Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 3.4.24.83 - anthrax lethal factor endopeptidase and Organism(s) Bacillus anthracis and UniProt Accession P15917

for references in articles please use BRENDA:EC3.4.24.83
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Bacillus anthracis
UNIPROT: P15917 not found.
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Bacillus anthracis
The expected taxonomic range for this enzyme is: Bacteria, Eukaryota, Archaea
Reaction Schemes
Preferred amino acids around the cleavage site can be denoted BBBBxHx-/-H, in which B denotes Arg or Lys, H denotes a hydrophobic amino acid, and x is any amino acid. The only known protein substrates are mitogen-activated protein (MAP) kinase kinases
Synonyms
lethal factor, anthrax lethal toxin, anthrax lethal factor, bacillus anthracis lethal toxin, anthrax toxin lethal factor, anthrax lf, anthrax lethal factor protease, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
anthrax lethal factor
-
anthrax lethal toxin
anthrax toxin lethal factor
-
anthrax lethal factor
anthrax lethal factor protease
-
-
anthrax lethal toxin
anthrax LF
-
-
Bacillus anthracis lethal toxin
-
-
lethal factor
lethal factor of anthrax toxin
the C-terminal region carries out the metalloprotease activity, while the N-terminal domain (residues 1-288) is responsible for protective antigen binding
lethal toxin
LF
-
-
-
-
REACTION
REACTION DIAGRAM
COMMENTARY hide
ORGANISM
UNIPROT
LITERATURE
Preferred amino acids around the cleavage site can be denoted BBBBxHx-/-H, in which B denotes Arg or Lys, H denotes a hydrophobic amino acid, and x is any amino acid. The only known protein substrates are mitogen-activated protein (MAP) kinase kinases
show the reaction diagram
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
hydrolysis of peptide bond
-
-
-
-
CAS REGISTRY NUMBER
COMMENTARY hide
477950-41-7
-
9001-92-7
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
(7-methoxycoumarin-4-yl)acetyl-AKVYPYPME-(2,4-dinitrophenyldiaminopropionic acid) + H2O
(7-methoxycoumarin-4-yl)acetyl-AKVYP + YPME-(2,4-dinitrophenyldiaminopropionic acid)
show the reaction diagram
-
-
-
?
acetyl-Gly-Tyr-beta-Ala-Arg-Arg-Arg-Arg-Arg-Arg-Arg-Arg-Val-Leu-Arg-4-nitroanilide + H2O
?
show the reaction diagram
-
-
-
?
acetyl-Gly-Tyr-beta-Ala-Arg-Arg-Arg-Arg-Arg-Arg-Arg-Arg-Val-Leu-Arg-7-amido-4-methylcoumarin + H2O
?
show the reaction diagram
-
-
-
?
acetyl-GYbetaARRRRRRRRVLR-4-nitroanilide + H2O
?
show the reaction diagram
In2LF + H2O
In2LF fragments
show the reaction diagram
-
-
-
?
MAPKKide + H2O
?
show the reaction diagram
-
-
-
?
MEK-1 + H2O
?
show the reaction diagram
-
-
-
?
MEK-2 + H2O
?
show the reaction diagram
-
-
-
?
mitogen-activated protein kinase kinase + H2O
?
show the reaction diagram
mitogen-activated protein kinase kinase 1 + H2O
?
show the reaction diagram
mitogen-activated protein kinase kinase 2 + H2O
?
show the reaction diagram
-
-
-
?
mitogen-activated protein kinase kinase 3 + H2O
?
show the reaction diagram
-
-
-
?
mitogen-activated protein kinase kinase 4 + H2O
?
show the reaction diagram
-
-
-
?
mitogen-activated protein kinase kinase 6 + H2O
?
show the reaction diagram
-
-
-
?
mitogen-activated protein kinase kinase-1 + H2O
?
show the reaction diagram
-
-
-
?
mitogen-activated protein kinase kinase-3 + H2O
?
show the reaction diagram
-
-
-
?
mitogen-activated protein kinase kinase-4 + H2O
?
show the reaction diagram
-
-
-
?
mitogen-activated protein kinase kinase-6 + H2O
?
show the reaction diagram
-
-
-
?
mitogen-activated protein kinase kinase-7 + H2O
?
show the reaction diagram
-
-
-
?
NACHT leucine-rich repeat and pyrin domain-containing protein 1B + H2O
?
show the reaction diagram
-
-
-
?
NOD-like receptor protein-1 + H2O
?
show the reaction diagram
lethal factor cleaves rat NOD-like receptor protein Nlrp1. Cleavage is required for toxin-induced inflammasome activation, interleukin IL-1beta release, and macrophage pyroptosis
-
-
?
phosphorylated ERK1/2 + H2O
?
show the reaction diagram
-
-
-
?
phosphorylated JNK1/2 + H2O
?
show the reaction diagram
-
-
-
?
phosphorylated p38 + H2O
?
show the reaction diagram
-
-
-
?
R9LF-1 + H2O
svR9LF-1 + NH2OH
show the reaction diagram
-
-
-
?
83 kDa full-length protective antigen + H2O
20 kDa N-terminal fragment of protective antigen + 63 kDa N-terminal fragment of protective antigen
show the reaction diagram
-
-
-
?
acetyl-Gly-Tyr-betaAla-RRRRRRRRVLR-4-nitroanilide + H2O
?
show the reaction diagram
-
-
-
-
?
AcG-Y-betaA-R-R-R-A-R-R-R-R-V-L-R-4-nitroanilide + H2O
AcG-Y-betaA-R-R-R-A-R-R-R-R-V-L-R + 4-nitroaniline
show the reaction diagram
-
-
-
-
?
AcM-L-A-R-R-R-P-V-L-P-4-nitroanilide + H2O
AcM-L-A-R-R-R-P-V-L-P + 4-nitroaniline
show the reaction diagram
-
-
-
-
?
AcR-R-R-R-V-L-R-4-methylcoumarin-7-amide + H2O
AcR-R-R-R-V-L-R + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
AcR-R-R-R-V-L-R-4-nitroanilide + H2O
AcR-R-R-R-V-L-R + 4-nitroaniline
show the reaction diagram
-
-
-
-
?
dansyl-RDIRRITLFSLH
?
show the reaction diagram
-
i.e. S20D, substrate isolated from phage library
-
-
?
Dsor1 kinase + H2O
?
show the reaction diagram
-
Dsor1 is a Drosophila mitogen-activated protein kinase kinase
-
-
?
fluorescein-QRRKKVYPYPME + H2O
fluorescein-QRRKKVYP + YPME
show the reaction diagram
-
i.e. LF15, peptide substrate isolated from second-iteration substrate phage library
-
-
?
fluorescence resonance energy transfer peptide MAPKKide + H2O
?
show the reaction diagram
-
-
-
-
?
Hep kinase + H2O
?
show the reaction diagram
-
Hep (Hemipterous) is a Drosophila mitogen-activated protein kinase kinase
incubation of Hep with anthrax lethal factor generates a product of about 44 kDa
-
?
Lic kinase + H2O
?
show the reaction diagram
-
Lic (Licorne) is a Drosophila mitogen-activated protein kinase kinase
-
-
?
MAP kinase kinase 3b + H2O
?
show the reaction diagram
-
-
-
-
?
Mca-KKPTPIQLN-Dnp + H2O
Mca-KKPTP + IQLN-Dnp
show the reaction diagram
-
-
-
-
?
Mca-KKVYPYPMEK-Dnp + H2O
Mca-KKVYP + YPMEK-Dnp
show the reaction diagram
-
-
-
-
?
Mca-KKWLMYPLEK-Dnp + H2O
Mca-KKWLM + YPLEK-Dnp
show the reaction diagram
-
-
-
-
?
MEK1 + H2O
?
show the reaction diagram
MEK2 + H2O
?
show the reaction diagram
-
mitogen-activated protein kinase kinase, cleavage between residues 10-11
-
-
?
mitogen activated protein kinase kinase + H2O
?
show the reaction diagram
-
-
-
-
?
mitogen activated protein kinase kinase 1 + H2O
?
show the reaction diagram
-
-
-
-
?
mitogen-activated protein kinase + H2O
?
show the reaction diagram
mitogen-activated protein kinase 3 + H2O
?
show the reaction diagram
-
-
-
-
?
mitogen-activated protein kinase kinase + H2O
?
show the reaction diagram
mitogen-activated protein kinase kinase 1 + H2O
?
show the reaction diagram
mitogen-activated protein kinase kinase 2 + H2O
?
show the reaction diagram
mitogen-activated protein kinase kinase 3 + H2O
?
show the reaction diagram
mitogen-activated protein kinase kinase 3b + H2O
?
show the reaction diagram
-
-
-
-
?
mitogen-activated protein kinase kinase 4 + H2O
?
show the reaction diagram
mitogen-activated protein kinase kinase 6 + H2O
?
show the reaction diagram
mitogen-activated protein kinase kinase 7 + H2O
?
show the reaction diagram
MKK3b + H2O
?
show the reaction diagram
-
mitogen-activated protein kinase kinase, cleavage between residues 26-27
-
-
?
MKK4 + H2O
?
show the reaction diagram
-
mitogen-activated protein kinase kinase, cleavage between residues 45-46 and 58-59
-
-
?
MKK6b + H2O
?
show the reaction diagram
-
mitogen-activated protein kinase kinase, cleavage between residues 14-15
-
-
?
MKK7beta + H2O
?
show the reaction diagram
-
mitogen-activated protein kinase kinase, cleavage between residues 44-45 and 76-77
-
-
?
SKARRKKVYPYPXENFPPSTARPT + H2O
SKARRKKVYP + YPXENFPPSTARPT
show the reaction diagram
-
-
-
-
?
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
MEK-1 + H2O
?
show the reaction diagram
-
-
-
?
MEK-2 + H2O
?
show the reaction diagram
-
-
-
?
mitogen-activated protein kinase kinase + H2O
?
show the reaction diagram
mitogen-activated protein kinase kinase 1 + H2O
?
show the reaction diagram
mitogen-activated protein kinase kinase-1 + H2O
?
show the reaction diagram
-
-
-
?
mitogen-activated protein kinase kinase-3 + H2O
?
show the reaction diagram
-
-
-
?
mitogen-activated protein kinase kinase-4 + H2O
?
show the reaction diagram
-
-
-
?
mitogen-activated protein kinase kinase-6 + H2O
?
show the reaction diagram
-
-
-
?
mitogen-activated protein kinase kinase-7 + H2O
?
show the reaction diagram
-
-
-
?
NACHT leucine-rich repeat and pyrin domain-containing protein 1B + H2O
?
show the reaction diagram
-
-
-
?
MAP kinase kinase 3b + H2O
?
show the reaction diagram
-
-
-
-
?
Mca-KKPTPIQLN-Dnp + H2O
Mca-KKPTP + IQLN-Dnp
show the reaction diagram
-
-
-
-
?
Mca-KKVYPYPMEK-Dnp + H2O
Mca-KKVYP + YPMEK-Dnp
show the reaction diagram
-
-
-
-
?
Mca-KKWLMYPLEK-Dnp + H2O
Mca-KKWLM + YPLEK-Dnp
show the reaction diagram
-
-
-
-
?
mitogen-activated protein kinase + H2O
?
show the reaction diagram
mitogen-activated protein kinase kinase + H2O
?
show the reaction diagram
-
-
-
-
?
mitogen-activated protein kinase kinase 1 + H2O
?
show the reaction diagram
-
-
-
-
?
mitogen-activated protein kinase kinase 2 + H2O
?
show the reaction diagram
-
-
-
-
?
mitogen-activated protein kinase kinase 3 + H2O
?
show the reaction diagram
-
-
-
-
?
mitogen-activated protein kinase kinase 4 + H2O
?
show the reaction diagram
-
-
-
-
?
mitogen-activated protein kinase kinase 6 + H2O
?
show the reaction diagram
-
-
-
-
?
mitogen-activated protein kinase kinase 7 + H2O
?
show the reaction diagram
-
-
-
-
?
SKARRKKVYPYPXENFPPSTARPT + H2O
SKARRKKVYP + YPXENFPPSTARPT
show the reaction diagram
-
-
-
-
?
additional information
?
