Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 3.4.24.69 - bontoxilysin and Organism(s) Clostridium botulinum and UniProt Accession P10844

for references in articles please use BRENDA:EC3.4.24.69
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
     3 Hydrolases
         3.4 Acting on peptide bonds (peptidases)
             3.4.24 Metalloendopeptidases
                3.4.24.69 bontoxilysin
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Clostridium botulinum
UNIPROT: P10844 not found.
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Clostridium botulinum
The enzyme appears in selected viruses and cellular organisms
Reaction Schemes
Limited hydrolysis of proteins of the neuroexocytosis apparatus, synaptobrevin (also known as neuronal vesicle-associated membrane protein, VAMP), synaptosome-associated protein of 25 kDa (SNAP25) or syntaxin. No detected action on small molecule substrates
Synonyms
botulinum toxin, botulinum toxin type a, bont-a, bont/a, onabotulinumtoxina, botulinum neurotoxin, bonta, incobotulinumtoxina, bont/b, abobotulinumtoxina, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
BoNT/B
BoNT/B-LC
light chain subunit of botulinum neurotoxin B
botulinum neurotoxin B
-
botulinum neurotoxin type A
-
botulinum neurotoxin type B
-
abobotulinumtoxinA
-
commercial preparation
Balc424
P10845
-
BoNT F
BoNT serotype A
BoNT serotype E
-
-
BoNT serotype F
-
-
BoNT-A
BoNT/A
BoNT/A LC
BoNT/A Lc endopeptidase
-
-
BoNT/A-LC
P10845
-
BoNT/A1
BoNT/A2
BoNT/A3
BoNT/A4
BoNT/A5
BoNT/B
BoNT/B light chain protease
-
-
BoNT/C1
BoNT/C1-LC
-
-
BoNT/CD
BoNT/D
BoNT/E
BoNT/F
BoNT/F proteolytic F toxin
-
-
BoNT/F5
BoNT/G
BoNT/T
-
subtype
BoNTA endopeptidase
-
-
BoNTB
-
subtype
BoNTC
-
subtype
BoNTE
BoNTF
-
subtype
Bontoxilysin C1
-
-
-
-
botulinum A neurotoxin light chain
-
-
Botulinum neurotoxin
botulinum neurotoxin a
botulinum neurotoxin A light chain
P10845
-
botulinum neurotoxin A protease
-
-
botulinum neurotoxin A subtype 1
botulinum neurotoxin A subtype 2
-
botulinum neurotoxin A subtype 6
-
-
botulinum neurotoxin A3
-
botulinum neurotoxin A4
-
botulinum neurotoxin A8 subtype
-
-
botulinum neurotoxin B
botulinum neurotoxin B protease
-
-
botulinum neurotoxin C
-
-
botulinum neurotoxin D light chain
-
botulinum neurotoxin E
-
-
botulinum neurotoxin endopeptidase
-
-
botulinum neurotoxin F
-
-
botulinum neurotoxin serotype A
botulinum neurotoxin serotype A endopeptidase
-
-
botulinum neurotoxin serotype A light chain
botulinum neurotoxin serotype A protease
-
-
botulinum neurotoxin serotype B
-
-
botulinum neurotoxin serotype BA
-
-
botulinum neurotoxin serotype C1
-
-
botulinum neurotoxin serotype C1 light chain protease
-
-
botulinum neurotoxin serotype D
-
-
botulinum neurotoxin serotype E
-
-
botulinum neurotoxin serotype F
botulinum neurotoxin serotype FA
-
-
botulinum neurotoxin serotype G
-
-
botulinum neurotoxin serotype H
-
-
botulinum neurotoxin subtype A
P10845
-
botulinum neurotoxin subtype A3
-
-
botulinum neurotoxin subtype A4
-
-
botulinum neurotoxin subtype B6
-
-
botulinum neurotoxin subtype F5
-
-
botulinum neurotoxin type A
botulinum neurotoxin type A light chain
-
-
botulinum neurotoxin type B
botulinum neurotoxin type C
