Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

Reference on EC 3.6.4.10 - non-chaperonin molecular chaperone ATPase

Please use the Reference Search for a specific query.
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Lissin, N.M.; Venyaminov, S.Y.; Girshovich, A.S.
(Mg-ATP)-dependent self-assembly of molecular chaperone GroEL
Nature
348
339-342
1990
Escherichia coli
Manually annotated by BRENDA team
Sadis, S.; Hightower, L.E.
Unfolded proteins stimulate molecular chaperone Hsc70 ATPase by accelerating ADP/ATP exchange
Biochemistry
31
9406-9412
1992
Bos taurus, Saccharomyces cerevisiae, Escherichia coli
Manually annotated by BRENDA team
Blond-Elguindi, S.; Fourie, A.M.; Sambrook, J.F.; Gething, M.J.H.
Peptide-dependent stimulation of the ATPase activity of the molecular chaperone BiP is the result of conversion of oligomers to active monomers
J. Biol. Chem.
268
12730-12735
1993
Bos taurus, Cricetulus griseus, Mus musculus
Manually annotated by BRENDA team
Wawrzynow, A.; Wojtkowiak, D.; Marszalek, J.; Banecki, B.; Jonsen, M.; Graves, B.; Georgopoulos, C.; Zylicz, M.
The ClpX heat-shock protein of Escherichia coli, the ATP-dependent substrate specificity component of the ClpP-ClpX protease, is a novel molecular chaperone
EMBO J.
14
1867-1877
1995
Bacillus subtilis, Saccharomyces cerevisiae, Escherichia coli
Manually annotated by BRENDA team
O'Brien, M.C.; McKay, D.B.
How potassium affects the activity of the molecular chaperone Hsc70 I. Potassium is required for optimal ATPase activity
J. Biol. Chem.
270
2247-2250
1995
Bos taurus, Escherichia coli
Manually annotated by BRENDA team
Wilbanks, S.M.; McKay, D.B.
How potassium affects the activity of the molecular chaperone Hsc70 II. Potassium binds specifically in the ATPase active site
J. Biol. Chem.
270
2251-2257
1995
Bos taurus
Manually annotated by BRENDA team
Jordan, R.; McMackens, R.
Modulation of the ATPase activity of the molecular chaperone DnaK by peptides and the DnaJ and GrpE heat shock proteins
J. Biol. Chem.
270
4563-4569
1995
Escherichia coli
Manually annotated by BRENDA team
Ha, J.H.; McKay, D.B.
Kinetics of nucleotide-induced changes in the tryptophan fluorescence of the molecular chaperone Hsc70 and its subfragments suggest the ATP-induced conformational change follows initial ATP binding
Biochemistry
34
11635-11644
1995
Bos taurus, Escherichia coli
Manually annotated by BRENDA team
Miernyk, J.A.; Hayman, G.T.
ATPase activity and molecular chaperone function of the stress70 proteins
Plant Physiol.
110
419-424
1996
Escherichia coli, Homo sapiens, Solanum lycopersicum, Zea mays
Manually annotated by BRENDA team
Sriram, M.; Osipiuk, J.; Freeman, B.C.; Morimoto, R.I.; Joachimiak, A.
Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain
Structure
5
403-414
1997
Bos taurus, Escherichia coli, Homo sapiens
Manually annotated by BRENDA team
Russell, R.; Jordan, R.; McMacken, R.
Kinetic characterization of the ATPase cycle of the DnaK molecular chaperone
Biochemistry
37
596-607
1998
Bos taurus, Escherichia coli
Manually annotated by BRENDA team
Slepenkov, S.; Witt, S.N.
Kinetics of the reactions of the Escherichia coli molecular chaperone DnaK with ATP: Evidence that a three-step reaction precedes ATP hydrolysis
Biochemistry
37
1015-1024
1998
Escherichia coli, Solanum lycopersicum, Zea mays
Manually annotated by BRENDA team
Li, X.; Su, R.T.C.; Hsu, H.; Sze, H.
The molecular chaperone calnexin associates with the vacuolar H+-ATPase from oat seedlings
Plant Cell
10
119-130
1998
Arabidopsis thaliana, Avena sativa, Saccharomyces cerevisiae
Manually annotated by BRENDA team
Muchowski, P.J.; Clark, J.I.
ATP-enhanced molecular chaperone functions of the small heat shock protein human alphaB crystallin
Proc. Natl. Acad. Sci. USA
95
1004-1009
1998
Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Hiromura, M.; Yano, M.; Mori, H.; Inoue, M.; Kido, H.
Intrinsic ADP-ATP exchange activity is a novel function of the molecular chaperone, Hsp70
J. Biol. Chem.
273
5435-5438
1998
Bos taurus, Escherichia coli
Manually annotated by BRENDA team
Panaretou, B.; Prodromou, C.; Roe, S.M.; O'Brien, R.; Ladbury, J.E.; Piper, P.W.; Pearl, L.H.
ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo
EMBO J.
17
4829-4836
1998
Saccharomyces cerevisiae, Escherichia coli, Saccharomyces cerevisiae PP30
Manually annotated by BRENDA team
McClellan, A.J.; Endres, J.B.; Vogel, J.P.; Palazzi, D.; Rose, M.D.; Brodsky, J.L.
Specific molecular chaperone interactions and an ATP-dependent conformational change are required during posttranslational protein translocation into the yeast ER
Mol. Biol.
9
3533-3545
1998
Bos taurus, Cricetulus griseus, Saccharomyces cerevisiae
Manually annotated by BRENDA team
Brodsky, J.L.