-
METALS and IONS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
Co2+
Co2+ is capable to reactivate the apoprotein of lethal factor to a level comparable to that noted for the native zinc enzyme. Co2+-substituted lethal factor is not capable of killing RAW 264.7 murine macrophage-like cells
Mn2+
Co2+ is capable to reactivate the apoprotein of lethal factor to a level comparable to that noted for the native zinc enzyme. Co2+-substituted lethal factor is not capable of killing RAW 264.7 murine macrophage-like cells
Ni2+
Co2+ is capable to reactivate the apoprotein of lethal factor to a level comparable to that noted for the native zinc enzyme. Co2+-substituted lethal factor is not capable of killing RAW 264.7 murine macrophage-like cells
Ca2+
-
activation ability of divalent ions decreases in the follwing order: Zn2+ Ca2+ Mn2+ Mg2+, with Mg2+ completely unable to activate the enzyme
Co2+
-
Co2+ is capable of directly replacing lethal factors active site Zn2+ to yield a hyperactive enzyme with 2fold higher kcat value and about 2.5fold increased catalytic efficiency
Mn2+
-
activation ability of divalent ions decreases in the follwing order: Zn2+ Ca2+ Mn2+ Mg2+, with Mg2+ completely unable to activate the enzyme
additional information
-
Mg2+ is unable to activate
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
(2R)-2-[(4-fluoro-3-methoxybenzene-1-sulfonyl)(2-methylpropyl)amino]-N-hydroxy-3-methylbutanamide
-
(2R)-2-[(4-fluoro-3-methylbenzene-1-sulfonyl)(2-methylpropyl)amino]-N-hydroxy-3-methylbutanamide
-
(2R)-2-[(4-fluoro-3-methylbenzene-1-sulfonyl)amino]-N-hydroxy-2-(oxan-4-yl)acetamide
(2R)-2-[(4-fluoro-3-methylbenzene-1-sulfonyl)[(4-nitrophenyl)methyl]amino]-N-hydroxypropanamide
-
(2S)-2-(3,4-dichlorophenyl)-N-hydroxy-3-(3-methylphenyl)propanamide
-
(2S)-2-(4-fluoro-3,5-dimethylbenzyl)-6-[[1-(4-fluorophenyl)propyl]amino]-N-hydroxyhexanamide
i.e. PT-8541
(2S)-2-[(2R)-2-(4-fluorophenyl)-2-methoxyethyl]-6-[[1-(4-fluorophenyl)propyl]amino]-N-hydroxyhexanamide
i.e. PT-8420
(2S)-6-[(1R)-N-1-(4-fluorophenyl)propan]aminoamino-2-(4-fluoro-3,5-dimethylbenzyl)-N-hydroxyhexanamide
inhibitor provides protection against lethal infection when administered as a monotherapy. Two doses (10 mg/kg) administered at 2 h and 8 h after spore infection are sufficient to provide a significant survival benefit in infected mice
(2S)-6-[(4-fluorobenzyl)amino]-2-[(2R)-2-(4-fluorophenyl)-2-methoxyethyl]-N-hydroxyhexanamide
i.e. LFI4
(2S)-6-[N-1-(4-fluorophenyl)propan]amino-2-[(2R)-2-(4-fluorophenyl)-2-methoxyethyl]-N-hydroxyhexanamide
inhibitor provides protection against lethal infection when administered as a monotherapy. Two doses (10 mg/kg) administered at 2 h and 8 h after spore infection are sufficient to provide a significant survival benefit in infected mice
(D-Arg)9-Trp-Leu-Met-CONHOH
-
(D-Arg)9-Val-Leu-Arg-CONHOH
-
1,4-dihydroxy-10-methoxy-5,8-dimethyl-3,7-dioxo-1,3-dihydro-7H-2,6,12-trioxabenzo[5,6]cyclohepta[1,2-e]indene-11-carbaldehyde
i.e. stictic acid
1-[([1,1'-biphenyl]-4-yl)methyl]-3-hydroxy-2-methylpyridine-4(1H)-thione
i.e. 94G5
2-[[benzyl(ethyl)amino]methyl]-4,6-diiodophenol
-
2-[[benzyl(ethyl)amino]methyl]-4-bromophenol
-
2-[[benzyl(ethyl)amino]methyl]-4-chlorophenol
-
3,5-diphenyl-2,6-bis(sulfanyl)-4H-thiopyran-4-one
-
3-(benzyloxy)-1-(3,4-dichlorobenzene-1-sulfonyl)-N-hydroxypyrrolidine-2-carboxamide
-
3-(N-hydroxycarboxamido)-2-isobutylpropanoyl-Trp-methylamide
inhibitor used for structure-based pharmacopore model
4-methyl-N-[(1R)-1-[5-(naphthalen-1-yl)-2-(prop-2-en-1-yl)tetrahydrofuran-3-yl]ethyl]benzenesulfonamide
i.e. SM157, non-competitive inhibition
-
5-[4-[(E)-2-[(2R,3R,3'R)-3'-(3,5-dihydroxyphenyl)-6'-hydroxy-2,2'-bis(4-hydroxyphenyl)-2,2',3,3'-tetrahydro-3,4'-bi-1-benzofuran-5-yl]ethenyl]-6-hydroxy-2-(3-hydroxyphenyl)-2,3-dihydro-1-benzofuran-3-yl]benzene-1,3-diol
-
guanidine hydrochloride
-
guanidine isothiocyanate
-
In2LF
i.e. Ac-Gly-Tyr-betaAla-(L-Arg)8-Val-Leu-Arg-CONHOH, competitive inhibitor
N,N'-bis(4-amino-2-methylquinolin-6-yl)urea
i.e. NSC12155, competitive inhibition
N-(4-amino-2-methylquinolin-6-yl)-3-(2-methoxyphenyl)propanamide
-
N-(4-amino-2-methylquinolin-6-yl)-4-(quinolin-6-yl)benzamide
-
N-2-benzyl-N-2-[(4-fluoro-3-methylphenyl)sulfonyl]-N-hydroxy-D-alaninamide
-
N-2-[4-(aminomethyl)benzyl]-N-2-[(4-fluoro-3-methylphenyl)sulfonyl]-N-hydroxy-D-alaninamide
-
N-hydroxy-N2-[[3-(methoxymethyl)phenyl]sulfonyl]-N2-(2-methylpropyl)-D-valinamide
-
N-[([1,1'-biphenyl]-4-yl)methyl]-3-hydroxy-4-sulfanylidene-4H-pyran-2-carbothioamide
-
N-[([1,1'-biphenyl]-4-yl)methyl]-3-hydroxy-6-methyl-4-sulfanylidene-4H-pyran-2-carboxamide
i.e. AM-2S
N-[3-(1,3-benzothiazol-2-yl)-4-methylthiophen-2-yl]-4-chlorobenzene-1-sulfonamide
-
N-[3-(1,3-benzothiazol-2-yl)thiophen-2-yl]-4'-methoxy[1,1'-biphenyl]-4-sulfonamide
-
N2-[(4-fluoro-3-methylphenyl)sulfonyl]-N-hydroxy-N-2-(4-nitrobenzyl)-D-alaninamide
-
(1E,6E)-4-(1,3-dithian-2-ylidene)-1,7-difuran-2-ylhepta-1,6-diene-3,5-dione
-
-
(1Z,6E)-4-(1,3-dithian-2-ylidene)-1,7-difuran-2-ylhepta-1,6-diene-3,5-dione
-
-
(2R)-N4-hydroxy-N1-[(2S)-3-(1H-indol-3-yl)-1-(methylamino)-1-oxopropan-2-yl]-2-(2-methylpropyl)butanediamide
-
inhibitor identified by in silico high-throughput virtual screening protocol
(3S)-N-hydroxy-4-methyl-3-([[(2R)-1-(methylamino)-1-oxo-4-phenylbutan-2-yl]amino]methyl)pentanamide
-
inhibitor identified by in silico high-throughput virtual screening protocol
(4E)-4-[(2,4-dihydroxyphenyl)methylidene]-1,2,5-thiadiazolidin-3-one
-
-
(5E)-5-(1,3-benzothiazol-2-ylimino)-1-(4-sulfophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid
-
-
(5Z)-3-(4-hydroxyphenyl)-5-[[5-(4-nitrophenyl)furan-2-yl]methylidene]-2-thioxo-1,3-thiazolidin-4-one
-
-
(5Z)-3-(4-methoxyphenyl)-2-thioxo-5-([5-[3-(trifluoromethyl)phenyl]furan-2-yl]methylidene)-1,3-thiazolidin-4-one
-
-
(5Z)-3-(furan-2-ylmethyl)-5-[[5-(3-nitrophenyl)furan-2-yl]methylidene]-2-thioxo-1,3-thiazolidin-4-one
-
-
(5Z)-3-(furan-2-ylmethyl)-5-[[5-(4-nitrophenyl)furan-2-yl]methylidene]-2-thioxo-1,3-thiazolidin-4-one
-
-
(5Z)-5-[(2,4-dihydroxyphenyl)methylidene]-2-thioxoimidazolidin-4-one
-
-
(5Z)-5-[[5-(2-nitrophenyl)furan-2-yl]methylidene]-3-(2-phenylethyl)-2-thioxo-1,3-thiazolidin-4-one
-
-
(5Z)-5-[[5-(3,4-dichlorophenyl)furan-2-yl]methylidene]-2-thioxo-1,3-thiazolidin-4-one
-
-
(5Z)-5-[[5-(4-bromo-3-chlorophenyl)furan-2-yl]methylidene]-2-thioxo-1,3-thiazolidin-4-one
-
-
(5Z)-5-[[5-(4-chlorophenyl)furan-2-yl]methylidene]-3-(furan-2-ylmethyl)-2-thioxo-1,3-thiazolidin-4-one
-
-
(5Z)-5-[[5-(4-fluorophenyl)furan-2-yl]methylidene]-3-prop-2-en-1-yl-2-thioxo-1,3-thiazolidin-4-one
-
-
(9E)-N-[2-(2,4,5-trihydroxyphenyl)ethyl]octadec-9-enamide
-
-
(9E)-N-[2-(3,4,5-trihydroxyphenyl)ethyl]octadec-9-enamide
-
-
(9Z)-N-(3,4-dihydroxybenzyl)octadec-9-enamide
-
-
(9Z)-N-[2-(3,4-dihydroxyphenyl)ethyl]octadec-9-enamide
-
-
(D-R)9LPY-CO-NHOH
-
-
(D-R)9VLR-CO-NHOH
-
-
(D-R)9WLM-CO-NHOH
-
-
1-[(1S,2R,3S,4S,6S)-2-amino-6-[(6-amino-2,6-dideoxy-a-D-arabino-hexopyranosyl)oxy]-3,4-dihydroxycyclohexyl]guanidine
-
-
2-([benzyl(ethyl)amino]methyl)-6-iodo-4-methylphenol
-
inhibitor identified by in silico high-throughput virtual screening protocol
2-chloro-4-(5-[(Z)-[(3-cyano-4,5,6,7-tetrahydro-1-benzothiophen-2-yl)imino]methyl]furan-2-yl)benzoic acid
-
-
2-chloro-4-(5-[(Z)-[4-oxo-3-(pyridin-3-ylmethyl)-2-thioxo-1,3-thiazolidin-5-ylidene]methyl]furan-2-yl)benzoic acid
-
-
2-chloro-4-[5-[(Z)-(4-oxo-3-prop-2-en-1-yl-2-thioxo-1,3-thiazolidin-5-ylidene)methyl]furan-2-yl]benzoic acid
-
-
2-chloro-4-[[(4Z)-4-[[4-(methylsulfanyl)phenyl]methylidene]-5-oxo-2-phenyl-4,5-dihydro-1H-imidazol-1-yl]sulfamoyl]benzoic acid
-
-
2-chloro-5-(2,5-dimethyl-1H-pyrrol-1-yl)benzoic acid
-
-
2-chloro-5-[(4Z)-3-methyl-4-[[4-(1-methylethyl)phenyl]methylidene]-5-oxo-4,5-dihydro-1H-pyrazol-1-yl]benzoic acid
-
-
2-chloro-5-[(4Z)-4-[[5-(4-chlorophenyl)furan-2-yl]methylidene]-3-methyl-5-oxo-4,5-dihydro-1H-pyrazol-1-yl]benzoic acid
-
-
2-chloro-5-[[(4Z)-4-[[4-(methylsulfanyl)phenyl]methylidene]-5-oxo-2-phenylimidazolidin-1-yl]sulfamoyl]benzoic acid
-
-
2-hydroxy-5-(5-[(Z)-[2-imino-4-oxo-3-(1,3-thiazol-2-yl)-1,3-thiazolidin-5-ylidene]methyl]furan-2-yl)benzoic acid
-
-
2-hydroxy-5-[5-[(Z)-[2-imino-3-[imino(methylsulfanyl)methyl]-4-oxo-1,3-thiazolidin-5-ylidene]methyl]furan-2-yl]benzoic acid
-
-
2-thiolacetyl-YPM-amide
-
-
2-[[(2-amino-2-carboxyethyl)sulfanyl]methyl]-5-phenylfuran-3-carboxylic acid
-
-
3,3'-methanediylbis(6-hydroxybenzoic acid)
-
-
3,4-dihydroxy-N'-[(1Z)-(2-hydroxy-5-nitrophenyl)methylidene]benzohydrazide
-
-
3-(5-[(Z)-[1-(3-chlorophenyl)-3,5-dioxopyrazolidin-4-ylidene]methyl]furan-2-yl)benzoic acid
-
-
3-[(5E)-5-[(3-bromo-4-methoxyphenyl)methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]propanoic acid
-
-
3-[(5Z)-5-[(3-bromo-4-methoxyphenyl)methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]propanoic acid
-
-
3-[(5Z)-5-[[5-(2-nitrophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]propanoic acid
-
-
3-[(5Z)-5-[[5-(4-chlorophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]propanoic acid
-
-
3-[(5Z)-5-[[5-(4-nitrophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]propanoic acid
-
-
4-(2,5-dimethyl-1H-pyrrol-1-yl)-2-hydroxybenzoic acid
-
-
4-(5-[(Z)-[3-(4-nitrophenyl)-4-oxo-2-thioxo-1,3-thiazolidin-5-ylidene]methyl]furan-2-yl)benzoic acid
-
-
4-phenylaminocarbonylbis-demethoxycurcumin
-