-
botulinum neurotoxin type D
botulinum neurotoxin type E
-
-
botulinum neurotoxin type F
botulinum neurotoxin type F light chain
-
-
botulinum neurotoxin type G
-
-
botulinum neurotoxin type HA
-
-
botulinum neurotoxin X
-
Botulinum neurotoxin-A
-
-
botulinum toxin
botulinum toxin C3
-
-
botulinum toxin type A
-
-
botulinum toxin type B
-
-
botulinum toxin type F
-
-
Botulinumtoxin A
-
-
BoTxA
P10845
-
Clostridium botulinum A2 neurotoxin
-
-
Clostridium botulinum C2 toxin
-
-
Clostridium botulinum neurotoxin
-
-
Clostridium botulinum neurotoxin A1
-
-
Clostridium botulinum neurotoxin F
-
Clostridium botulinum neurotoxin serotype A
Clostridium botulinum neurotoxin serotype A light chain
-
-
Clostridium botulinum neurotoxin type E
Clostridium botulinum serotype D neurotoxin
-
-
CNT endopeptidase
-
-
D-4947 L-TC
-
-
daxibotulinumtoxinA
-
commercial preparation
incobotulinumtoxinA
-
commercial preparation
LC/A
-
light chain subunit of botulinum neurotoxin type A
LC/F5
-
catalytic domain of botulinum neurotoxin subtype F5
LC/HA
-
light chain protease domain of botulinum neurotoxin type HA
LC/X
catalytic domain/light chain of botulinum neurotoxin X
LcB
-
light chain of botulinum neurotoxin B
lcc1
-
light chain of botulinum neurotoxin C1
LCD
-
light chain of botulinum neurotoxin D
LCE
-
light chain of botulinum neurotoxin E
LCF
-
light chain of botulinum neurotoxin F
LHn/D
catalytic and translocation domain of botulinum neurotoxin type D
mosaic toxin
-
-
neurotoxin A
-
-
onabotulinumtoxinA
-
commercial preparation
serotype D botulinum neurotoxin
-
-
subtype A4 neurotoxin
-
-
type A BoNT
-
-
type A botulinum neurotoxin
type A botulinum neurotoxin light chain
-
-
type A botulinum neurotoxin protease
-
-
additional information
REACTION
REACTION DIAGRAM
COMMENTARY hide
ORGANISM
UNIPROT
LITERATURE
Limited hydrolysis of proteins of the neuroexocytosis apparatus, synaptobrevin (also known as neuronal vesicle-associated membrane protein, VAMP), synaptosome-associated protein of 25 kDa (SNAP25) or syntaxin. No detected action on small molecule substrates
show the reaction diagram
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
hydrolysis of peptide bond
-
-
-
-
CAS REGISTRY NUMBER
COMMENTARY hide
107231-12-9
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
SNAP-25 + H2O
?
show the reaction diagram
synaptobrevin + H2O
?
show the reaction diagram
Syntaxin + H2O
?
show the reaction diagram
-
-
-
?
VAMP-2 + H2O
?
show the reaction diagram
-
-
-
?
VAMPTide + H2O
?
show the reaction diagram
substrate for subtype BoNT/B
-
-
?
vesicle-associated membrane protein-2 + H2O
?
show the reaction diagram
-
-
-
?
25 kDa synaptosome-associated protein + H2O
?
show the reaction diagram
-
-
-
-
?
25-kDa synaptosome-associated protein + H2O
?
show the reaction diagram
-
i.e. SNAP-25
-
-
?
5-carboxyfluorescein-TRIDEANQRATK-Dabcyl-6-aminohexanoic acid-CONH2 + H2O
?
show the reaction diagram
-
-
-
-
?
5-carboxyfluorescein-TRIDEANQRATK-Dabcyl-CONH2 + H2O
?
show the reaction diagram
-
-
-
-
?
5-carboxyfluorescein-TRIDEANQRATK-Dabcyl-norleucine-CONH2 + H2O
?
show the reaction diagram
-
-
-
-
?
50-mer synaptobrevin peptide + H2O
?
show the reaction diagram
-
[Pya88]S39-88
-
?