Selectivity of the molecular chaperone-specific immunosuppressive agent 15-deoxyspergualin. Modulation of Hsc70 ATPase activity without compromising DnaJ chaperone interactions
Biochem. Pharmacol.
57
877-880
1999
Bos taurus, Saccharomyces cerevisiae, Rattus norvegicus
Manually annotated by BRENDA team
Chadli, A.; Ladjimi, M.M.; Baulieu, E.E.; Catelli, M.G.
Heat-induced oligomerization of the molecular chaperone Hsp90
J. Biol. Chem.
274
4133-4239
1999
Escherichia coli, Gallus sp., Neurospora crassa
Manually annotated by BRENDA team
Silberg, J.J.; Vickery, L.E.
Kinetic characterization of the ATPase cycle of the molecular chaperone Hsc66 from Escherichia coli
J. Biol. Chem.
275
7779-7786
2000
Escherichia coli
Manually annotated by BRENDA team
Li, J.; Sha, B.
Cloning, expression, purification and preliminary X-ray crystallographic studies of Escherichia coli Hsp100 ClpB nucleotide-binding domain 1 (NBD1)
Acta Crystallogr. Sect. D
57
909-911
2001
Escherichia coli
Manually annotated by BRENDA team
Li, J.; Sha, B.
Cloning, expression, purification and preliminary X-ray crystallographic studies of Escherichia coli Hsp100 nucleotide-binding domain 2 (NBD2)
Acta Crystallogr. Sect. D
58
1030-1031
2002
Escherichia coli
Manually annotated by BRENDA team
Rowlands, M.G.; Newbatt, Y.M.; Prodromou, C.; Pearl, L.H.; Workman, P.; Aherne, W.
High-throughput screening assay for inhibitors of heat-shock protein 90 ATPase activity
Anal. Biochem.
327
176-183
2004
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Sehorn, M.G.; Slepenkov, S.V.; Witt, S.N.
Characterization of two partially unfolded intermediates of the molecular chaperone DnaK at low pH
Biochemistry
41
8499-8507
2002
Escherichia coli
Manually annotated by BRENDA team
Buczynski, G.; Slepenkov, S.V.; Sehorn, M.G.; Witt, S.N.
Characterization of a lidless form of the molecular chaperone DnaK: deletion of the lid increases peptide on- and off-rate constants
J. Biol. Chem.
276
27231-27236
2001
Escherichia coli
Manually annotated by BRENDA team
Richter, K.; Reinstein, J.; Buchner, J.
N-terminal residues regulate the catalytic efficiency of the Hsp90 ATPase cycle
J. Biol. Chem.
277
44905-44910
2002
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Lotz, G.P.; Lin, H.; Harst, A.; Obermann, W.M.
Aha1 binds to the middle domain of Hsp90, contributes to client protein activation, and stimulates the ATPase activity of the molecular chaperone
J. Biol. Chem.
278
17228-17235
2003
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Song, C.; Wang, Q.; Li, C.C.
ATPase activity of p97-valosin-containing protein (VCP). D2 mediates the major enzyme activity, and D1 contributes to the heat-induced activity
J. Biol. Chem.
278
3648-3655
2003
Homo sapiens
Manually annotated by BRENDA team
Kim, D.Y.; Kim, K.K.
Crystal structure of ClpX molecular chaperone from Helicobacter pylori
J. Biol. Chem.
278
50664-50670
2003
Helicobacter pylori
Manually annotated by BRENDA team
Tupling, A.R.; Gramolini, A.O.; Duhamel, T.A.; Kondo, H.; Asahi, M.; Tsuchiya, S.C.; Borrelli, M.J.; Lepock, J.R.; Otsu, K.; Hori, M.; MacLennan, D.H.; Green, H.J.
HSP70 binds to the fast-twitch skeletal muscle sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA1a) and prevents thermal inactivation
J. Biol. Chem.
279
52382-52389
2004
Homo sapiens, Rattus norvegicus
Manually annotated by BRENDA team
Grimminger, V.; Richter, K.; Imhof, A.; Buchner, J.; Walter, S.
The prion curing agent guanidinium chloride specifically inhibits ATP hydrolysis by Hsp104
J. Biol. Chem.
279
7378-7383
2004
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Zeng, X.C.; Bhasin, S.; Wu, X.; Lee, J.G.; Maffi, S.; Nichols, C.J.; Lee, K.J.; Taylor, J.P.; Greene, L.E.; Eisenberg, E.
Hsp70 dynamics in vivo: effect of heat shock and protein aggregation
J. Cell Sci.
117
4991-5000
2004
Homo sapiens
Manually annotated by BRENDA team
Place, S.P.; Hofmann, G.E.
Temperature interactions of the molecular chaperone Hsc70 from the eurythermal marine goby Gillichthys mirabilis
J. Exp. Biol.
204
2675-2682
2001
Gillichthys mirabilis
Manually annotated by BRENDA team
Groemping, Y.; Klostermeier, D.; Herrmann, C.; Veit, T.; Seidel, R.; Reinstein, J.
Regulation of ATPase and chaperone cycle of DnaK from Thermus thermophilus by the nucleotide exchange factor GrpE
J. Mol. Biol.
305
1173-1183
2001
Thermus thermophilus
Manually annotated by BRENDA team
McLaughlin, S.H.; Ventouras, L.A.; Lobbezoo, B.; Jackson, S.E.