inhibitory potency is comparable with curcumin, while showing improved solubility and stability
4-[(5Z)-5-[[5-(3-nitrophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]butanoic acid
-
-
4-[(5Z)-5-[[5-(4-bromophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]butanoic acid
-
-
4-[5-[(E)-(5-cyano-2-hydroxy-4-methyl-6-oxopyridin-3(6H)-ylidene)methyl]furan-2-yl]benzenesulfonamide
-
-
4-[5-[(Z)-(3-benzyl-4-oxo-2-thioxo-1,3-thiazolidin-5-ylidene)methyl]furan-2-yl]benzoic acid
-
-
4-[5-[(Z)-[4-oxo-2-thioxo-3-[3-(trifluoromethyl)phenyl]-1,3-thiazolidin-5-ylidene]methyl]furan-2-yl]benzoic acid
-
-
4-[[(4-chlorophenyl)carbamoyl]amino]-N-(5-ethyl-1,3,4-thiadiazol-2-yl)benzenesulfonamide
-
-
5-(4-carboxy-3-chlorophenyl)-2-[(Z)-[(3-cyano-4,5,6,7-tetrahydro-1-benzothiophen-2-yl)imino]methyl]furan-3-carboxylic acid
-
-
5-bromo-2-(5-[(Z)-[1-(3-carboxyphenyl)-5-oxo-3-(trifluoromethyl)-1,5-dihydro-4H-pyrazol-4-ylidene]methyl]furan-2-yl)benzoic acid
-
-
5-bromo-2-(5-[(Z)-[1-(3-carboxyphenyl)-5-oxo-3-(trifluoromethyl)-1,5-dihydro-4H-pyrazol-4-ylidene]methyl]uran-2-yl)benzoic acid
-
-
5-chloro-2-[5-[(E)-(1,5-dioxo-6,7,8,9-tetrahydro-5H-[1]benzothieno[3,2-e][1,3]thiazolo[3,2-a]pyrimidin-2(1H)-ylidene)methyl]furan-2-yl]benzoic acid
-
-
6-S-(3-aminopropyl)-6-thio-beta-D-cyclodextrin
-
-
6-S-(8-aminooctyl)-6-thio-beta-D-cyclodextin
-
-
6-S-[3-(aminomethyl)benzyl]-6-thio-beta-D-cyclodextrin
-
-
6-S-[4-(aminomethyl)benzyl]-6-thio-beta-D-cyclodextrin
-
-
8-[(E)-[[4-(2,3-dihydro-1,3-thiazol-2-ylsulfamoyl)phenyl]imino]methyl]-4H-1,3-benzodioxine-6-carboxylic acid
-
-
acetyl-GYbetaARRRRRRRRVLR-hydroxamate
-
-
AcG-Y-betaA-R-R-R-A-R-R-R-R-V-L-R-4-nitroanilide
-
substrate inhibition
AcM-L-A-R-R-R-P-V-L-P-4-nitroanilide
-
substrate inhibition
AcR-R-R-R-V-L-R-4-methylcoumarin-7-amide
-
substrate inhibition
AcR-R-R-R-V-L-R-4-nitroanilide
-
substrate inhibition
C-terminal dimer of the protective antigen binding domain of anthrax lethal factor
-
-
-
C-terminal trimer of the protective antigen binding domain of anthrax lethal factor
-
-
-
celastrol
-
celastrol, a quinine methide triterpene derived from a plant extract used in herbal medicine, inhibits lethal toxin-induced death of RAW264.7 murine macrophages. Celastrol does not prevent cleavage of mitogen activated protein kinase kinase 1. Celastrol confers almost complete protection when it is added up to 1.5 h after intoxication, indicating that it can rescue cells in the late stages of intoxication. Celastrol inhibits the proteasome-dependent degradation of proteins in RAW264.7 cells. Celastrol blocks stimulation of IL-18 processing, indicating that celastrol acts upstream of inflammasome activation
curcumin
-
inhibits by both decreasing catalytic capacity and increasing substrate affinity
fluvastatin
-
statins attenuate lethal factor action action. statin treatment maintains macrophage cell viability above 60% of untreated control cells even after 9 h of lethal toxin treatment. Statins decrease mitogen-activated protein kinase cleavage
mevastatin
-
statins attenuate lethal factor action action. statin treatment maintains macrophage cell viability above 60% of untreated control cells even after 9 h of lethal toxin treatment. Statins decrease mitogen-activated protein kinase cleavage
MKARRKKVYP-NHOH
-
-
N'1,N'4-bis[(1E)-(2-hydroxy-5-methylphenyl)methylidene]benzene-1,4-dicarbohydrazide
-
-
N'1-[(1E)-(2-hydroxyphenyl)methylidene]-N'4-[(1Z)-(2-hydroxyphenyl)methylidene]benzene-1,4-dicarbohydrazide
-
-
N'1-[(1E)-(5-fluoro-2-hydroxyphenyl)methylidene]-N'4-[(1Z)-(5-fluoro-2-hydroxyphenyl)methylidene]benzene-1,4-dicarbohydrazide
-
-
N,N''',N'''''',N'''''''''-[[(1R,3S,4S,6R)-4,6-dicarbamimidamidocyclohexane-1,3-diyl]bis(oxybenzene-1,2,4-triyl)]tetraguanidine
-
-
N,N'''-[(1R,3S)-4-(2,4-dicarbamimidamidonaphthalen-1-yl)-6-hydroxycyclohexane-1,3-diyl]diguanidine
-
-
N,N'''-[(1R,3S)-4-(2-amino-1H-benzimidazol-7-yl)-6-hydroxycyclohexane-1,3-diyl]diguanidine
-
-
N,N'''-[(1R,3S,4R,5R,6S)-4-[(2,6-dicarbamimidamido-2,6-dideoxy-a-D-glucopyranosyl)oxy]-5,6-dihydroxycyclohexane-1,3-diyl]diguanidine
-
-
N,N'''-[(1R,3S,4R,6R)-4-(2-carbamimidamidophenyl)-6-hydroxycyclohexane-1,3-diyl]diguanidine
-
-
N,N'''-[(1R,3S,4R,6R)-4-(4-carbamimidamidonaphthalen-1-yl)-6-hydroxycyclohexane-1,3-diyl]diguanidine
-
-
N,N'''-[(1R,3S,4R,6R)-4-(4-carbamimidamidophenyl)-6-hydroxycyclohexane-1,3-diyl]diguanidine
-
-
N,N'''-[(1R,3S,4S,6R)-4-(3-carbamimidamidopyridin-2-yl)-6-hydroxycyclohexane-1,3-diyl]diguanidine
-
-
N,N'''-[(1R,3S,4S,6R)-4-(5-carbamimidamidopyridin-2-yl)-6-hydroxycyclohexane-1,3-diyl]diguanidine
-
-
N,N'''-[(1S,2R,3S,4S,6S)-6-[(6-amino-2-carbamimidamido-2,6-dideoxy-a-D-glucopyranosyl)oxy]-3,4-dihydroxycyclohexane-1,2-diyl]diguanidine
-
-
N,N'''-[4-[(1R,2S,4R,5R)-2,4-dicarbamimidamido-5-hydroxycyclohexyl]benzene-1,3-diyl]diguanidine
-
-
N-hydroxy-4-[2-[(9E)-octadec-9-enoylamino]ethyl]benzamide
-
-
N-hydroxy-4-[[(9Z)-octadec-9-enoylamino]methyl]benzamide
-
-
N-oleoyldopamine
-
uncompetitive inhibition
N-terminal dimer of the protective antigen binding domain of anthrax lethal factor
-
-
-
N-terminal trimer of the protective antigen binding domain of anthrax lethal factor
-
-
-
neamine
-
mixed-type, noncompetitive inhibition
neomycin B
NH4Cl
-
blocks mitogen-activated protein kinase kinase 3 proteolysis in anthrax lethal toxin-treated macrophages
simvastatin
-
statins attenuate lethal factor action action. statin treatment maintains macrophage cell viability above 60% of untreated control cells even after 9 h of lethal toxin treatment. Statins decrease mitogen-activated protein kinase cleavage
verapamil
-
blocks mitogen-activated protein kinase kinase 3 proteolysis in anthrax lethal toxin-treated macrophages
[(5Z)-5-([5-[2-chloro-5-(trifluoromethyl)phenyl]furan-2-yl]methylidene)-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
-
-
[(5Z)-5-[[5-(2-nitrophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
-
-
[(5Z)-5-[[5-(3,4-dichlorophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
-
-
[(5Z)-5-[[5-(3-chloro-4-methoxyphenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
-
-
[(5Z)-5-[[5-(3-chloro-4-sulfamoylphenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
-
-
[(5Z)-5-[[5-(3-nitrophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
-
-
[(5Z)-5-[[5-(4-bromophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
-
-
[(5Z)-5-[[5-(4-chloro-2-nitrophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
-
-
[(5Z)-5-[[5-(4-chlorophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
-
-
[(5Z)-5-[[5-(4-iodophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
-
-
[4-(2,5-dimethyl-1H-pyrrol-1-yl)phenyl]acetic acid
-
-
[4-[(5Z)-5-(furan-2-ylmethylidene)-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]phenyl]acetic acid
-
-
[[4-(2,5-dimethyl-1H-pyrrol-1-yl)phenyl]sulfanyl]acetic acid
-
-
additional information
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
matrix metalloproteinase
-
matrix-metalloproteinase-activated lethal toxin has much lower in vivo toxicity than wild type toxin
-
matrix metalloproteinase 2
-
-
-
matrix metalloproteinase 9
-
-
-
additional information
-
monoclonal antibodies PA I 3F3-2-2, PA 2II 2F9-1-1, and PA I 6C3-1-1, directed against protective antigen of Bacillus anthracis, enhance lethal toxin activity in vivo
-
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.0023 - 0.0042
acetyl-Gly-Tyr-beta-Ala-Arg-Arg-Arg-Arg-Arg-Arg-Arg-Arg-Val-Leu-Arg-4-nitroanilide
0.0016 - 0.0019
acetyl-Gly-Tyr-beta-Ala-Arg-Arg-Arg-Arg-Arg-Arg-Arg-Arg-Val-Leu-Arg-7-amido-4-methylcoumarin
0.073
acetyl-GYbetaARRRRRRRRVLR-4-nitroanilide
pH 7.4, 22°C, apoprotein reconstituted in presence of Zn2+
0.0018
AcG-Y-betaA-R-R-R-A-R-R-R-R-V-L-R-4-nitroanilide
-
-
0.03
AcM-L-A-R-R-R-P-V-L-P-4-nitroanilide
-
-
0.082
AcR-R-R-R-V-L-R-4-methylcoumarin-7-amide
-
-
0.0095
AcR-R-R-R-V-L-R-4-nitroanilide
-
-
0.0023 - 0.042
fluorescein-QRRKKVYPYPME
0.0086
fluorescence resonance energy transfer peptide MAPKKide
-
in 20 mM HEPES, pH 7.4, at 25°C
-
TURNOVER NUMBER [1/s]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
10.6 - 26.6
acetyl-Gly-Tyr-beta-Ala-Arg-Arg-Arg-Arg-Arg-Arg-Arg-Arg-Val-Leu-Arg-4-nitroanilide
3.9 - 6.1
acetyl-Gly-Tyr-beta-Ala-Arg-Arg-Arg-Arg-Arg-Arg-Arg-Arg-Val-Leu-Arg-7-amido-4-methylcoumarin
21.2
acetyl-GYbetaARRRRRRRRVLR-4-nitroanilide
pH 7.4, 22°C, apoprotein reconstituted in presence of Cu2+
0.01 - 0.52
fluorescein-QRRKKVYPYPME
kcat/KM VALUE [1/mMs-1]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
4660 - 6360
acetyl-Gly-Tyr-beta-Ala-Arg-Arg-Arg-Arg-Arg-Arg-Arg-Arg-Val-Leu-Arg-4-nitroanilide
2070 - 3810
acetyl-Gly-Tyr-beta-Ala-Arg-Arg-Arg-Arg-Arg-Arg-Arg-Arg-Val-Leu-Arg-7-amido-4-methylcoumarin
2900
acetyl-GYbetaARRRRRRRRVLR-4-nitroanilide
pH 7.4, 22°C, apoprotein reconstituted in presence of Zn2+
0.000025
Mca-KKPTPIQLN-Dnp
-
in 0.1 M HEPES, pH 7.4 at 37°C
0.0013
Mca-KKVYPYPMEK-Dnp
-
in 0.1 M HEPES, pH 7.4 at 37°C
0.0023
Mca-KKWLMYPLEK-Dnp
-
in 0.1 M HEPES, pH 7.4 at 37°C
Ki VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.000000042
(2S)-6-[(1R)-N-1-(4-fluorophenyl)propan]aminoamino-2-(4-fluoro-3,5-dimethylbenzyl)-N-hydroxyhexanamide
pH not specified in the publication, temperature not specified in the publication
0.00000033
(2S)-6-[N-1-(4-fluorophenyl)propan]amino-2-[(2R)-2-(4-fluorophenyl)-2-methoxyethyl]-N-hydroxyhexanamide
pH not specified in the publication, temperature not specified in the publication
0.0000003