7-hydroxy-4-methylcoumarin-3-acetyl-TRIDEANQRATK-Dabcyl-6-aminohexanoic acid-CONH2 + H2O
?
show the reaction diagram
-
-
-
-
?
7-hydroxy-4-methylcoumarin-3-acetyl-TRIDEANQRATK-Dabcyl-CONH2 + H2O
?
show the reaction diagram
-
-
-
-
?
7-hydroxy-4-methylcoumarin-3-acetyl-TRIDEANQRATK-Dabcyl-norleucine-CONH2 + H2O
?
show the reaction diagram
-
-
-
-
?
Ac-ERDQKLSELDDRADALQAG-(7-methoxy-4-methylcoumaryl)Lys-SQ-diaminopropionic acid(2,4-dinitrophenyl)-ESSAAKLKRKYWWKNLK-NH2 + H2O
?
show the reaction diagram
-
development of a FRET peptide substrate, based on the native substrate binding site of human VAMP2 residues 55-94, and evaluation for enzymatic cleavage by the BoNT/B light chain protease, overview. For the synthesis position 74 is mutated to Lys in order to couple 7-methoxycoumarin-4-acetic acid, MCA, to the amine via an amide bond, in part to aid in the flexibility of the MCA to allow free rotation away from the active site and not affect binding and/or cleavage of the peptide. At position 77 the native Phe is replaced with the unnatural amino acid diaminopropionic acid to facilitate coupling of 2,4-dinitrophenyl to the peptide. Thr79 is mutated to a serine increasing kcat 2fold without affecting Km
-
-
?
Ac-IIGNLRH(Nle)ALD(Nle)GNEIDTQNRQIDRI(Nle)EKADSNKTRIDEAN(pNO2-Phe)RA(1-pyrenylalanine)K(Nle)L-NH2 + H2O
Ac-IIGNLRH(Nle)ALD(Nle)GNEIDTQNRQIDRI(Nle)EKADSNKTRIDEAN(pNO2-Phe) + RA(1-pyrenylalanine)K(Nle)L-NH2
show the reaction diagram
-
i.e. peptide PL51, a SNAP-25-NH2in which all methionines were replaced by nonoxidizable Nle
-
-
?
Ac-IIGNLRHMALDMGNEIDTQNRQIDRIMEKADSNKTRIDEAN(pNO2-Phe)RA(1-pyrenylalanine)K(Nle)L-NH2 + H2O
Ac-IIGNLRHMALDMGNEIDTQNRQIDRIMEKADSNKTRIDEAN(pNO2-Phe) + RA(1-pyrenylalanine)K(Nle)L-NH2
show the reaction diagram
-
i.e. peptide PL50, a SNAP-25-NH2 acetylated at positions 156 to 203 [(pNO2-Phe)197, (1-pyrenylalanine)200, Nle202]
-
-
?
Ac-KSDSNKTRIDEAN(pNO2-Phe)RA(1-pyrenylalanine)K(Nle)LGSG-NH2 + H2O
Ac-KSDSNKTRIDEAN(pNO2-Phe) + RA(1-pyrenylalanine)K(Nle)LGSG-NH2
show the reaction diagram
-
-
-
-
?
Ac-RGSNKPKIDAGNQRATRXLGGR-NH2 + H2O
Ac-RGSNKPKIDAGNQR + ATRXLGGR-NH2
show the reaction diagram
-
-
-
?
Ac-SNKTIDEANQRATKML-NH2 + H2O
Ac-SNKTIDEANQ + RATKML-NH2
show the reaction diagram
-
synaptosomal protein
-
?
Ac-SNKTRIDCANQRATKML-NH2 + H2O
Ac-SNKTRIDCANQ + RATKML-NH2
show the reaction diagram
-
-
-
?
Ac-SNKTRIDEAN(1-pyrenylalanine)RA(pNO2-Phe)K(Nle)L-NH2 + H2O
Ac-SNKTRIDEAN(1-pyrenylalanine) + RA(pNO2-Phe)K(Nle)L-NH2
show the reaction diagram
-
-
-
-
?
Ac-SNKTRIDEAN(pNO2-Phe)RA(1-pyrenylalanine)K(Nle)L-NH2 + H2O
Ac-SNKTRIDEAN(pNO2-Phe) + RA(1-pyrenylalanine)K(Nle)L-NH2
show the reaction diagram
-
-
-
-
?