Independent ATPase activity of hsp90 subunits creates a flexible assembly platform
J. Mol. Biol.
344
813-826
2004
Homo sapiens
Manually annotated by BRENDA team
Zhang, Z.; Quick, M.K.; Kanelakis, K.C.; Gijzen, M.; Krishna, P.
Characterization of a plant homolog of hop, a cochaperone of hsp90
Plant Physiol.
131
525-535
2003
Glycine max
Manually annotated by BRENDA team
Matambo, T.S.; Odunuga, O.O.; Boshoff, A.; Blatch, G.L.
Overproduction, purification, and characterization of the Plasmodium falciparum heat shock protein 70
Protein Expr. Purif.
33
214-222
2004
Plasmodium falciparum
Manually annotated by BRENDA team
Boshoff, A.; Hennessy, F.; Blatch, G.L.
The in vivo and in vitro characterization of DnaK from Agrobacterium tumefaciens RUOR
Protein Expr. Purif.
38
161-169
2004
Agrobacterium tumefaciens
Manually annotated by BRENDA team
Li, J.; Sha, B.
Crystal structure of the E. coli Hsp100 ClpB N-terminal domain
Structure
11
323-328
2003
Escherichia coli
Manually annotated by BRENDA team
Worrall, L.; Walkinshaw, M.D.
Crystallization and X-ray data analysis of the 10 kDa C-terminal lid subdomain from Caenorhabditis elegans Hsp70
Acta Crystallogr. Sect. F
62
938-943
2006
Caenorhabditis elegans
Manually annotated by BRENDA team
Sharp, S.; Workman, P.
Inhibitors of the HSP90 molecular chaperone: current status
Adv. Cancer Res.
95
323-348
2006
Homo sapiens
Manually annotated by BRENDA team
Deane, E.E.; Woo, N.Y.
Cloning and characterization of the hsp70 multigene family from silver sea bream: Modulated gene expression between warm and cold temperature acclimation
Biochem. Biophys. Res. Commun.
330
776-783
2005
Rhabdosargus sarba (Q596W8), Rhabdosargus sarba (Q596W9)
Manually annotated by BRENDA team
Wadhwa, R.; Takano, S.; Kaur, K.; Aida, S.; Yaguchi, T.; Kaul, Z.; Hirano, T.; Taira, K.; Kaul, S.C.
Identification and characterization of molecular interactions between mortalin/mtHsp70 and HSP60
Biochem. J.
391
185-190
2005
Homo sapiens
Manually annotated by BRENDA team
Li, J.; Wu, Y.; Qian, X.; Sha, B.
Crystal structure of yeast Sis1 peptide-binding fragment and Hsp70 Ssa1 C-terminal complex
Biochem. J.
398
353-360
2006
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Mosser, D.D.; Ho, S.; Glover, J.R.
Saccharomyces cerevisiae Hsp104 enhances the chaperone capacity of human cells and inhibits heat stress-induced proapoptotic signaling
Biochemistry
43
8107-8115
2004
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Chesnokova, L.S.; Witt, S.N.
Switches, catapults, and chaperones: Steady-state kinetic analysis of Hsp70-substrate interactions. [Erratum to document cited in CA143:262085]
Biochemistry
44
13224
2005
Escherichia coli
-
Manually annotated by BRENDA team
Tanaka, N.; Nakao, S.; Chatellier, J.; Tani, Y.; Tada, T.; Kunugi, S.
Effect of the polypeptide binding on the thermodynamic stability of the substrate binding domain of the DnaK chaperone
Biochim. Biophys. Acta
1748
1-8
2005
Escherichia coli
Manually annotated by BRENDA team
Brough, P.A.; Barril, X.; Beswick, M.; Dymock, B.W.; Drysdale, M.J.; Wright, L.; Grant, K.; Massey, A.; Surgenor, A.; Workman, P.
3-(5-Chloro-2,4-dihydroxyphenyl)-pyrazole-4-carboxamides as inhibitors of the Hsp90 molecular chaperone
Bioorg. Med. Chem. Lett.
15
5197-5201
2005
Homo sapiens
Manually annotated by BRENDA team
Zippay, M.L.; Place, S.P.; Hofmann, G.E.
The molecular chaperone Hsc70 from a eurythermal marine goby exhibits temperature insensitivity during luciferase refolding assays
Comp. Biochem. Physiol. A
138A
1-7
2004
Gillichthys mirabilis
Manually annotated by BRENDA team
Takle, H.; McLeod, A.; Andersen, O.
Cloning and characterization of the executioner caspases 3, 6, 7 and Hsp70 in hyperthermic Atlantic salmon (Salmo salar) embryos
Comp. Biochem. Physiol. B Biochem. Mol. Biol.
144
188-198
2006
Salmo salar
Manually annotated by BRENDA team
Kourtidis, A.; Scouras, Z.G.
Analysis and characterization of the transcriptional unit of a new Mytilus galloprovincialis (Mollusca: Bivalvia) hsp70 gene
DNA Seq.
16
36-43
2005
Mytilus galloprovincialis
Manually annotated by BRENDA team
Moro, F.; Fernandez-Saiz, V.; Slutsky, O.; Azem, A.; Muga, A.
Conformational properties of bacterial DnaK and yeast mitochondrial Hsp70. Role of the divergent C-terminal alpha-helical subdomain
FEBS J.
272
3184-3196
2005
Saccharomyces cerevisiae, Escherichia coli
Manually annotated by BRENDA team
Groemping, Y.; Seidel, R.; Reinstein, J.
Balance of ATPase stimulation and nucleotide exchange is not required for efficient refolding activity of the DnaK chaperone
FEBS Lett.