(D-Arg)9-Trp-Leu-Met-CONHOH
pH and temperature not specified in the publication
0.0092
4-methyl-N-[(1R)-1-[5-(naphthalen-1-yl)-2-(prop-2-en-1-yl)tetrahydrofuran-3-yl]ethyl]benzenesulfonamide
pH and temperature not specified in the publication
-
140
guanidine hydrochloride
at pH 7.4 and 25°C
140
guanidine isothiocyanate
at pH 7.4 and 25°C
2 - 5
MgSO4
at pH 7.4 and 25°C
0.001
N-[3-(1,3-benzothiazol-2-yl)thiophen-2-yl]-4'-methoxy[1,1'-biphenyl]-4-sulfonamide
pH and temperature not specified in the publication
50
Na2SO4
at pH 7.4 and 25°C
150
NaCl
at pH 7.4 and 25°C
150
NaSCN
at pH 7.4 and 25°C
1050
Urea
at pH 7.4 and 25°C
0.0027
(1E,6E)-4-(1,3-dithian-2-ylidene)-1,7-difuran-2-ylhepta-1,6-diene-3,5-dione
-
-
0.0027
(1Z,6E)-4-(1,3-dithian-2-ylidene)-1,7-difuran-2-ylhepta-1,6-diene-3,5-dione
-
-
0.0011
(4E)-4-[(2,4-dihydroxyphenyl)methylidene]-1,2,5-thiadiazolidin-3-one
-
-
0.0042
(5E)-5-(1,3-benzothiazol-2-ylimino)-1-(4-sulfophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid
-
-
0.0011
(5Z)-5-[(2,4-dihydroxyphenyl)methylidene]-2-thioxoimidazolidin-4-one
-
-
0.0017
(9E)-N-[2-(3,4,5-trihydroxyphenyl)ethyl]octadec-9-enamide
-
-
0.0022
(9Z)-N-(3,4-dihydroxybenzyl)octadec-9-enamide
-
-
0.003
(9Z)-N-[2-(3,4-dihydroxyphenyl)ethyl]octadec-9-enamide
-
-
0.00000732
(D-R)9LPY-CO-NHOH
-
in 0.1 M HEPES, pH 7.4 at 37°C
0.00000145
(D-R)9VLR-CO-NHOH
-
in 0.1 M HEPES, pH 7.4 at 37°C
0.00000028
(D-R)9WLM-CO-NHOH
-
in 0.1 M HEPES, pH 7.4 at 37°C
0.0024
2-chloro-4-(5-[(Z)-[(3-cyano-4,5,6,7-tetrahydro-1-benzothiophen-2-yl)imino]methyl]furan-2-yl)benzoic acid
-
-
0.0025
2-chloro-4-[[(4Z)-4-[[4-(methylsulfanyl)phenyl]methylidene]-5-oxo-2-phenyl-4,5-dihydro-1H-imidazol-1-yl]sulfamoyl]benzoic acid
-
-
0.0056
2-chloro-5-(2,5-dimethyl-1H-pyrrol-1-yl)benzoic acid
-
-
0.0009
2-chloro-5-[(4Z)-3-methyl-4-[[4-(1-methylethyl)phenyl]methylidene]-5-oxo-4,5-dihydro-1H-pyrazol-1-yl]benzoic acid
-
-
0.0021 - 0.0107
2-chloro-5-[(4Z)-4-[[5-(4-chlorophenyl)furan-2-yl]methylidene]-3-methyl-5-oxo-4,5-dihydro-1H-pyrazol-1-yl]benzoic acid
0.0036
2-chloro-5-[[(4Z)-4-[[4-(methylsulfanyl)phenyl]methylidene]-5-oxo-2-phenylimidazolidin-1-yl]sulfamoyl]benzoic acid
-
-
0.0031
2-hydroxy-5-(5-[(Z)-[2-imino-4-oxo-3-(1,3-thiazol-2-yl)-1,3-thiazolidin-5-ylidene]methyl]furan-2-yl)benzoic acid
-
-
0.0031
2-hydroxy-5-[5-[(Z)-[2-imino-3-[imino(methylsulfanyl)methyl]-4-oxo-1,3-thiazolidin-5-ylidene]methyl]furan-2-yl]benzoic acid
-
-
0.011
2-thiolacetyl-YPM-amide
-
-
0.0029
2-[[(2-amino-2-carboxyethyl)sulfanyl]methyl]-5-phenylfuran-3-carboxylic acid
-
-
0.0024
3,3'-methanediylbis(6-hydroxybenzoic acid)
-
-
0.0054 - 0.0072
3-(5-[(Z)-[1-(3-chlorophenyl)-3,5-dioxopyrazolidin-4-ylidene]methyl]furan-2-yl)benzoic acid
0.0033
3-[(5E)-5-[(3-bromo-4-methoxyphenyl)methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]propanoic acid
-
-
0.0033
3-[(5Z)-5-[(3-bromo-4-methoxyphenyl)methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]propanoic acid
-
-
0.0015
4-(2,5-dimethyl-1H-pyrrol-1-yl)-2-hydroxybenzoic acid
-
-
0.0054
4-[5-[(E)-(5-cyano-2-hydroxy-4-methyl-6-oxopyridin-3(6H)-ylidene)methyl]furan-2-yl]benzenesulfonamide
-
-
0.0009
4-[[(4-chlorophenyl)carbamoyl]amino]-N-(5-ethyl-1,3,4-thiadiazol-2-yl)benzenesulfonamide
-
-
0.0024
5-(4-carboxy-3-chlorophenyl)-2-[(Z)-[(3-cyano-4,5,6,7-tetrahydro-1-benzothiophen-2-yl)imino]methyl]furan-3-carboxylic acid
-
-
0.0016
5-bromo-2-(5-[(Z)-[1-(3-carboxyphenyl)-5-oxo-3-(trifluoromethyl)-1,5-dihydro-4H-pyrazol-4-ylidene]methyl]furan-2-yl)benzoic acid
-
-
0.0016
5-bromo-2-(5-[(Z)-[1-(3-carboxyphenyl)-5-oxo-3-(trifluoromethyl)-1,5-dihydro-4H-pyrazol-4-ylidene]methyl]uran-2-yl)benzoic acid
-
-
0.0008 - 0.0011
5-chloro-2-[5-[(E)-(1,5-dioxo-6,7,8,9-tetrahydro-5H-[1]benzothieno[3,2-e][1,3]thiazolo[3,2-a]pyrimidin-2(1H)-ylidene)methyl]furan-2-yl]benzoic acid
0.0018
8-[(E)-[[4-(2,3-dihydro-1,3-thiazol-2-ylsulfamoyl)phenyl]imino]methyl]-4H-1,3-benzodioxine-6-carboxylic acid
-
-
0.000001
acetyl-GYbetaARRRRRRRRVLR-hydroxamate
-
-
0.036
AcG-Y-betaA-R-R-R-A-R-R-R-R-V-L-R-4-nitroanilide
-
-
0.6
AcM-L-A-R-R-R-P-V-L-P-4-nitroanilide
-
-
0.17
AcR-R-R-R-V-L-R-4-methylcoumarin-7-amide
-
-
0.19
AcR-R-R-R-V-L-R-4-nitroanilide
-
-
0.002
GM6001
-
-
0.000001
MKARRKKVYP-NHOH
-
-
0.06
N-hydroxy-4-[2-[(9E)-octadec-9-enoylamino]ethyl]benzamide
-
-
0.0062
N-hydroxy-4-[[(9Z)-octadec-9-enoylamino]methyl]benzamide
-
-
0.003
N-oleoyldopamine
-
-
0.013
neamine
-
in 20 mM HEPES, pH 7.4, at 25°C
0.000007 - 0.00028
neomycin B
0.000032
[(5Z)-5-([5-[2-chloro-5-(trifluoromethyl)phenyl]furan-2-yl]methylidene)-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
-
-
0.0009
[4-(2,5-dimethyl-1H-pyrrol-1-yl)phenyl]acetic acid
-
-
0.0016
[[4-(2,5-dimethyl-1H-pyrrol-1-yl)phenyl]sulfanyl]acetic acid
-
-
IC50 VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.267
(2R)-2-[(4-fluoro-3-methoxybenzene-1-sulfonyl)(2-methylpropyl)amino]-N-hydroxy-3-methylbutanamide
Bacillus anthracis
pH and temperature not specified in the publication
0.09
(2R)-2-[(4-fluoro-3-methylbenzene-1-sulfonyl)(2-methylpropyl)amino]-N-hydroxy-3-methylbutanamide
Bacillus anthracis
pH and temperature not specified in the publication
0.0001
(2R)-2-[(4-fluoro-3-methylbenzene-1-sulfonyl)amino]-N-hydroxy-2-(oxan-4-yl)acetamide
Bacillus anthracis
pH and temperature not specified in the publication
0.0149
(2R)-2-[(4-fluoro-3-methylbenzene-1-sulfonyl)[(4-nitrophenyl)methyl]amino]-N-hydroxypropanamide
Bacillus anthracis
pH and temperature not specified in the publication
0.039
5-[4-[(E)-2-[(2R,3R,3'R)-3'-(3,5-dihydroxyphenyl)-6'-hydroxy-2,2'-bis(4-hydroxyphenyl)-2,2',3,3'-tetrahydro-3,4'-bi-1-benzofuran-5-yl]ethenyl]-6-hydroxy-2-(3-hydroxyphenyl)-2,3-dihydro-1-benzofuran-3-yl]benzene-1,3-diol
Bacillus anthracis
pH and temperature not specified in the publication
0.0015
N-(4-amino-2-methylquinolin-6-yl)-3-(2-methoxyphenyl)propanamide
Bacillus anthracis
pH and temperature not specified in the publication
0.003
N-(4-amino-2-methylquinolin-6-yl)-4-(quinolin-6-yl)benzamide
Bacillus anthracis
pH and temperature not specified in the publication
0.0152
N-2-benzyl-N-2-[(4-fluoro-3-methylphenyl)sulfonyl]-N-hydroxy-D-alaninamide
Bacillus anthracis
pH not specified in the publication, temperature not specified in the publication
0.0056
N-2-[4-(aminomethyl)benzyl]-N-2-[(4-fluoro-3-methylphenyl)sulfonyl]-N-hydroxy-D-alaninamide
Bacillus anthracis
pH not specified in the publication, temperature not specified in the publication
0.95
N-hydroxy-N2-[[3-(methoxymethyl)phenyl]sulfonyl]-N2-(2-methylpropyl)-D-valinamide
Bacillus anthracis
pH and temperature not specified in the publication
0.0149
N2-[(4-fluoro-3-methylphenyl)sulfonyl]-N-hydroxy-N-2-(4-nitrobenzyl)-D-alaninamide
Bacillus anthracis
pH not specified in the publication, temperature not specified in the publication
0.003
(1E,6E)-4-(1,3-dithian-2-ylidene)-1,7-difuran-2-ylhepta-1,6-diene-3,5-dione
Bacillus anthracis
-
-
0.003
(1Z,6E)-4-(1,3-dithian-2-ylidene)-1,7-difuran-2-ylhepta-1,6-diene-3,5-dione
Bacillus anthracis
-
-
0.0102
(2R)-N4-hydroxy-N1-[(2S)-3-(1H-indol-3-yl)-1-(methylamino)-1-oxopropan-2-yl]-2-(2-methylpropyl)butanediamide
Bacillus anthracis
-
pH 8.0, 37°C
0.0071
(3S)-N-hydroxy-4-methyl-3-([[(2R)-1-(methylamino)-1-oxo-4-phenylbutan-2-yl]amino]methyl)pentanamide
Bacillus anthracis
-
pH 8.0, 37°C
0.0034
(4E)-4-[(2,4-dihydroxyphenyl)methylidene]-1,2,5-thiadiazolidin-3-one
Bacillus anthracis
-
-
0.0077
(5E)-5-(1,3-benzothiazol-2-ylimino)-1-(4-sulfophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid
Bacillus anthracis
-
-
0.0377
(5Z)-3-(4-hydroxyphenyl)-5-[[5-(4-nitrophenyl)furan-2-yl]methylidene]-2-thioxo-1,3-thiazolidin-4-one
Bacillus anthracis
-
-
0.3
(5Z)-3-(4-methoxyphenyl)-2-thioxo-5-([5-[3-(trifluoromethyl)phenyl]furan-2-yl]methylidene)-1,3-thiazolidin-4-one
Bacillus anthracis
-
-
0.0383
(5Z)-3-(furan-2-ylmethyl)-5-[[5-(3-nitrophenyl)furan-2-yl]methylidene]-2-thioxo-1,3-thiazolidin-4-one
Bacillus anthracis
-
-
0.0126
(5Z)-3-(furan-2-ylmethyl)-5-[[5-(4-nitrophenyl)furan-2-yl]methylidene]-2-thioxo-1,3-thiazolidin-4-one
Bacillus anthracis
-
-
0.0034
(5Z)-5-[(2,4-dihydroxyphenyl)methylidene]-2-thioxoimidazolidin-4-one
Bacillus anthracis
-
-
0.0319
(5Z)-5-[[5-(2-nitrophenyl)furan-2-yl]methylidene]-3-(2-phenylethyl)-2-thioxo-1,3-thiazolidin-4-one
Bacillus anthracis
-
-
0.0074
(5Z)-5-[[5-(3,4-dichlorophenyl)furan-2-yl]methylidene]-2-thioxo-1,3-thiazolidin-4-one
Bacillus anthracis
-
-
0.007
(5Z)-5-[[5-(4-bromo-3-chlorophenyl)furan-2-yl]methylidene]-2-thioxo-1,3-thiazolidin-4-one
Bacillus anthracis
-
-
0.15
(5Z)-5-[[5-(4-chlorophenyl)furan-2-yl]methylidene]-3-(furan-2-ylmethyl)-2-thioxo-1,3-thiazolidin-4-one
Bacillus anthracis
-
-
0.05
(5Z)-5-[[5-(4-fluorophenyl)furan-2-yl]methylidene]-3-prop-2-en-1-yl-2-thioxo-1,3-thiazolidin-4-one
Bacillus anthracis
-
-
0.07
(9E)-N-[2-(2,4,5-trihydroxyphenyl)ethyl]octadec-9-enamide
Bacillus anthracis
-
-
0.013
(9E)-N-[2-(3,4,5-trihydroxyphenyl)ethyl]octadec-9-enamide
Bacillus anthracis
-
-
0.015
(9Z)-N-(3,4-dihydroxybenzyl)octadec-9-enamide
Bacillus anthracis
-
-
0.015
(9Z)-N-[2-(3,4-dihydroxyphenyl)ethyl]octadec-9-enamide
Bacillus anthracis
-
-
0.0007
1-[(1S,2R,3S,4S,6S)-2-amino-6-[(6-amino-2,6-dideoxy-a-D-arabino-hexopyranosyl)oxy]-3,4-dihydroxycyclohexyl]guanidine
Bacillus anthracis
-
-
0.0495
2-([benzyl(ethyl)amino]methyl)-6-iodo-4-methylphenol
Bacillus anthracis
-
pH 8.0, 37°C
0.0042