Ac-SNKTRIDEANQRATK(Nle)L-NH2 + H2O
Ac-SNKTRIDEANQ + RATK(Nle)L-NH2
show the reaction diagram
-
-
-
-
?
Ac-SNKTRIDEANQRATKML-NH2 + H2O
Ac-SNKTRIDEANQ + RATKML-NH2
show the reaction diagram
-
-
-
?
Ac-SNKTRIDEANQRCTKML-NH2 + H2O
Ac-SNKTRIDEANQ + RCTKML-NH2
show the reaction diagram
-
-
-
?
Ac-SNKTRIDECNQRATKML + H2O
?
show the reaction diagram
-
-
-
-
?
Ac-SNKTRIDECNQRATKML-NH2 + H2O
Ac-SNKTRIDECNQ + RATKML-NH2
show the reaction diagram
-
-
-
?
biotin-KGSNRTRIDQGNQRATRXLGGK-biotin + H2O
?
show the reaction diagram
-
the catalytic activity resides on the light chains of the toxin molecule
-
-
?
cytosolic SNARE + H2O
?
show the reaction diagram
LQQTQAQVDEVVDIMRVNVDKVLERDQKLSELDD + H2O
LQQTQAQVDEVVDI + MRVNVDKVLERDQK + LSELDD
show the reaction diagram
-
the vesicle-associated membrane protein, VAMP, sequence-derived peptide is a substrate of BoNT serotype D light chain
-
-
?
LSELDDRADALQAGASQFETSAAKLKRKYWWKNLK + H2O
LSELDDRADALQAGASQ + FETSAAKLKRKYWWKNLK
show the reaction diagram
-
the vesicle-associated membrane protein, VAMP, sequence-derived peptide is a substrate of BoNT serotype B light chain
-
-
?
membrane-anchored SNARE + H2O
?
show the reaction diagram
-
host membrane-anchored SNARE, proteolytically cleaved by BoNT/C
-
-
?
Neuroexocytosis multi-subunit complex + H2O
?
show the reaction diagram
neuronal proteinSNAP-25 + H2O
?
show the reaction diagram
-
-
-
?
Nutide + H2O
?
show the reaction diagram
-
i.e. FITC(bA)T(dR)IDQANQRAT(K/DABCYL)(Nle)-amide
-
-
?
Proteins of neuroexocytosis apparatus + H2O
?
show the reaction diagram
-
-
-
-
?
Recombinant glutathione S-methyltransferase VAMP-2 fusion protein + H2O
Hydrolyzed recombinant glutathione S-methyltransferase VAMP-2 fusion protein
show the reaction diagram
-
-
2 proteolytic fragments, MW 36000 and MW 6000
?
Sb-Snc2p fusion protein + H2O
?
show the reaction diagram
-
a recombinant chimeric SNARE protein where a portion of neuronal synaptobrevin, Sb, is fused to Snc2p, a Sb ortholog required for protein secretion from yeast cells
-
-
?
SNAP-23 + H2O
?
show the reaction diagram
-
a nonneuronal SNARE protein, that mediates vesicle-plasma membrane fusion processes, including secretion of airway mucus, antibody, insulin, gastric acids, and ions. SNAP23 is cleaved by an engineered BoNT/E light chain, LC/E K224D. Molecular modeling of the enzyme-substrate complex using the crystal structure of LC/E, Protein Data Bank ID 3d3x, overview
-
-
?
SNAP-25 + H2O
?
show the reaction diagram
SNAP-25 peptide (141-206) + H2O
?
show the reaction diagram
-
the minimal size of SNAP-25 known to retain full activity as a BoNT/A substrate is the C-terminal 66-mer peptide, residues 141-206, with both exosites
-
-
?
SNAP-25-derived peptide + H2O
?
show the reaction diagram
-
i.e. HA-tagged SNAP25(141-206) or HA-tagged mutant SNAP25(141-206)-R198A, substrate of light chains of BoNT/A1, BoNT/A2, BoNT/A3, and BoNT/A4
-
-
?
