), Homo sapiens (Q9NQI0), Homo sapiens (Q9UHL0), Homo sapiens, Mus musculus (Q501J6), Mus musculus (Q61656), Mus musculus (Q9QY15), Rattus norvegicus (Q9QY16)
Manually annotated by BRENDA team