2-chloro-4-(5-[(Z)-[(3-cyano-4,5,6,7-tetrahydro-1-benzothiophen-2-yl)imino]methyl]furan-2-yl)benzoic acid
Bacillus anthracis
-
-
0.0099
2-chloro-4-(5-[(Z)-[4-oxo-3-(pyridin-3-ylmethyl)-2-thioxo-1,3-thiazolidin-5-ylidene]methyl]furan-2-yl)benzoic acid
Bacillus anthracis
-
-
0.0027
2-chloro-4-[5-[(Z)-(4-oxo-3-prop-2-en-1-yl-2-thioxo-1,3-thiazolidin-5-ylidene)methyl]furan-2-yl]benzoic acid
Bacillus anthracis
-
-
0.0036
2-chloro-4-[[(4Z)-4-[[4-(methylsulfanyl)phenyl]methylidene]-5-oxo-2-phenyl-4,5-dihydro-1H-imidazol-1-yl]sulfamoyl]benzoic acid
Bacillus anthracis
-
-
0.0068
2-chloro-5-(2,5-dimethyl-1H-pyrrol-1-yl)benzoic acid
Bacillus anthracis
-
-
0.0079
2-chloro-5-[(4Z)-3-methyl-4-[[4-(1-methylethyl)phenyl]methylidene]-5-oxo-4,5-dihydro-1H-pyrazol-1-yl]benzoic acid
Bacillus anthracis
-
-
0.0021 - 0.0107
2-chloro-5-[(4Z)-4-[[5-(4-chlorophenyl)furan-2-yl]methylidene]-3-methyl-5-oxo-4,5-dihydro-1H-pyrazol-1-yl]benzoic acid
0.0025
2-chloro-5-[[(4Z)-4-[[4-(methylsulfanyl)phenyl]methylidene]-5-oxo-2-phenylimidazolidin-1-yl]sulfamoyl]benzoic acid
Bacillus anthracis
-
-
0.0048
2-hydroxy-5-(5-[(Z)-[2-imino-4-oxo-3-(1,3-thiazol-2-yl)-1,3-thiazolidin-5-ylidene]methyl]furan-2-yl)benzoic acid
Bacillus anthracis
-
-
0.0048
2-hydroxy-5-[5-[(Z)-[2-imino-3-[imino(methylsulfanyl)methyl]-4-oxo-1,3-thiazolidin-5-ylidene]methyl]furan-2-yl]benzoic acid
Bacillus anthracis
-
-
0.0036
2-[[(2-amino-2-carboxyethyl)sulfanyl]methyl]-5-phenylfuran-3-carboxylic acid
Bacillus anthracis
-
-
0.0031
3,3'-methanediylbis(6-hydroxybenzoic acid)
Bacillus anthracis
-
-
0.2
3,4-dihydroxy-N'-[(1Z)-(2-hydroxy-5-nitrophenyl)methylidene]benzohydrazide
Bacillus anthracis
-
DS-998
0.0083 - 0.0105
3-(5-[(Z)-[1-(3-chlorophenyl)-3,5-dioxopyrazolidin-4-ylidene]methyl]furan-2-yl)benzoic acid
0.0044
3-[(5E)-5-[(3-bromo-4-methoxyphenyl)methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]propanoic acid
Bacillus anthracis
-
-
0.0044
3-[(5Z)-5-[(3-bromo-4-methoxyphenyl)methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]propanoic acid
Bacillus anthracis
-
-
0.0128
3-[(5Z)-5-[[5-(2-nitrophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]propanoic acid
Bacillus anthracis
-
-
0.0008
3-[(5Z)-5-[[5-(4-chlorophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]propanoic acid
Bacillus anthracis
-
-
0.0027
3-[(5Z)-5-[[5-(4-nitrophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]propanoic acid
Bacillus anthracis
-
-
0.0043
4-(2,5-dimethyl-1H-pyrrol-1-yl)-2-hydroxybenzoic acid
Bacillus anthracis
-
-
0.0048
4-(5-[(Z)-[3-(4-nitrophenyl)-4-oxo-2-thioxo-1,3-thiazolidin-5-ylidene]methyl]furan-2-yl)benzoic acid
Bacillus anthracis
-
-
0.02
4-[(5Z)-5-[[5-(3-nitrophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]butanoic acid
Bacillus anthracis
-
-
0.0023
4-[(5Z)-5-[[5-(4-bromophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]butanoic acid
Bacillus anthracis
-
-
0.0083
4-[5-[(E)-(5-cyano-2-hydroxy-4-methyl-6-oxopyridin-3(6H)-ylidene)methyl]furan-2-yl]benzenesulfonamide
Bacillus anthracis
-
-
0.006
4-[5-[(Z)-(3-benzyl-4-oxo-2-thioxo-1,3-thiazolidin-5-ylidene)methyl]furan-2-yl]benzoic acid
Bacillus anthracis
-
-
0.0029
4-[5-[(Z)-[4-oxo-2-thioxo-3-[3-(trifluoromethyl)phenyl]-1,3-thiazolidin-5-ylidene]methyl]furan-2-yl]benzoic acid
Bacillus anthracis
-
-
0.0039
4-[[(4-chlorophenyl)carbamoyl]amino]-N-(5-ethyl-1,3,4-thiadiazol-2-yl)benzenesulfonamide
Bacillus anthracis
-
-
0.0042
5-(4-carboxy-3-chlorophenyl)-2-[(Z)-[(3-cyano-4,5,6,7-tetrahydro-1-benzothiophen-2-yl)imino]methyl]furan-3-carboxylic acid
Bacillus anthracis
-
-
0.0017
5-bromo-2-(5-[(Z)-[1-(3-carboxyphenyl)-5-oxo-3-(trifluoromethyl)-1,5-dihydro-4H-pyrazol-4-ylidene]methyl]furan-2-yl)benzoic acid
Bacillus anthracis
-
-
0.0017
5-bromo-2-(5-[(Z)-[1-(3-carboxyphenyl)-5-oxo-3-(trifluoromethyl)-1,5-dihydro-4H-pyrazol-4-ylidene]methyl]uran-2-yl)benzoic acid
Bacillus anthracis
-
-
0.0008
5-chloro-2-[5-[(E)-(1,5-dioxo-6,7,8,9-tetrahydro-5H-[1]benzothieno[3,2-e][1,3]thiazolo[3,2-a]pyrimidin-2(1H)-ylidene)methyl]furan-2-yl]benzoic acid
Bacillus anthracis
-
-
0.0029
6-S-(3-aminopropyl)-6-thio-beta-D-cyclodextrin
Bacillus anthracis
-
-
0.0003
6-S-(8-aminooctyl)-6-thio-beta-D-cyclodextin
Bacillus anthracis
-
-
0.0005
6-S-[3-(aminomethyl)benzyl]-6-thio-beta-D-cyclodextrin
Bacillus anthracis
-
-
0.0007
6-S-[4-(aminomethyl)benzyl]-6-thio-beta-D-cyclodextrin
Bacillus anthracis
-
-
0.0093
8-[(E)-[[4-(2,3-dihydro-1,3-thiazol-2-ylsulfamoyl)phenyl]imino]methyl]-4H-1,3-benzodioxine-6-carboxylic acid
Bacillus anthracis
-
-
0.08
N'1,N'4-bis[(1E)-(2-hydroxy-5-methylphenyl)methylidene]benzene-1,4-dicarbohydrazide
Bacillus anthracis
-
-
0.05
N'1-[(1E)-(2-hydroxyphenyl)methylidene]-N'4-[(1Z)-(2-hydroxyphenyl)methylidene]benzene-1,4-dicarbohydrazide
Bacillus anthracis
-
-
0.05
N'1-[(1E)-(5-fluoro-2-hydroxyphenyl)methylidene]-N'4-[(1Z)-(5-fluoro-2-hydroxyphenyl)methylidene]benzene-1,4-dicarbohydrazide
Bacillus anthracis
-
-
0.00065
N,N''',N'''''',N'''''''''-[[(1R,3S,4S,6R)-4,6-dicarbamimidamidocyclohexane-1,3-diyl]bis(oxybenzene-1,2,4-triyl)]tetraguanidine
Bacillus anthracis
-
-
0.0107
N,N'''-[(1R,3S)-4-(2,4-dicarbamimidamidonaphthalen-1-yl)-6-hydroxycyclohexane-1,3-diyl]diguanidine
Bacillus anthracis
-
-
0.1537
N,N'''-[(1R,3S)-4-(2-amino-1H-benzimidazol-7-yl)-6-hydroxycyclohexane-1,3-diyl]diguanidine
Bacillus anthracis
-
-
0.0007
N,N'''-[(1R,3S,4R,5R,6S)-4-[(2,6-dicarbamimidamido-2,6-dideoxy-a-D-glucopyranosyl)oxy]-5,6-dihydroxycyclohexane-1,3-diyl]diguanidine
Bacillus anthracis
-
-
0.0306
N,N'''-[(1R,3S,4R,6R)-4-(2-carbamimidamidophenyl)-6-hydroxycyclohexane-1,3-diyl]diguanidine
Bacillus anthracis
-
-
0.0314
N,N'''-[(1R,3S,4R,6R)-4-(4-carbamimidamidonaphthalen-1-yl)-6-hydroxycyclohexane-1,3-diyl]diguanidine
Bacillus anthracis
-
-
0.0149
N,N'''-[(1R,3S,4R,6R)-4-(4-carbamimidamidophenyl)-6-hydroxycyclohexane-1,3-diyl]diguanidine
Bacillus anthracis
-
-
0.0041
N,N'''-[(1R,3S,4S,6R)-4-(3-carbamimidamidopyridin-2-yl)-6-hydroxycyclohexane-1,3-diyl]diguanidine
Bacillus anthracis
-
-
0.0066
N,N'''-[(1R,3S,4S,6R)-4-(5-carbamimidamidopyridin-2-yl)-6-hydroxycyclohexane-1,3-diyl]diguanidine
Bacillus anthracis
-
-
0.0005
N,N'''-[(1S,2R,3S,4S,6S)-6-[(6-amino-2-carbamimidamido-2,6-dideoxy-a-D-glucopyranosyl)oxy]-3,4-dihydroxycyclohexane-1,2-diyl]diguanidine
Bacillus anthracis
-
-
0.0006
N,N'''-[4-[(1R,2S,4R,5R)-2,4-dicarbamimidamido-5-hydroxycyclohexyl]benzene-1,3-diyl]diguanidine
Bacillus anthracis
-
-
0.032
N-hydroxy-4-[2-[(9E)-octadec-9-enoylamino]ethyl]benzamide
Bacillus anthracis
-
-
0.042
N-hydroxy-4-[[(9Z)-octadec-9-enoylamino]methyl]benzamide
Bacillus anthracis
-
-
0.015
N-oleoyldopamine
Bacillus anthracis
-
-
0.0031
[(5Z)-5-[[5-(2-nitrophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
Bacillus anthracis
-
-
0.000265
[(5Z)-5-[[5-(3,4-dichlorophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
Bacillus anthracis
-
-
0.000298
[(5Z)-5-[[5-(3-chloro-4-methoxyphenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
Bacillus anthracis
-
-
0.0091
[(5Z)-5-[[5-(3-chloro-4-sulfamoylphenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
Bacillus anthracis
-
-
0.0031
[(5Z)-5-[[5-(3-nitrophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
Bacillus anthracis
-
-
0.00085
[(5Z)-5-[[5-(4-bromophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
Bacillus anthracis
-
-
0.0005
[(5Z)-5-[[5-(4-chloro-2-nitrophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
Bacillus anthracis
-
-
0.0009
[(5Z)-5-[[5-(4-chlorophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
Bacillus anthracis
-
-
0.0055
[(5Z)-5-[[5-(4-iodophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
Bacillus anthracis
-
-
0.0076
[4-(2,5-dimethyl-1H-pyrrol-1-yl)phenyl]acetic acid
Bacillus anthracis
-
-
0.14
[4-[(5Z)-5-(furan-2-ylmethylidene)-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]phenyl]acetic acid
Bacillus anthracis
-
-
0.0029
[[4-(2,5-dimethyl-1H-pyrrol-1-yl)phenyl]sulfanyl]acetic acid
Bacillus anthracis
-
-
SPECIFIC ACTIVITY [µmol/min/mg]
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
1.24
pH 7.4, 22°C, apoprotein reconstituted in presence of Zn2+
7.12
pH 7.4, 22°C, apoprotein reconstituted in presence of Cu2+
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
pH RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
5.8
progressive further loss of activity. Biphasic loss of activity upon acidification
6.7
about 60% of maximum activity. Biphasic loss of activity upon acidification
7 - 8.5
the enzyme degrades R9LF-1 with maximum efficiency in the pH range of 7.0-8.5, which correlates well with the range of enzymatic activity with its native substrate
TEMPERATURE OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
25
-
assay at
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
additional information
-
anthrax lethal toxin binds and enters murine neutrophils
Manually annotated by BRENDA team
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
-
Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins including lethal factor
Manually annotated by BRENDA team
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
metabolism
about 30% demetallation is observed at pH values close to those found in late endosomes. A substantial proportion of lethal factor molecules may not be in their zinc-bound state prior to translocation
physiological function
physiological function
UNIPROT
ENTRY NAME
ORGANISM
NO. OF AA
NO. OF TRANSM. HELICES
MOLECULAR WEIGHT[Da]
SOURCE
SEQUENCE
LOCALIZATION PREDICTION?