SNAP25 + H2O
?
show the reaction diagram
SNAP25(187-203) + H2O
?
show the reaction diagram
-
i.e. soluble N-ethylmaleimide-sensitive factor attachment protein 25, substrate fragmnent containing residues 87-203
-
-
?
SNAPEtide + H2O
?
show the reaction diagram
substrate for subtype BoNT/E
-
-
?
SNAPtide + H2O
?
show the reaction diagram
SNAPtide 520 + H2O
?
show the reaction diagram
-
-
-
-
?
SNAPtide 521 + H2O
?
show the reaction diagram
-
-
-
-
?
SNARE-protein + H2O
?
show the reaction diagram
-
soluble NSF-attachment protein receptor
-
?
SNKTRIDEAAQRATKML + H2O
SNKTRIDEAAQ + RATKML
show the reaction diagram
-
synthetic peptide substrate
-
?
SNKTRIDEANBRATKML + H2O
SNKTRIDEANB + RATKML
show the reaction diagram
-
synthetic peptide substrate
-
?
SNKTRIDEANNRATKML + H2O
SNKTRIDEANN + RATKML
show the reaction diagram
-
synthetic peptide substrate
-
?
SNKTRIDEANQRABKML + H2O
SNKTRIDEANQ + RABKML
show the reaction diagram
-
synthetic peptide substrate
-
?
SNKTRIDEANQRASKML + H2O
SNKTRIDEANQ + RASKML
show the reaction diagram
-
synthetic peptide substrate
-
?
SNKTRIDEANQRATAML + H2O
SNKTRIDEANQ + RATAML
show the reaction diagram
-
synthetic peptide substrate
-
?
SNKTRIDEANQRATK + H2O
SNKTRIDEANQ + RATK
show the reaction diagram
-
synthetic peptide substrate
-
?
SNKTRIDEANQRATKAL + H2O
SNKTRIDEANQ + RATKAL
show the reaction diagram
-
synthetic peptide substrate
-
?
SNKTRIDEANQRATKM + H2O
SNKTRIDEANQ + RATKM
show the reaction diagram
-
synthetic peptide substrate
-
?
SNKTRIDEANQRATKML + H2O
SNKTRIDEANQ + RATKML
show the reaction diagram
SNKTRIDEANQRATKXL + H2O
SNKTRIDEANQ + RATKXL
show the reaction diagram
-
synthetic peptide substrate
-
?
SNKTRIDEANQRBTKML + H2O
SNKTRIDEANQ + RBTKML
show the reaction diagram
-
synthetic peptide substrate
-
?
SNKTRIDEBNQRATKML + H2O
SNKTRIDEBNQ + RATKML
show the reaction diagram
-
synthetic peptide substrate
-
?
SNKTRIDQANQRATKML + H2O
?
show the reaction diagram
-
-
-
-
?
SNKTRINEAAQRATKML + H2O
SNKTRINEAAQ + RATKML
show the reaction diagram
-
synthetic peptide substrate
-
?
SNKTRINEANQRATKML + H2O
?
show the reaction diagram
-
-
-
-
?
SNRTRIDEANK(Dnp)RA(S-(N-[4-methyl-7-dimethylamino-coumarin-3-yl]-carboxamidomethyl)-L-cysteine)RML + H2O
SNRTRIDEANK(Dnp) + RA(S-(N-[4-methyl-7-dimethylamino-coumarin-3-yl]-carboxamidomethyl)-L-cysteine)RML
show the reaction diagram
synaptobrevin + H2O
?
show the reaction diagram
Synaptobrevin + H2O
Hydrolyzed synaptobrevin
show the reaction diagram
synaptobrevin-2 + H2O
?
show the reaction diagram
-
cleaves in the same location as that cleaved by BoNT/F proteolytic F toxin of Clostridium botulinum
-
-
?
Synaptosome-associated protein + H2O
?
show the reaction diagram
-
i.e. SNAP 25, protein of presynaptic membrane
-
-
?