579
5713-5717
2005
Thermus thermophilus
Manually annotated by BRENDA team
Brunt, S.A.; Silver, J.C.
Molecular cloning and characterization of two different cDNAs encoding the molecular chaperone Hsp90 in the oomycete Achlya ambisexualis
Fungal Genet. Biol.
41
239-252
2004
Achlya ambisexualis
Manually annotated by BRENDA team
Yamashita, M.; Hirayoshi, K.; Nagata, K.
Characterization of multiple members of the HSP70 family in platyfish culture cells: molecular evolution of stress protein HSP70 in vertebrates
Gene
336
207-218
2004
Xiphophorus maculatus (Q8UWM8), Xiphophorus maculatus (Q8UWM9), Xiphophorus maculatus (Q8UWN0)
Manually annotated by BRENDA team
Cheng, Q.; Hallmann, A.; Edwards, L.; Miller, S.M.
Characterization of a heat-shock-inducible hsp70 gene of the green alga Volvox carteri
Gene
371
112-120
2006
Volvox carteri
Manually annotated by BRENDA team
Ravaux, J.; Toullec, J.Y.; Leger, N.; Lopez, P.; Gaill, F.; Shillito, B.
First hsp70 from two hydrothermal vent shrimps, Mirocaris fortunata and Rimicaris exoculata: Characterization and sequence analysis
Gene
386
162-172
2006
Mirocaris fortunata (A1XQQ5), Mirocaris fortunata, Rimicaris exoculata (A1XQQ6), Rimicaris exoculata
Manually annotated by BRENDA team
Newton-Howes, J.; Heath, D.D.; Shoemaker, C.B.; Grant, W.N.
Characterisation and expression of an Hsp70 gene from Parastrongyloides trichosuri
Int. J. Parasitol.
36
467-474
2006
Parastrongyloides trichosuri
Manually annotated by BRENDA team
Boesl, B.; Grimminger, V.; Walter, S.
Substrate binding to the molecular chaperone Hsp104 and its regulation by nucleotides
J. Biol. Chem.
280
38170-38176
2005
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Swain, J.F.; Schulz, E.G.; Gierasch, L.M.
Direct comparison of a stable isolated Hsp70 substrate-binding domain in the empty and substrate-bound states
J. Biol. Chem.
281
1605-1611
2006
Escherichia coli
Manually annotated by BRENDA team
Andersson, F.I.; Blakytny, R.; Kirstein, J.; Turgay, K.; Bukau, B.; Mogk, A.; Clarke, A.K.
Cyanobacterial ClpC/HSP100 protein displays intrinsic chaperone activity
J. Biol. Chem.
281
5468-5475
2006
Synechococcus elongatus
Manually annotated by BRENDA team
Wegele, H.; Wandinger, S.K.; Schmid, A.B.; Reinstein, J.; Buchner, J.
Substrate transfer from the chaperone Hsp70 to Hsp90
J. Mol. Biol.
356
802-811
2006
Homo sapiens
Manually annotated by BRENDA team
Targosz, A.; Pierzchalski, P.; Krawiec, A.; Szczyrk, U.; Brzozowski, T.; Konturek, S.J.; Pawlik, W.W.
Helicobacter pylori inhibits expression of heat shock protein 70 (HSP70) in human epithelial cell line. Importance of Cag A protein
J. Physiol. Pharmacol.
57
265-278
2006
Homo sapiens
Manually annotated by BRENDA team
Sjoegren, L.L.; MacDonald, T.M.; Sutinen, S.; Clarke, A.K.
Inactivation of the clpC1 gene encoding a chloroplast Hsp100 molecular chaperone causes growth retardation, leaf chlorosis, lower photosynthetic activity, and a specific reduction in photosystem content
Plant Physiol.
136
4114-4126
2004
Arabidopsis thaliana
Manually annotated by BRENDA team
Chang, L.; Bertelsen, E.B.; Wisen, S.; Larsen, E.M.; Zuiderweg, E.R.; Gestwicki, J.E.
High-throughput screen for small molecules that modulate the ATPase activity of the molecular chaperone DnaK
Anal. Biochem.
372
167-176
2008
Escherichia coli
Manually annotated by BRENDA team
Nagy, M.; Akoev, V.; Zolkiewski, M.
Domain stability in the AAA+ ATPase ClpB from Escherichia coli
Arch. Biochem. Biophys.
453
63-69
2006
Escherichia coli
Manually annotated by BRENDA team
Mao, Y.; Deng, A.; Qu, N.; Wu, X.
ATPase domain of Hsp70 exhibits intrinsic ATP-ADP exchange activity
Biochemistry (Moscow)
71
1222-1229
2006
Bos taurus
Manually annotated by BRENDA team
Hawkins, T.A.; Haramis, A.; Etard, C.; Prodromou, C.; Vaughan, C.K.; Ashworth, R.; Ray, S.; Behra, M.; Holder, N.; Talbot, W.S.; Pearl, L.H.; Strahle, U.; Wilson, S.W.
The ATPase-dependent chaperoning activity of Hsp90a regulates thick filament formation and integration during skeletal muscle myofibrillogenesis
Development
135
1147-1156
2008
Danio rerio
Manually annotated by BRENDA team
Weitzmann, A.; Baldes, C.; Dudek, J.; Zimmermann, R.
The heat shock protein 70 molecular chaperone network in the pancreatic endoplasmic reticulum - a quantitative approach
FEBS J.
274
5175-5187
2007
Canis lupus familiaris
Manually annotated by BRENDA team
Loovers, H.M.; Guinan, E.; Jones, G.W.