LEF_BACAN
809
1
93770
Swiss-Prot
-
PDB
SCOP
CATH
UNIPROT
ORGANISM
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
90000
1 * 90000, the protein is monomeric in solution, based on gel filtration
710000
-
x * 710000, lethal toxin, SDS-PAGE
89000
-
SDS-PAGE
90000
91000
-
x * 91000, lethal factor, SDS-PAGE
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
?
x * 90000, SDS-PAGE
monomer
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
hanging drop vapor diffusion method
in complex with inhibitor 3-(N-hydroxycarboxamido)-2-isobutylpropanoyl-Trp-methylamide, structure is used for pharmacopore model
in complex with inhibitors N-2-benzyl-N-2-[(4-fluoro-3-methylphenyl)sulfonyl]-N-hydroxy-D-alaninamide, N2-[(4-fluoro-3-methylphenyl)sulfonyl]-N-hydroxy-N-2-(4-nitrobenzyl)-D-alaninamide, N-2-[4-(aminomethyl)benzyl]-N-2-[(4-fluoro-3-methylphenyl)sulfonyl]-N-hydroxy-D-alaninamide to 2.2-2.5 A resolution. Identification of frequently populated conformational states termed bioactive, open and tight. The bioactive position is observed with large substrate peptides and leaves all peptide-recognition subsites open and accessible. The tight state is seen in unliganded and small-molecule complex structures. In this state, domain 3 is clamped over certain substrate subsites, blocking access. The open position appears to be an intermediate state between these extremes and is observed owing to steric constraints imposed by specific bound ligands
structural analyzation by NMR-spectroscopy leading to 96% assignment of the backbone amides and overall assignment of 1HN, 15N, 13Calpha, 13Cbeta and 13C' chemical shifts to 85%
docking and molecular dynamics calculations to examine the anthrax lethal factor-MEK/MKK interaction along the catalytic channel up to a distance of 20 A from the zinc atom. The Zn-bound water molecule is predicted to form hydrogen bonds with the carbonyl oxygen of Ile, i.e. P1' of substrates MEK1, MKK3b, Leu, ie. P1' of substrate MKK4-1, and Leu, ie. P2 of substrate MKK6b as well as with the hydroxyl group of Thr, i.e. P2' of substrate MKK4-2. This hydrogen bond is an additional contact to the already existing polarization of the carbonyl oxygen between Zn and Glu687 carboxylate
-
in complex with N terminus of MAPKK-2
-
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
E269A
the mutant shows strongly increased cleavage ability for mitogen-activated protein kinase kinase-1 and reduced activity with mitogen-activated protein kinase kinase-6 compared to the wild type enzyme
E539R
the mutant shows slightly increased cleavage ability for mitogen-activated protein kinase kinase-1 and reduced activity with mitogen-activated protein kinase kinase-6 compared to the wild type enzyme
K75A
the mutant shows wild type activity
L259A
the mutant cleaves MEK1 about 2fold less efficiently than the wild type enzyme
L265A
the mutation does not significantly impact on MEK1 cleavage
L431A
the mutant shows slightly increased cleavage ability for mitogen-activated protein kinase kinase-6 compared to the wild type enzyme
M264A
the mutant cleaves MEK1 2.5fold less efficiently than the wild type enzyme
R263A
the mutant shows reduced cleavage ability for mitogen-activated protein kinase kinase-1 compared to the wild type enzyme
R491E
the mutant cleaves MEK1 about 2fold less efficiently than the wild type enzyme
W271A
the mutation completely abolishes cleavage ability of mitogen-activated protein kinase kinase-6 but has no effect on the ability to cleave MEK1. The mutant blocks ERK phosphorylation and growth in a melanoma cell line, suggesting that it may provide a highly selective inhibitor of MEK1/2 for use as a cancer therapeutic
Y268A
the mutant cleaves MEK1 6fold less efficiently than the wild type enzyme
E678A
-
mutant fails to induce cell death
E678C
-
catalytically inactive
E687C
-
inactive
E687D
-
mutation in metal-binding site, decrease in catalytic activity
E720C
-
catalytic mutant
H686A
-
inactive
H690A
K518E/E682G
-
mutation in anthrax lethal factor, mutant is defective at causing pyroptosis in RAW 264.7 cells and at activating the Nlrp1b inflammasome in a heterologous expression system. LF-K518E /E682G does not exhibit an overall impairment of function and LF-K518E /E682G efficiently kills melanoma cells
additional information
pH STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
5
increase in protein aggreagation between pH 4 and pH 5
733866
STORAGE STABILITY
ORGANISM
UNIPROT
LITERATURE
-20°C, purified lethal toxin, at least 3 months, no loss of activity
-
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
His-Trap HP nickel affinity column chromatography
nickel affinity column chromatography and Superdex S200 gel filtration
His-Trap HP nickel column chromatography, ammonium sulfate precipitation, and phenyl-Sepharose column chromatography
Ni-NTA agarose column chromatography
-
Q Sepharose column chromatography and Superdex 200 gel filtration
-
Superose 6 gel filtration
-
the recombinant LFn fusion proteins contain a vector-encoded His6 tag at the amino terminus and are purified by Ni2+-affinity chromatography to greater than 95% purity as determined by Coomassie staining
-
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
expressed in Bacillus megaterium
expressed in Escherichia coli BL21 Star cells
expressed in Escherichia coli Rosetta2 pLysS cells
expression in Bacillus megaterium
expression of N-terminal domain, 233 residues, in Escherichia coli
expressed in Bacillus megaterium
-
expressed in Escherichia coli BL21 DE3 Star cells
expressed in Escherichia coli periplasm
-
expression in Escherichia coli
-
fusion protein between lethal factor and the catalytic domain of diphtheria toxin is expressed in Escherichia coli BL21(DE3) cells
-
recombinant anthrax lethal toxin proteins consisting a model CD4 T-cell epitope from chicken ovalbumin (Ova) fused to nontoxic lethal factor (LFn). The antigen tags are generated by annealing single-stranded DNA oligonucleotides to form double-stranded DNA Plasmids are transformed into Escherichia coli BL21
-
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
medicine
diagnostics
medicine
molecular biology
synthesis
-
preparation of semisynthetic protective antigen-binding domain of anthrax lethal factor, LFN, by native chemical ligation of synthetic LFN residues 14-28 thioester with recombinant N29C-LFN residues 29-263 and comparison with two variants containing alterations in residues 14-28 of the N-terminal region. The properties of the variants in blocking ion conductance through the protective antigen pore and translocating across planar phospholipid bilayers in response to a pH gradient are consistent with current concepts of the mechanism of polypeptide translocation through the pore. The semisynthesis platform allows for investigation of the interaction of the pore with its substrates
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Vitale, G.; Bernardi, L.; Napolitani, G.; Mock, M.; Montecucco, C.
Susceptibility of mitogen-activated protein kinase kinase family members to proteolysis by anthrax lethal factor
Biochem. J.
352
739-745
2000
Bacillus anthracis
Manually annotated by BRENDA team
Duesbery, N.S.; Webb, C.P.; Leppla, S.H.; Gordon, V.M.; Klimpel, K.R.; Copeland, T.D.; Ahn, N.G.; Oskarsson, M.K.; Fukasawa, K.; Paull, K.D.; Vande Woude, G.F.
Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor
Science
280
734-737
1998
Bacillus anthracis
Manually annotated by BRENDA team
Pannifer, A.D.; Wong, T.Y.; Schwarzenbacher, R.; Renatus, M.; Petosa, C.; Bienkowska, J.; Lacy, D.B.; Collier, R.J.; Park, S.; Leppla, S.H.; Hanna, P.; Liddington, R.C.
Crystal structure of the anthrax lethal factor
Nature
414
229-233
2001
Bacillus anthracis
Manually annotated by BRENDA team
Tonello, F.; Ascenzi, P.; Montecucco, C.
The metalloproteolytic activity of the anthrax lethal factor is substrate-inhibited
J. Biol. Chem.
278
40075-40078
2003
Bacillus anthracis
Manually annotated by BRENDA team
Pellizzari, R.; Guidi-Rontani, C.; Vitale, G.; Mock, M.; Montecucco, C.
Anthrax lethal factor cleaves MKK3 in macrophages and inhibits the LPS/IFNgamma-induced release of NO and TNFalpha
FEBS Lett.
462
199-204
1999
Bacillus anthracis
Manually annotated by BRENDA team
Rossetto, O.; de Bernard, M.; Pellizzari, R.; Vitale, G.; Caccin, P.; Schiavo, G.; Montecucco, C.
Bacterial toxins with intracellular protease activity
Clin. Chim. Acta
291
189-199
2000
Bacillus anthracis
Manually annotated by BRENDA team
Glomski, I.J.; Fritz, J.H.; Keppler, S.J.; Balloy, V.; Chignard, M.; Mock, M.; Goossens, P.L.
Murine splenocytes produce inflammatory cytokines in MyD88-dependent response to Bacillus anthracis spores
cell. Microbiol.
9
502-513
2007
Bacillus anthracis
Manually annotated by BRENDA team
Gubbins, M.J.; Berry, J.D.; Corbett, C.R.; Mogridge, J.; Yuan, X.Y.; Schmidt, L.; Nicolas, B.; Kabani, A.; Tsang, R.S.
Production and characterization of neutralizing monoclonal antibodies that recognize an epitope in domain 2 of Bacillus anthracis protective antigen
FEMS Immunol. Med. Microbiol.
47
436-443
2006
Bacillus anthracis
Manually annotated by BRENDA team
Bergman, N.H.; Passalacqua, K.D.; Gaspard, R.; Shetron-Rama, L.M.; Quackenbush, J.; Hanna, P.C.
Murine macrophage transcriptional responses to Bacillus anthracis infection and intoxication
Infect. Immun.
73
1069-1080
2005
Bacillus anthracis
Manually annotated by BRENDA team
Comer, J.E.; Galindo, C.L.; Chopra, A.K.; Peterson, J.W.
GeneChip analyses of global transcriptional responses of murine macrophages to the lethal toxin of Bacillus anthracis
Infect. Immun.
73
1879-1885
2005
Bacillus anthracis
Manually annotated by BRENDA team
Koya, V.; Moayeri, M.; Leppla, S.H.; Daniell, H.
Plant-based vaccine: mice immunized with chloroplast-derived anthrax protective antigen survive anthrax lethal toxin challenge
Infect. Immun.
73
8266-8274
2005
Bacillus anthracis
Manually annotated by BRENDA team
Xu, L.; Frucht, D.M.
Bacillus anthracis: A multi-faceted role for anthrax lethal toxin in thwarting host immune defenses
Int. J. Biochem. Cell Biol.
39
20-24
2007
Bacillus anthracis
Manually annotated by BRENDA team
Baillie, L.W.J.
Past, imminent and future human medical countermeasures for anthrax
J. Appl. Microbiol.
101
594-606
2006
Bacillus anthracis
Manually annotated by BRENDA team
Cui, X.; Li, Y.; Li, X.; Haley, M.; Moayeri, M.; Fitz, Y.; Leppla, S.H.; Eichacker, P.Q.
Sublethal doses of Bacillus anthracis lethal toxin inhibit inflammation with lipopolysaccharide and Escherichia coli challenge but have opposite effects on survival
J. Infect. Dis.
193
829-840
2006
Bacillus anthracis
Manually annotated by BRENDA team
Gujraty, K.; Sadacharan, S.; Frost, M.; Poon, V.; kane, R.S.; Mogridge, J.
Functional characterization of peptide-based anthrax toxin inhibitors
Mol. Pharmacol.
2
367-372
2005
Bacillus anthracis
-
Manually annotated by BRENDA team
Mendelson, I.; Gat, O.; Aloni-Grinstein, R.; Altboum, Z.; Inbar, I.; Kronman, C.; Bar-Haim, E.; Cohen, S.; Velan, B.; Shafferman, A.
Efficacious, nontoxigenic Bacillus anthracis spore vaccines based on strains expressing mutant variants of lethal toxin components
Vaccine
23
5688-5697
2005
Bacillus anthracis
Manually annotated by BRENDA team
Sloat, B.R.; Cui, Z.
Nasal immunozation with a dual antigen anthrax vaccine induced strong mucosal and systemic immune responses against toxins and bacilli
Vaccine
24
6405-6413
2006
Bacillus anthracis
Manually annotated by BRENDA team
Moayeri, M.; Robinson, T.M.; Leppla, S.H.; Karginov, V.A.