Synaptosome-associated protein + H2O
Hydrolyzed synaptosome-associated protein
show the reaction diagram
synaptosome-associated protein SNAP-25 + H2O
?
show the reaction diagram
synaptosome-associated protein SNAP-25 + H2O
hydrolyzed synaptosome-associated protein SNAP-25
show the reaction diagram
-
-
-
-
?
Syntaxin + H2O
?
show the reaction diagram
TSNRRLQQTQAQVDEVVDIMRVNVDKVLERDQKLSELDDRADAL + H2O
TSNRRLQQTQAQVDEVVDIMRVNVDKVLERDQ + KLSELDDRADAL
show the reaction diagram
-
-
-
?
VAMP + H2O
?
show the reaction diagram
VAMP 2 + H2O
?
show the reaction diagram
VAMP-1 + H2O
?
show the reaction diagram
-
subtype BoNT/D does not cleave human VAMP-1 efficiently
-
-
?
VAMP-2 + H2O
?
show the reaction diagram
VAMP2 + H2O
?
show the reaction diagram
VAMP2 peptide + H2O
?
show the reaction diagram
-
a synthetic peptide substrate representing amino acid residues 60-94 of the intracellular vesicle associated membrane protein 2, i.e. VAMP2, recombinant GST fusion protein and commercial preparation as substrates with equal activity for BONT/B
-
-
?
VAMPTide + H2O
?
show the reaction diagram
vesicle-associated membrane protein + H2O
?
show the reaction diagram
-
-
-
-
?
vesicle-associated membrane protein VAMP + H2O
?
show the reaction diagram
-
BoNT F cleaves VAMP between residues Q58 and K59. The minimum substrate is a peptide containing VAMP residues 32-65, which includes only one of the two VAMP structural motifs thought to be required for botulinum substrate recognition. BoNT F exhibits a strict requirement for residues D57 (P2), K59 (P1'), and L60 (P2'), but peptides containing substitutions for R56 (P3), Q58 (P1), and S61 (P3') are cleaved. Therefore, the P2, P1', and P2'?residues of VAMP are of paramount importance for BoNT F substrate recognition near the scissile bond
-
-
?
vesicle-associated membrane protein VAMP-2 + H2O
?
show the reaction diagram
-
-
-
-
?
vesicle-associated membrane protein-1 + H2O
?
show the reaction diagram
vesicle-associated membrane protein-2 + H2O
?
show the reaction diagram
vesicle-associated membrane protein-2 mutant D51A + H2O
?
show the reaction diagram
-
the enzyme cleaves the mutant substrate with about 10fold lower efficiency compared to the wild type substrate
-
-
?
vesicle-associated membrane protein-2 mutant E41A + H2O
?
show the reaction diagram
-
the enzyme cleaves the mutant substrate with about 80fold lower efficiency compared to the wild type substrate
-
-
?
vesicle-associated membrane protein-2 mutant E55A + H2O
?
show the reaction diagram
-
the enzyme cleaves the mutant substrate with about 750fold lower efficiency compared to the wild type substrate
-
-
?
vesicle-associated membrane protein-2 mutant K52A + H2O
?
show the reaction diagram
-
the enzyme cleaves the mutant substrate with about 20fold lower efficiency compared to the wild type substrate
-
-
?
vesicle-associated membrane protein-2 mutant N49A + H2O
?
show the reaction diagram
-
the enzyme cleaves the mutant substrate with about 10fold lower efficiency compared to the wild type substrate
-
-
?
vesicle-associated membrane protein-2 mutant Q58A + H2O
?
show the reaction diagram
-
the enzyme cleaves the mutant substrate with about 25fold lower efficiency compared to the wild type substrate
-
-
?
vesicle-associated membrane protein-2 mutant R31A + H2O
?
show the reaction diagram
-
the enzyme cleaves the mutant substrate with about 20fold lower efficiency compared to the wild type substrate
-
-
?
vesicle-associated membrane protein-2 mutant R56A + H2O
?
show the reaction diagram
-
the enzyme cleaves the mutant substrate with about 4000fold lower efficiency compared to the wild type substrate
-
-
?
vesicle-associated membrane protein-2 mutant V50A + H2O
?
show the reaction diagram
-
the enzyme cleaves the mutant substrate with about 50fold lower efficiency compared to the wild type substrate
-
-
?
vesicle-associated membrane protein-3 + H2O
?
show the reaction diagram
vesicle-associated membrane protein-4 + H2O
?
show the reaction diagram
vesicle-associated membrane protein-5 + H2O
?
show the reaction diagram
Ykt6 + H2O
?
show the reaction diagram
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
SNAP-25 + H2O
?
show the reaction diagram
synaptobrevin + H2O
?
show the reaction diagram
Syntaxin + H2O
?
show the reaction diagram
-
-
-
?