Importance of Hsp70 ATPase domain in yeast prion propagation
Genetics
175
621-630
2007
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Boshoff, A.; Stephens, L.L.; Blatch, G.L.
The Agrobacterium tumefaciens DnaK: ATPase cycle, oligomeric state and chaperone properties
Int. J. Biochem. Cell Biol.
40
804-812
2008
Agrobacterium tumefaciens
Manually annotated by BRENDA team
Sugimoto, S.; Yoshida, H.; Mizunoe, Y.; Tsuruno, K.; Nakayama, J.; Sonomoto, K.
Structural and functional conversion of molecular chaperone ClpB from the gram-positive halophilic lactic acid bacterium Tetragenococcus halophilus mediated by ATP and stress
J. Bacteriol.
188
8070-8078
2006
Tetragenococcus halophilus
Manually annotated by BRENDA team
McLaughlin, S.H.; Sobott, F.; Yao, Z.P.; Zhang, W.; Nielsen, P.R.; Grossmann, J.G.; Laue, E.D.; Robinson, C.V.; Jackson, S.E.
The co-chaperone p23 arrests the Hsp90 ATPase cycle to trap client proteins
J. Mol. Biol.
356
746-758
2006
Homo sapiens
Manually annotated by BRENDA team
Schaupp, A.; Marcinowski, M.; Grimminger, V.; Boesl, B.; Walter, S.
Processing of proteins by the molecular chaperone Hsp104
J. Mol. Biol.
370
674-686
2007
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Lee, S.; Choi, J.M.; Tsai, F.T.
Visualizing the ATPase cycle in a protein disaggregating machine: structural basis for substrate binding by ClpB
Mol. Cell
25
261-271
2007
Thermus thermophilus
Manually annotated by BRENDA team
Doyle, S.M.; Shorter, J.; Zolkiewski, M.; Hoskins, J.R.; Lindquist, S.; Wickner, S.
Asymmetric deceleration of ClpB or Hsp104 ATPase activity unleashes protein-remodeling activity
Nat. Struct. Mol. Biol.
14
114-122
2007
Saccharomyces cerevisiae, Escherichia coli
Manually annotated by BRENDA team
Colombo, G.; Morra, G.; Meli, M.; Verkhivker, G.
Understanding ligand-based modulation of the Hsp90 molecular chaperone dynamics at atomic resolution
Proc. Natl. Acad. Sci. USA
105
7976-7981
2008
Homo sapiens
Manually annotated by BRENDA team
Saji, H.; Iizuka, R.; Yoshida, T.; Abe, T.; Kidokoro, S.; Ishii, N.; Yohda, M.
Role of the IXI/V motif in oligomer assembly and function of StHsp14.0, a small heat shock protein from the acidothermophilic archaeon, Sulfolobus tokodaii strain 7
Proteins
71
771-782
2008
Sulfurisphaera tokodaii, Sulfurisphaera tokodaii 7
Manually annotated by BRENDA team
Needham, P.G.; Masison, D.C.
Prion-impairing mutations in Hsp70 chaperone Ssa1: effects on ATPase and chaperone activities
Arch. Biochem. Biophys.
478
167-174
2008
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Watanabe, Y.H.; Nakazaki, Y.; Suno, R.; Yoshida, M.
Stability of the two wings of the coiled-coil domain of ClpB chaperone is critical for its disaggregation activity
Biochem. J.
421
71-77
2009
Thermus thermophilus
Manually annotated by BRENDA team
Sugimoto, S.; Saruwatari, K.; Higashi, C.; Tsuruno, K.; Matsumoto, S.; Nakayama, J.; Sonomoto, K.
In vivo and in vitro complementation study comparing the function of DnaK chaperone systems from halophilic lactic acid bacterium Tetragenococcus halophilus and Escherichia coli
Biosci. Biotechnol. Biochem.
72
811-822
2008
Escherichia coli, Tetragenococcus halophilus (Q93R27), Tetragenococcus halophilus JCM 5888 (Q93R27)
Manually annotated by BRENDA team
Polier, S.; Dragovic, Z.; Hartl, F.U.; Bracher, A.
Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding
Cell
133
1068-1079
2008
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Graf, C.; Stankiewicz, M.; Kramer, G.; Mayer, M.P.
Spatially and kinetically resolved changes in the conformational dynamics of the Hsp90 chaperone machine
EMBO J.
28
602-613
2009
Escherichia coli
Manually annotated by BRENDA team
Karradt, A.; Sobanski, J.; Mattow, J.; Lockau, W.; Baier, K.
NblA, a key protein of phycobilisome degradation, interacts with ClpC, a HSP100 chaperone partner of a cyanobacterial Clp protease
J. Biol. Chem.
283
32394-32403
2008
Nostoc sp. PCC 7120 = FACHB-418 (Q8YST5)
Manually annotated by BRENDA team
Werbeck, N.D.; Schlee, S.; Reinstein, J.
Coupling and dynamics of subunits in the hexameric AAA+ chaperone ClpB
J. Mol. Biol.
378
178-190
2008
Thermus thermophilus
Manually annotated by BRENDA team
Onuoha, S.C.; Coulstock, E.T.; Grossmann, J.G.; Jackson, S.E.
Structural studies on the co-chaperone Hop and its complexes with Hsp90
J. Mol. Biol.
379
732-744
2008
Homo sapiens
Manually annotated by BRENDA team
Bhattacharya, A.; Kurochkin, A.V.; Yip, G.N.; Zhang, Y.; Bertelsen, E.B.; Zuiderweg, E.R.