In vivo efficacy of beta-cyclodextrin derivatives against anthrax lethal toxin
Antimicrob. Agents Chemother.
52
2239-2241
2008
Bacillus anthracis
Manually annotated by BRENDA team
Chvyrkova, I.; Zhang, X.C.; Terzyan, S.
Lethal factor of anthrax toxin binds monomeric form of protective antigen
Biochem. Biophys. Res. Commun.
360
690-695
2007
Bacillus anthracis (Q52NH3), Bacillus anthracis
Manually annotated by BRENDA team
Karginov, V.A.; Nestorovich, E.M.; Schmidtmann, F.; Robinson, T.M.; Yohannes, A.; Fahmi, N.E.; Bezrukov, S.M.; Hecht, S.M.
Inhibition of S. aureus alpha-hemolysin and B. anthracis lethal toxin by beta-cyclodextrin derivatives
Bioorg. Med. Chem.
15
5424-5431
2007
Bacillus anthracis
Manually annotated by BRENDA team
Gaddis, B.D.; Avramova, L.V.; Chmielewski, J.
Inhibitors of anthrax lethal factor
Bioorg. Med. Chem. Lett.
17
4575-4578
2007
Bacillus anthracis
Manually annotated by BRENDA team
Muehlbauer, S.M.; Evering, T.H.; Bonuccelli, G.; Squires, R.C.; Ashton, A.W.; Porcelli, S.A.; Lisanti, M.P.; Brojatsch, J.
Anthrax lethal toxin kills macrophages in a strain-specific manner by apoptosis or caspase-1-mediated necrosis
Cell Cycle
6
758-766
2007
Bacillus anthracis
Manually annotated by BRENDA team
Wickliffe, K.E.; Leppla, S.H.; Moayeri, M.
Anthrax lethal toxin-induced inflammasome formation and caspase-1 activation are late events dependent on ion fluxes and the proteasome
Cell. Microbiol.
10
332-343
2008
Bacillus anthracis
Manually annotated by BRENDA team
Rossi Paccani, S.; Tonello, F.; Patrussi, L.; Capitani, N.; Simonato, M.; Montecucco, C.; Baldari, C.T.
Anthrax toxins inhibit immune cell chemotaxis by perturbing chemokine receptor signalling
Cell. Microbiol.
9
924-929
2007
Bacillus anthracis
Manually annotated by BRENDA team
During, R.L.; Gibson, B.G.; Li, W.; Bishai, E.A.; Sidhu, G.S.; Landry, J.; Southwick, F.S.
Anthrax lethal toxin paralyzes actin-based motility by blocking Hsp27 phosphorylation
EMBO J.
26
2240-2250
2007
Bacillus anthracis
Manually annotated by BRENDA team
Kuzmic, P.; Cregar, L.; Millis, S.Z.; Goldman, M.
Mixed-type noncompetitive inhibition of anthrax lethal factor protease by aminoglycosides
FEBS J.
273
3054-3062
2006
Bacillus anthracis
Manually annotated by BRENDA team
Juris, S.J.; Melnyk, R.A.; Bolcome, R.E.; Chan, J.; Collier, R.J.
Cross-linked forms of the isolated N-terminal domain of the lethal factor are potent inhibitors of anthrax toxin
Infect. Immun.
75
5052-5058
2007
Bacillus anthracis
Manually annotated by BRENDA team
Liu, S.; Wang, H.; Currie, B.M.; Molinolo, A.; Leung, H.J.; Moayeri, M.; Basile, J.R.; Alfano, R.W.; Gutkind, J.S.; Frankel, A.E.; Bugge, T.H.; Leppla, S.H.
Matrix metalloproteinase-activated anthrax lethal toxin demonstrates high potency in targeting tumor vasculature
J. Biol. Chem.
283
529-540
2008
Bacillus anthracis
Manually annotated by BRENDA team
Chang, H.H.; Tsai, M.F.; Chung, C.P.; Chen, P.K.; Hu, H.I.; Kau, J.H.; Huang, H.H.; Lin, H.C.; Sun, D.S.
Single-step purification of recombinant anthrax lethal factor from periplasm of Escherichia coli
J. Biotechnol.
126
277-285
2006
Bacillus anthracis
Manually annotated by BRENDA team
Schepetkin, I.A.; Khlebnikov, A.I.; Kirpotina, L.N.; Quinn, M.T.
Novel small-molecule inhibitors of anthrax lethal factor identified by high-throughput screening
J. Med. Chem.
49
5232-5244
2006
Bacillus anthracis
Manually annotated by BRENDA team
Dalkas, G.A.; Papakyriakou, A.; Vlamis-Gardikas, A.; Spyroulias, G.A.
Low molecular weight inhibitors of the protease anthrax lethal factor
Mini Rev. Med. Chem.
8
290-306
2008
Bacillus anthracis
Manually annotated by BRENDA team
Alfano, R.W.; Leppla, S.H.; Liu, S.; Bugge, T.H.; Herlyn, M.; Smalley, K.S.; Bromberg-White, J.L.; Duesbery, N.S.; Frankel, A.E.
Cytotoxicity of the matrix metalloproteinase-activated anthrax lethal toxin is dependent on gelatinase expression and B-RAF status in human melanoma cells
Mol. Cancer Ther.
7
1218-1226
2008
Bacillus anthracis
Manually annotated by BRENDA team
Guichard, A.; Park, J.M.; Cruz-Moreno, B.; Karin, M.; Bier, E.
Anthrax lethal factor and edema factor act on conserved targets in Drosophila
Proc. Natl. Acad. Sci. USA
103
3244-3249
2006
Bacillus anthracis
Manually annotated by BRENDA team
Bolcome, R.E.; Sullivan, S.E.; Zeller, R.; Barker, A.P.; Collier, R.J.; Chan, J.
Anthrax lethal toxin induces cell death-independent permeability in zebrafish vasculature
Proc. Natl. Acad. Sci. USA
105
2439-2444
2008
Bacillus anthracis
Manually annotated by BRENDA team
Fink, S.L.; Bergsbaken, T.; Cookson, B.T.
Anthrax lethal toxin and Salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms
Proc. Natl. Acad. Sci. USA
105
4312-4317
2008
Bacillus anthracis
Manually annotated by BRENDA team
Barson, H.V.; Mollenkopf, H.; Kaufmann, S.H.; Rijpkema, S.
Anthrax lethal toxin suppresses chemokine production in human neutrophil NB-4 cells
Biochem. Biophys. Res. Commun.
374
288-293
2008
Bacillus anthracis
Manually annotated by BRENDA team
Tan, Y.K.; Kusuma, C.M.; St John, L.J.; Vu, H.A.; Alibek, K.; Wu, A.
Induction of autophagy by anthrax lethal toxin
Biochem. Biophys. Res. Commun.
379
293-297
2009
Bacillus anthracis
Manually annotated by BRENDA team
Jung, K.H.; Seo, G.M.; Yoon, J.W.; Park, K.S.; Kim, J.C.; Kim, S.J.; Oh, K.G.; Lee, J.H.; Chai, Y.G.
Protein expression pattern of murine macrophages treated with anthrax lethal toxin
Biochim. Biophys. Acta
1784
1501-1506
2008
Bacillus anthracis
Manually annotated by BRENDA team
Gaddis, B.D.; Rubert Perez, C.M.; Chmielewski, J.
Inhibitors of anthrax lethal factor based upon N-oleoyldopamine
Bioorg. Med. Chem. Lett.
18
2467-2470
2008
Bacillus anthracis
Manually annotated by BRENDA team
Reig, N.; Jiang, A.; Couture, R.; Sutterwala, F.S.; Ogura, Y.; Flavell, R.A.; Mellman, I.; van der Goot, F.G.
Maturation modulates caspase-1-independent responses of dendritic cells to Anthrax lethal toxin
Cell. Microbiol.
10
1190-1207
2008
Bacillus anthracis
Manually annotated by BRENDA team
Wickliffe, K.E.; Leppla, S.H.; Moayeri, M.
Killing of macrophages by anthrax lethal toxin: involvement of the N-end rule pathway
Cell. Microbiol.
10
1352-1362
2008
Bacillus anthracis
Manually annotated by BRENDA team
Levin, T.C.; Wickliffe, K.E.; Leppla, S.H.; Moayeri, M.
Heat shock inhibits caspase-1 activity while also preventing its inflammasome-mediated activation by anthrax lethal toxin
Cell. Microbiol.
10
2434-2446
2008
Bacillus anthracis
Manually annotated by BRENDA team
Omland, K.S.; Brys, A.; Lansky, D.; Clement, K.; Lynn, F.; Lynn, F.
Interlaboratory comparison of results of an anthrax lethal toxin neutralization assay for assessment of functional antibodies in multiple species
Clin. Vaccine Immunol.
15
946-953
2008
Bacillus anthracis
Manually annotated by BRENDA team
Chou, P.J.; Newton, C.A.; Perkins, I.; Friedman, H.; Klein, T.W.
Suppression of dendritic cell activation by anthrax lethal toxin and edema toxin depends on multiple factors including cell source, stimulus used, and function tested
DNA Cell Biol.
27
637-648
2008
Bacillus anthracis
Manually annotated by BRENDA team
Shaw, C.A.; Starnbach, M.N.
Both CD4+ and CD8+ T cells respond to antigens fused to anthrax lethal toxin
Infect. Immun.
76
2603-2611
2008
Bacillus anthracis
Manually annotated by BRENDA team
Nour, A.M.; Yeung, Y.G.; Santambrogio, L.; Boyden, E.D.; Stanley, E.R.; Brojatsch, J.
Anthrax lethal toxin triggers the formation of a membrane-associated inflammasome complex in murine macrophages
Infect. Immun.
77
1262-1271
2009
Bacillus anthracis
Manually annotated by BRENDA team
deCathelineau, A.M.; Bokoch, G.M.
Inactivation of rho GTPases by statins attenuates anthrax lethal toxin activity
Infect. Immun.
77
348-359
2009
Bacillus anthracis
Manually annotated by BRENDA team
Kocer, S.S.; Matic, M.; Ingrassia, M.; Walker, S.G.; Roemer, E.; Licul, G.; Simon, S.R.
Effects of anthrax lethal toxin on human primary keratinocytes
J. Appl. Microbiol.
105
1756-1767
2008
Bacillus anthracis
Manually annotated by BRENDA team
Xu, L.; Fang, H.; Frucht, D.M.
Anthrax lethal toxin increases superoxide production in murine neutrophils via differential effects on MAPK signaling pathways
J. Immunol.
180
4139-4147
2008
Bacillus anthracis
Manually annotated by BRENDA team
Warfel, J.M.; DAgnillo, F.
Anthrax lethal toxin enhances TNF-induced endothelial VCAM-1 expression via an IFN regulatory factor-1-dependent mechanism
J. Immunol.
180
7516-7524
2008
Bacillus anthracis
Manually annotated by BRENDA team
Alfano, R.W.; Leppla, S.H.; Liu, S.; Bugge, T.H.; Meininger, C.J.; Lairmore, T.C.; Mulne, A.F.; Davis, S.H.; Duesbery, N.S.; Frankel, A.E.
Matrix metalloproteinase-activated anthrax lethal toxin inhibits endothelial invasion and neovasculature formation during in vitro morphogenesis
Mol. Cancer Res.
7
452-461
2009
Bacillus anthracis
Manually annotated by BRENDA team
Chapelsky, S.; Batty, S.; Frost, M.; Mogridge, J.
Inhibition of anthrax lethal toxin-induced cytolysis of RAW264.7 cells by celastrol
PLoS ONE
3
e1421
2008
Bacillus anthracis
Manually annotated by BRENDA team
Raymond, B.; Batsche, E.; Boutillon, F.; Wu, Y.Z.; Leduc, D.; Balloy, V.; Raoust, E.; Muchardt, C.; Goossens, P.L.; Touqui, L.
Anthrax lethal toxin impairs IL-8 expression in epithelial cells through inhibition of histone H3 modification
PLoS Pathog.
5
e1000359
2009
Bacillus anthracis
Manually annotated by BRENDA team
Ha, S.D.; Ham, B.; Mogridge, J.; Saftig, P.; Lin, S.; Kim, S.O.
Cathepsin B-mediated autophagy flux facilitates the anthrax toxin receptor 2-mediated delivery of anthrax lethal factor into the cytoplasm
J. Biol. Chem.
285
2120-2129
2010
Bacillus anthracis
Manually annotated by BRENDA team
Pentelute, B.L.; Barker, A.P.; Janowiak, B.E.; Kent, S.B.; Collier, R.J.
A semisynthesis platform for investigating structure-function relationships in the N-terminal domain of the anthrax Lethal Factor
ACS Chem. Biol.
5
359-364
2010
Bacillus anthracis
Manually annotated by BRENDA team
Raymond, B.; Ravaux, L.; Memet, S.; Wu, Y.; Sturny-Leclere, A.; Leduc, D.; Denoyelle, C.; Goossens, P.L.; Paya, M.; Raymondjean, M.; Touqui, L.
Anthrax lethal toxin down-regulates type-IIA secreted phospholipase A(2) expression through MAPK/NF-kappaB inactivation
Biochem. Pharmacol.
79
1149-1155
2010
Bacillus anthracis
Manually annotated by BRENDA team
Ngai, S.; Batty, S.; Liao, K.C.; Mogridge, J.