Allostery in Hsp70 chaperones is transduced by subdomain rotations
J. Mol. Biol.
388
475-490
2009
Thermus thermophilus
Manually annotated by BRENDA team
Southworth, D.R.; Agard, D.A.
Species-dependent ensembles of conserved conformational states define the Hsp90 chaperone ATPase cycle
Mol. Cell
32
631-640
2008
Saccharomyces cerevisiae, Escherichia coli, Homo sapiens
Manually annotated by BRENDA team
Xu, Z.; Page, R.C.; Gomes, M.M.; Kohli, E.; Nix, J.C.; Herr, A.B.; Patterson, C.; Misra, S.
Structural basis of nucleotide exchange and client binding by the Hsp70 cochaperone Bag2
Nat. Struct. Mol. Biol.
15
1309-1317
2008
Homo sapiens
Manually annotated by BRENDA team
Hessling, M.; Richter, K.; Buchner, J.
Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90
Nat. Struct. Mol. Biol.
16
287-293
2009
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Bertelsen, E.B.; Chang, L.; Gestwicki, J.E.; Zuiderweg, E.R.
Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate
Proc. Natl. Acad. Sci. USA
106
8471-8476
2009
Escherichia coli
Manually annotated by BRENDA team
Nagy, M.; Wu, H.C.; Liu, Z.; Kedzierska-Mieszkowska, S.; Zolkiewski, M.
Walker-A threonine couples nucleotide occupancy with the chaperone activity of the AAA+ ATPase ClpB
Protein Sci.
18
287-293
2009
Escherichia coli
Manually annotated by BRENDA team
Neckers, L.; Mollapour, M.; Tsutsumi, S.
The complex dance of the molecular chaperone Hsp90
Trends Biochem. Sci.
34
223-226
2009
Saccharomyces cerevisiae, Escherichia coli, Homo sapiens
Manually annotated by BRENDA team
Wisniewska, M.; Karlberg, T.; Lehtioe, L.; Johansson, I.; Kotenyova, T.; Moche, M.; Schueler, H.
Crystal structures of the ATPase domains of four human Hsp70 isoforms: HSPA1L/Hsp70-hom, HSPA2/Hsp70-2, HSPA6/Hsp70B, and HSPA5/BiP/GRP78
PLoS ONE
5
e8625
2010
Homo sapiens
Manually annotated by BRENDA team
Taldone, T.; Sun, W.; Chiosis, G.
Discovery and development of heat shock protein 90 inhibitors
Bioorg. Med. Chem.
17
2225-2235
2009
Saccharomyces cerevisiae, Homo sapiens
Manually annotated by BRENDA team
Janin, Y.L.
ATPase inhibitors of heat-shock protein 90, second season
Drug Discov. Today
15
342-353
2010
Homo sapiens
Manually annotated by BRENDA team
Cho, H.J.; Gee, H.Y.; Baek, K.H.; Ko, S.K.; Park, J.M.; Lee, H.; Kim, N.D.; Lee, M.G.; Shin, I.
A small molecule that binds to an ATPase domain of Hsc70 promotes membrane trafficking of mutant cystic fibrosis transmembrane conductance regulator
J. Am. Chem. Soc.
133
20267-20276
2011
Homo sapiens
Manually annotated by BRENDA team
Gao, X.C.; Zhou, C.J.; Zhou, Z.R.; Wu, M.; Cao, C.Y.; Hu, H.Y.
The C-terminal helices of heat shock protein 70 are essential for J-domain binding and ATPase activation
J. Biol. Chem.
287
6044-6052
2012
Homo sapiens
Manually annotated by BRENDA team
Liu, Y.; Gierasch, L.; Bahar, I.
Role of Hsp70 ATPase domain intrinsic dynamics and sequence evolution in enabling its functional interactions with NEFs
PLoS Comput. Biol.
6
e1000931
2010
Homo sapiens
-
Manually annotated by BRENDA team
Ngansop, F.; Li, H.; Zolkiewska, A.; Zolkiewski, M.
Biochemical characterization of the apicoplast-targeted AAA+ ATPase ClpB from Plasmodium falciparum
Biochem. Biophys. Res. Commun.
439
191-195
2013
Plasmodium falciparum (Q8IB03), Plasmodium falciparum
Manually annotated by BRENDA team
Aguado, A.; Fernandez-Higuero, J.A.; Cabrera, Y.; Moro, F.; Muga, A.
ClpB dynamics is driven by its ATPase cycle and regulated by the DnaK system and substrate proteins
Biochem. J.
466
561-570
2015
Plasmodium falciparum (Q8IB03)
Manually annotated by BRENDA team
Araujo, T.L.; Borges, J.C.; Ramos, C.H.; Meyer-Fernandes, J.R.; Oliveira Junior, R.S.; Pascutti, P.G.; Foguel, D.; Palhano, F.L.
Conformational changes in human Hsp70 induced by high hydrostatic pressure produce oligomers with ATPase activity but without chaperone activity
Biochemistry
53
2884-2889
2014
Homo sapiens
Manually annotated by BRENDA team
Flores-Perez, U.; Jarvis, P.
Molecular chaperone involvement in chloroplast protein import
Biochim. Biophys. Acta
1833
332-340
2013
Physcomitrium patens, Physcomitrium patens (D2XNF3), Physcomitrium patens (D2XNF4), Pisum sativum, Arabidopsis thaliana (P22953), Arabidopsis thaliana (P22954)
Manually annotated by BRENDA team
Hu, Y.H.; Dang, W.; Zhang, M.; Sun, L.