An anthrax lethal factor mutant that is defective at causing pyroptosis retains proapoptotic activity
FEBS J.
277
119-127
2010
Bacillus anthracis
Manually annotated by BRENDA team
Kong, Y.; Guo, Q.; Yu, C.; Dong, D.; Zhao, J.; Cai, C.; Hou, L.; Song, X.; Fu, L.; Xu, J.; Chen, W.
Fusion protein of DELTA 27LFn and EFn has the potential as a novel anthrax toxin inhibitor
FEBS Lett.
583
1257-1260
2009
Bacillus anthracis
Manually annotated by BRENDA team
Zakharova, M.Y.; Kuznetsov, N.A.; Dubiley, S.A.; Kozyr, A.V.; Fedorova, O.S.; Chudakov, D.M.; Knorre, D.G.; Shemyakin, I.G.; Gabibov, A.G.; Kolesnikov, A.V.
Substrate recognition of anthrax lethal factor examined by combinatorial and pre-steady-state kinetic approaches
J. Biol. Chem.
284
17902-17913
2009
Bacillus anthracis
Manually annotated by BRENDA team
Chiu, T.L.; Solberg, J.; Patil, S.; Geders, T.W.; Zhang, X.; Rangarajan, S.; Francis, R.; Finzel, B.C.; Walters, M.A.; Hook, D.J.; Amin, E.A.
Identification of novel non-hydroxamate anthrax toxin lethal factor inhibitors by topomeric searching, docking and scoring, and in vitro screening
J. Chem. Inf. Model.
49
2726-2734
2009
Bacillus anthracis
Manually annotated by BRENDA team
Hu, H.; Leppla, S.H.
Anthrax toxin uptake by primary immune cells as determined with a lethal factor-beta-lactamase fusion protein
PLoS ONE
4
e7946
2009
Bacillus anthracis
Manually annotated by BRENDA team
Moayeri, M.; Crown, D.; Dorward, D.W.; Gardner, D.; Ward, J.M.; Li, Y.; Cui, X.; Eichacker, P.; Leppla, S.H.
The heart is an early target of anthrax lethal toxin in mice: a protective role for neuronal nitric oxide synthase (nNOS)
PLoS Pathog.
5
e1000456
2009
Bacillus anthracis
Manually annotated by BRENDA team
Abrami, L.; Kunz, B.; van der Goot, F.G.
Anthrax toxin triggers the activation of src-like kinases to mediate its own uptake
Proc. Natl. Acad. Sci. USA
107
1420-1424
2010
Bacillus anthracis
Manually annotated by BRENDA team
Dalkas, G.A.; Papakyriakou, A.; Vlamis-Gardikas, A.; Spyroulias, G.A.
Insights into the anthrax lethal factor-substrate interaction and selectivity using docking and molecular dynamics simulations
Protein Sci.
18
1774-1785
2009
Bacillus anthracis
Manually annotated by BRENDA team
Kuklenyik, Z.; Boyer, A.E.; Lins, R.; Quinn, C.P.; Gallegos-Candela, M.; Woolfitt, A.; Pirkle, J.L.; Barr, J.R.
Comparison of MALDI-TOF-MS and HPLC-ESI-MS/MS for endopeptidase activity-based quantification of anthrax lethal factor in serum
Anal. Chem.
83
1760-1765
2011
Bacillus anthracis
Manually annotated by BRENDA team
Li, F.; Terzyan, S.; Tang, J.
Subsite specificity of anthrax lethal factor and its implications for inhibitor development
Biochem. Biophys. Res. Commun.
407
400-405
2011
Bacillus anthracis
Manually annotated by BRENDA team
Saebel, C.E.; Carbone, R.; Dabous, J.R.; Lo, S.Y.; Siemann, S.
Preparation and characterization of cobalt-substituted anthrax lethal factor
Biochem. Biophys. Res. Commun.
416
106-110
2011
Bacillus anthracis
Manually annotated by BRENDA team
Dalkas, G.A.; Chasapis, C.T.; Gkazonis, P.V.; Bentrop, D.; Spyroulias, G.A.
Conformational dynamics of the anthrax lethal factor catalytic center
Biochemistry
49
10767-10769
2010
Bacillus anthracis (P15917)
Manually annotated by BRENDA team
Little, S.F.; Webster, W.M.; Fisher, D.E.
Monoclonal antibodies directed against protective antigen of Bacillus anthracis enhance lethal toxin activity in vivo
FEMS Immunol. Med. Microbiol.
62
11-22
2011
Bacillus anthracis, Bacillus anthracis BH450
Manually annotated by BRENDA team
Liu, T.; Milia, E.; Warburton, R.R.; Hill, N.S.; Gaestel, M.; Kayyali, U.S.
Anthrax lethal toxin disrupts the endothelial permeability barrier through blocking p38 signaling
J. Cell. Physiol.
227
1438-1445
2012
Bacillus anthracis
Manually annotated by BRENDA team
Thomas, J.; Epshtein, Y.; Chopra, A.; Ordog, B.; Ghassemi, M.; Christman, J.W.; Nattel, S.; Cook, J.L.; Levitan, I.
Anthrax lethal factor activates K+ channels to induce IL-1beta secretion in macrophages
J. Immunol.
186
5236-5243
2011
Bacillus anthracis
Manually annotated by BRENDA team
Vuyisich, M.; Sanders, C.; Graves, S.
Binding and cell intoxication studies of anthrax lethal toxin
Mol. Biol. Rep.
2012
1-7
2012
Bacillus anthracis
Manually annotated by BRENDA team
Guichard, A.; McGillivray, S.; Cruz-Moreno, B.; Van Sorge, N.; Nizet, V.; Bier, E.
Anthrax toxins cooperatively inhibit endocytic recycling by the Rab11/Sec15 exocyst
Nature
467
854-858
2010
Bacillus anthracis
Manually annotated by BRENDA team
Rivera, J.; Cordero, R.; Nakouzi, A.; Frases, S.; Nicola, A.; Casadevall, A.
Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins
Proc. Natl. Acad. Sci. USA
107
19002-19007
2010
Bacillus anthracis, Bacillus anthracis 34F2
Manually annotated by BRENDA team
Bromberg-White, J.; Lee, C.S.; Duesbery, N.
Consequences and utility of the zinc-dependent metalloprotease activity of anthrax lethal toxin
Toxins
2
1038-1053
2010
Bacillus anthracis
Manually annotated by BRENDA team
Xie, T.; Auth, R.D.; Frucht, D.M.
The effects of anthrax lethal toxin on host barrier function
Toxins
3
591-607
2011
Bacillus anthracis
Manually annotated by BRENDA team
Maize, K.; Kurbanov, E.; De La Mora-Rey, T.; Geders, T.; Hwang, D.; Walters, M.; Johnson, R.; Amin, E.; Finzel, B.
Anthrax toxin lethal factor domain 3 is highly mobile and responsive to ligand binding
Acta Crystallogr. Sect. D
70
2813-2822
2014
Bacillus anthracis (P15917)
Manually annotated by BRENDA team
Moayeri, M.; Crown, D.; Jiao, G.; Kim, S.; Johnson, A.; Leysath, C.; Leppla, S.
Small-molecule inhibitors of lethal factor protease activity protect against anthrax infection
Antimicrob. Agents Chemother.
57
4139-4145
2013
Bacillus anthracis (P15917), Bacillus anthracis
Manually annotated by BRENDA team
Vourtsis, D.; Chasapis, C.; Pairas, G.; Bentrop, D.; Spyroulias, G.
NMR conformational properties of an Anthrax lethal factor domain studied by multiple amino acid-selective labeling
Biochem. Biophys. Res. Commun.
450
335-340
2014
Bacillus anthracis (P15917)
Manually annotated by BRENDA team
Montpellier, L.; Siemann, S.
Effect of pH on the catalytic function and zinc content of native and immobilized anthrax lethal factor
FEBS Lett.
587
317-321
2013
Bacillus anthracis (P15917)
Manually annotated by BRENDA team
Ouyang, W.; Torigoe, C.; Fang, H.; Xie, T.; Frucht, D.
Anthrax lethal toxin inhibits translation of hypoxia-inducible factor 1alpha and causes decreased tolerance to hypoxic stress
J. Biol. Chem.
289
4180-4190
2014
Bacillus anthracis
Manually annotated by BRENDA team
Antonelli, A.; Zhang, Y.; Golub, L.; Johnson, F.; Simon, S.
Inhibition of anthrax lethal factor by curcumin and chemically modified curcumin derivatives
J. Enzyme Inhib. Med. Chem.
29
663-669
2014
Bacillus anthracis
Manually annotated by BRENDA team
Lo, S.; Sbel, C.; Webb, M.; Walsby, C.; Siemann, S.
High metal substitution tolerance of anthrax lethal factor and characterization of its active copper-substituted analogue
J. Inorg. Biochem.
140
12-22
2014
Bacillus anthracis (P15917)
Manually annotated by BRENDA team
Liao, H.; Liu, H.; Chen, W.; Ho, Y.
Structure-based pharmacophore modeling and virtual screening to identify novel inhibitors for anthrax lethal factor
Med. Chem. Res.
23
3725-3732
2014
Bacillus anthracis (P15917)
-
Manually annotated by BRENDA team
Sun, C.; Fang, H.; Xie, T.; Auth, R.; Patel, N.; Murray, P.; Snoy, P.; Frucht, D.
Anthrax lethal toxin disrupts intestinal barrier function and causes systemic infections with enteric bacteria
PLoS ONE
7
e33583
2012
Bacillus anthracis (P15917), Bacillus anthracis
Manually annotated by BRENDA team
Levinsohn, J.; Newman, Z.; Hellmich, K.; Fattah, R.; Getz, M.; Liu, S.; Sastalla, I.; Leppla, S.; Moayeri, M.
Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome
PLoS Pathog.
8
e1002638
2012
Bacillus anthracis (P15917)
Manually annotated by BRENDA team
Kassab, E.; Darwish, M.; Timsah, Z.; Liu, S.; Leppla, S.; Frankel, A.; Abi-Habib, R.
Cytotoxicity of anthrax lethal toxin to human acute myeloid leukemia cells is nonapoptotic and dependent on extracellular signal-regulated kinase 1/2 activity
Transl. Oncol.
6
25-32
2013
Bacillus anthracis (P15917)
Manually annotated by BRENDA team
Lo, S.Y.; Saebel, C.E.; Mapletoft, J.P.J.; Siemann, S.
Influence of chemical denaturants on the activity, fold and zinc status of anthrax lethal factor
Biochem. Biophys. Rep.
1
68-77
2015
Bacillus anthracis (P15917)
Manually annotated by BRENDA team
Goldberg, A.B.; Turk, B.E.
Inhibitors of the metalloproteinase anthrax lethal factor
Curr. Top. Med. Chem.
16
2350-2358
2016
Bacillus anthracis (P15917), Bacillus anthracis
Manually annotated by BRENDA team
Maize, K.M.; Kurbanov, E.K.; Johnson, R.L.; Amin, E.A.; Finzel, B.C.
Ligand-induced expansion of the S1 site in the anthrax toxin lethal factor
FEBS Lett.
589
3836-3841
2015
Bacillus anthracis (P15917), Bacillus anthracis
Manually annotated by BRENDA team
Zhang, W.W.; Wang, X.; Xie, P.; Yuan, S.T.; Liu, Q.H.
Anthrax lethal toxin suppresses high glucose induced VEGF over secretion through a post-translational mechanism
Int. J. Ophthalmol.
8
453-458
2015
Bacillus anthracis (P15917)
Manually annotated by BRENDA team
Ma, P.; Cardenas, A.E.; Chaudhari, M.I.; Elber, R.; Rempe, S.B.
The impact of protonation on early translocation of anthrax lethal factor kinetics from molecular dynamics simulations and milestoning theory
J. Am. Chem. Soc.
139
14837-14840
2017
Bacillus anthracis (P15917)
Manually annotated by BRENDA team
Ouyang, W.; Guo, P.; Fang, H.; Frucht, D.M.
Anthrax lethal toxin rapidly reduces c-Jun levels by inhibiting c-Jun gene transcription and promoting c-Jun protein degradation
J. Biol. Chem.
292
17919-17927
2017
Bacillus anthracis (P15917), Bacillus anthracis
Manually annotated by BRENDA team
Goldberg, A.B.; Cho, E.; Miller, C.J.; Lou, H.J.; Turk, B.E.
Identification of a substrate-selective exosite within the metalloproteinase anthrax lethal factor
J. Biol. Chem.
292
814-825
2017
Bacillus anthracis (P15917), Bacillus anthracis
Manually annotated by BRENDA team
Krantz, B.
Anthrax lethal toxin co-complexes are stabilized by contacts between adjacent lethal factors
J. Gen. Physiol.
148
1966-1970
2016
Bacillus anthracis (P15917)
Manually annotated by BRENDA team
Young, C.J.; Richard, K.; Beruar, A.; Lo, S.Y.; Siemann, S.
An investigation of the pH dependence of copper-substituted anthrax lethal factor and its mechanistic implications
J. Inorg. Biochem.
182
1-8
2018
Bacillus anthracis (P15917)
Manually annotated by BRENDA team
Kong, Q.; Song, Y.; Mu, M.; Han, X.; Si, C.; Li, F.
Effects of metalloprotease anthrax lethal factor on its peptide-based inhibitor R9LF-1
Mol. Cell. Biochem.
406
293-299
2015
Bacillus anthracis (P15917), Bacillus anthracis
Manually annotated by BRENDA team