Japanese flounder (Paralichthys olivaceus) Hsp70: adjuvant effect and its dependence on the intrinsic ATPase activity
Fish Shellfish Immunol.
33
829-834
2012
Paralichthys olivaceus (O93240), Paralichthys olivaceus
Manually annotated by BRENDA team
Yokoyama, Y.; Ohtaki, A.; Jantan, I.; Yohda, M.; Nakamoto, H.
Goniothalamin enhances the ATPase activity of the molecular chaperone Hsp90 but inhibits its chaperone activity
J. Biochem.
157
161-168
2015
Schizosaccharomyces pombe, Synechococcus elongatus, Synechococcus elongatus PCC 7942
Manually annotated by BRENDA team
Cai, K.; Frederick, R.O.; Kim, J.H.; Reinen, N.M.; Tonelli, M.; Markley, J.L.
Human mitochondrial chaperone (mtHSP70) and cysteine desulfurase (NFS1) bind preferentially to the disordered conformation, whereas co-chaperone (HSC20) binds to the structured conformation of the iron-sulfur cluster scaffold protein (ISCU)
J. Biol. Chem.
288
28755-28770
2013
Homo sapiens
Manually annotated by BRENDA team
Yamamoto, S.; Subedi, G.P.; Hanashima, S.; Satoh, T.; Otaka, M.; Wakui, H.; Sawada, K.; Yokota, S.; Yamaguchi, Y.; Kubota, H.; Itoh, H.
ATPase activity and ATP-dependent conformational change in the co-chaperone HSP70/HSP90-organizing protein (HOP)
J. Biol. Chem.
289
9880-9886
2014
Sus scrofa, Sus scrofa (O02705)
Manually annotated by BRENDA team
Yamasaki, T.; Oohata, Y.; Nakamura, T.; Watanabe, Y.H.
Analysis of the cooperative ATPase cycle of the AAA+ chaperone ClpB from Thermus thermophilus by using ordered heterohexamers with an alternating subunit arrangement
J. Biol. Chem.
290
9789-9800
2015
Thermus thermophilus (Q9RA63), Thermus thermophilus
Manually annotated by BRENDA team
Blamowska, M.; Neupert, W.; Hell, K.
Biogenesis of the mitochondrial Hsp70 chaperone
J. Cell Biol.
199
125-135
2012
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Singh, M.; Shah, V.; Tatu, U.
A novel C-terminal homologue of Aha1 co-chaperone binds to heat shock protein 90 and stimulates its ATPase activity in Entamoeba histolytica
J. Mol. Biol.
426
1786-1798
2014
Entamoeba histolytica (Q5KTW9), Entamoeba histolytica, Entamoeba histolytica HM-1: IMSS (Q5KTW9)
Manually annotated by BRENDA team
Bartolini, M.; Wainer, I.W.; Bertucci, C.; Andrisano, V.
The rapid and direct determination of ATPase activity by ion exchange chromatography and the application to the activity of heat shock protein-90
J. Pharm. Biomed. Anal.
73
77-81
2013
Homo sapiens
Manually annotated by BRENDA team
Tyc, J.; Klingbeil, M.M.; Lukes, J.
Mitochondrial heat shock protein machinery hsp70/hsp40 is indispensable for proper mitochondrial DNA maintenance and replication
mBio
6
e02425-14
2015
Trypanosoma brucei
Manually annotated by BRENDA team
General, I.J.; Liu, Y.; Blackburn, M.E.; Mao, W.; Gierasch, L.M.; Bahar, I.
ATPase subdomain IA is a mediator of interdomain allostery in Hsp70 molecular chaperones
PLoS Comput. Biol.
10
e1003624
2014
Escherichia coli
Manually annotated by BRENDA team
Dores-Silva, P.R.; Barbosa, L.R.; Ramos, C.H.; Borges, J.C.
Human mitochondrial Hsp70 (mortalin): shedding light on ATPase activity, interaction with adenosine nucleotides, solution structure and domain organization
PLoS ONE
10
e0117170
2015
Homo sapiens (P38646), Homo sapiens
Manually annotated by BRENDA team
Liu, S.; Wang, J.; Cong, B.; Huang, X.; Chen, K.; Zhang, P.
Characterization and expression analysis of a mitochondrial heat-shock protein 70 gene from the Antarctic moss Pohlia nutans
Polar Biol.
37
1145-1155
2014
Pohlia nutans
-
Manually annotated by BRENDA team
AhYoung, A.P.; Koehl, A.; Cascio, D.; Egea, P.F.
Structural mapping of the ClpB ATPases of Plasmodium falciparum: Targeting protein folding and secretion for antimalarial drug design
Protein Sci.
24
1508-1520
2015
Plasmodium falciparum, Plasmodium falciparum (A0A0L7LXM6)
Manually annotated by BRENDA team
Dhara, A.; Hussain, M.; Datta, D.; Kumar, M.
Insights to the assembly of a functionally active leptospiral ClpP1P2 protease complex along with its ATPase chaperone ClpX
ACS Omega
4
12880-12895
2019
Leptospira interrogans (Q72SG5), Leptospira interrogans, Leptospira interrogans Fiocruz L1-130 (Q72SG5)
Manually annotated by BRENDA team
Ranaweera, C.B.; Glaza, P.; Yang, T.; Zolkiewski, M.
Interaction of substrate-mimicking peptides with the AAA+ ATPase ClpB from Escherichia coli
Arch. Biochem. Biophys.
655
12-17
2018
Escherichia coli
Manually annotated by BRENDA team
Pearl, L.
Review The HSP90 molecular chaperone - an enigmatic ATPase
Biopolymers
105
594-607
2016
Homo sapiens (P07900 and P08238)
Manually annotated by BRENDA team
Krajewska, J.; Arent, Z.; Wieckowski, D.; Zolkiewski, M.; Kedzierska-Mieszkowska, S.
Immunoreactivity of the AAA+ chaperone ClpB from Leptospira interrogans with sera from Leptospira-infected animals
BMC Microbiol.
16
151
2016
Leptospira interrogans
Manually annotated by BRENDA team
Deville, C.; Franke, K.; Mogk, A.; Bukau, B.; Saibil, H.R.
Two-step activation mechanism of the ClpB disaggregase for sequential substrate threading by the main ATPase motor
Cell Rep.
27
3433-3446.e4
2019
Escherichia coli (P63284)
Manually annotated by BRENDA team
Tripathi, P.; Parijat, P.; Patel, V.K.; Batra, J.K.
The amino-terminal domain of Mycobacterium tuberculosis ClpB protein plays a crucial role in its substrate disaggregation activity
FEBS Open Bio
8
1669-1690
2018
Mycobacterium tuberculosis
Manually annotated by BRENDA team
Rotanova, T.V.; Andrianova, A.G.; Kudzhaev, A.M.; Li, M.; Botos, I.; Wlodawer, A.; Gustchina, A.
New insights into structural and functional relationships between LonA proteases and ClpB chaperones
FEBS Open Bio
9
1536-1551
2019
Escherichia coli (P63284), Thermus thermophilus (Q9RA63)
Manually annotated by BRENDA team
Johnston, D.M.; Miot, M.; Hoskins, J.R.; Wickner, S.; Doyle, S.M.
Substrate discrimination by ClpB and Hsp104
Front. Mol. Biosci.
4
36
2017
Saccharomyces cerevisiae, Thermus thermophilus (Q9RA63)
Manually annotated by BRENDA team
Krajewska, J.; Arent, Z.; Zolkiewski, M.; K?dzierska-Mieszkowska, S.
Isolation and identification of putative protein substrates of the AAA+ molecular chaperone ClpB from the pathogenic spirochaete Leptospira interrogans
Int. J. Mol. Sci.
19
E1234
2018
Leptospira interrogans, Leptospira interrogans B42
Manually annotated by BRENDA team
Yokoyama, Y.; Ohtaki, A.; Jantan, I.; Yohda, M.; Nakamoto, H.
Goniothalamin enhances the ATPase activity of the molecular chaperone Hsp90 but inhibits its chaperone activity
J. Biochem.
157
161-168
2015
Schizosaccharomyces pombe, Synechococcus elongatus, Synechococcus elongatus PCC 7942
Manually annotated by BRENDA team
Xu, M.; Marsh, H.; Sevier, C.
A conserved cysteine within the ATPase domain of the endoplasmic reticulum chaperone BiP is necessary for a complete complement of BiP activities
J. Mol. Biol.
428
4168-4184
2016
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Cabrera, Y.; Dublang, L.; Fernandez-Higuero, J.; Albesa-Jove, D.; Lucas, M.; Viguera, A.; Guerin, M.; Vilar, J.; Muga, A.; Moro, F.
Regulation of human Hsc70 ATPase and chaperone activities by Apg2 role of the acidic subdomain
J. Mol. Biol.
431
444-461
2019
Homo sapiens
Manually annotated by BRENDA team
Dutkiewicz, R.; Nowak, M.; Craig, E.; Marszalek, J.
Fe-S cluster Hsp70 chaperones the ATPase cycle and protein interactions
Methods Enzymol.
595
161-184
2017
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Schulze, A.; Beliu, G.; Helmerich, D.; Schubert, J.; Pearl, L.; Prodromou, C.; Neuweiler, H.
Cooperation of local motions in the Hsp90 molecular chaperone ATPase mechanism
Nat. Chem. Biol.
12
628-635
2016
Saccharomyces cerevisiae (P02829), Saccharomyces cerevisiae
Manually annotated by BRENDA team
Goloubinoff, P.; Sassi, A.S.; Fauvet, B.; Barducci, A.; De Los Rios, P.
Chaperones convert the energy from ATP into the nonequilibrium stabilization of native proteins
Nat. Chem. Biol.
14
388-395
2018
Escherichia coli
Manually annotated by BRENDA team
Mercier, R.; Wolmarans, A.; Schubert, J.; Neuweiler, H.; Johnson, J.; LaPointe, P.
The conserved NxNNWHW motif in Aha-type co-chaperones modulates the kinetics of Hsp90 ATPase stimulation
Nat. Commun.
10
1273
2019
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Krajewska, J.; Modrak-Wojcik, A.; Arent, Z.J.; Wieckowski, D.; Zolkiewski, M.; Bzowska, A.; Kedzierska-Mieszkowska, S.
Characterization of the molecular chaperone ClpB from the pathogenic spirochaete Leptospira interrogans
PLoS ONE
12
e0181118
2017
Escherichia coli, Leptospira interrogans
Manually annotated by BRENDA team
Fernandez-Higuero, J.A.; Aguado, A.; Perales-Calvo, J.; Moro, F.; Muga, A.
Activation of the DnaK-ClpB complex is regulated by the properties of the bound substrate
Sci. Rep.
8
5796
2018
Escherichia coli
Manually annotated by BRENDA team