VAMP-2 + H2O
?
show the reaction diagram
-
-
-
?
vesicle-associated membrane protein-2 + H2O
?
show the reaction diagram
-
-
-
?
25 kDa synaptosome-associated protein + H2O
?
show the reaction diagram
-
-
-
-
?
25-kDa synaptosome-associated protein + H2O
?
show the reaction diagram
-
i.e. SNAP-25
-
-
?
Ac-SNKTIDEANQRATKML-NH2 + H2O
Ac-SNKTIDEANQ + RATKML-NH2
show the reaction diagram
-
synaptosomal protein
-
?
cytosolic SNARE + H2O
?
show the reaction diagram
-
host cytosolic SNARE, i.e. soluble NSF attachment protein receptor, a central helical protein-conducting channel, which chaperones the protease across host endosomes, modelling, overview. Sequence-specific claveage by the endoprotease activity of the BoNT light chains
-
-
?
membrane-anchored SNARE + H2O
?
show the reaction diagram
-
host membrane-anchored SNARE, proteolytically cleaved by BoNT/C
-
-
?
Neuroexocytosis multi-subunit complex + H2O
?
show the reaction diagram
SNAP-25 + H2O
?
show the reaction diagram
SNAP25 + H2O
?
show the reaction diagram
SNARE-protein + H2O
?
show the reaction diagram
-
soluble NSF-attachment protein receptor
-
?
synaptobrevin + H2O
?
show the reaction diagram
Synaptosome-associated protein + H2O
?
show the reaction diagram
-
i.e. SNAP 25, protein of presynaptic membrane
-
-
?
synaptosome-associated protein SNAP-25 + H2O
?
show the reaction diagram
Syntaxin + H2O
?
show the reaction diagram
VAMP + H2O
?
show the reaction diagram
VAMP 2 + H2O
?
show the reaction diagram
-
i.e. synaptobrevin-2 or vesicle-associated membrane protein 2
-
-
?
VAMP-2 + H2O
?
show the reaction diagram
-
-
-
-
?
VAMP2 + H2O
?
show the reaction diagram
vesicle-associated membrane protein + H2O
?
show the reaction diagram
-
-
-
-
?
vesicle-associated membrane protein-1 + H2O
?
show the reaction diagram
vesicle-associated membrane protein-2 + H2O
?
show the reaction diagram
vesicle-associated membrane protein-3 + H2O
?
show the reaction diagram
vesicle-associated membrane protein-4 + H2O
?
show the reaction diagram
vesicle-associated membrane protein-5 + H2O
?
show the reaction diagram
Ykt6 + H2O
?
show the reaction diagram
additional information
?
-
METALS and IONS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
Zn2+
dependent on
additional information
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
toosendanin
an enzyme translocation inhibitor that hinders subtype BoNT/B oligomerization
(2E)-2-(1H-benzimidazol-2-yl)-3-(3-iodo-4-methoxyphenyl)prop-2-enenitrile
-
-
(2E)-3-(2,4-dichlorophenyl)-N-hydroxyprop-2-enamide
(2E)-3-(2-amino-4-chlorophenyl)-N-hydroxyprop-2-enamide
-
-
(2E)-3-(2-bromo-4-chlorophenyl)-N-hydroxyprop-2-enamide
-
-
(2E)-3-(4-chloro-2-fluorophenyl)-N-hydroxyprop-2-enamide
-
-
(2E)-3-(4-chloro-2-hydroxyphenyl)-N-hydroxyprop-2-enamide
-
-
(2E)-3-(4-chloro-2-methoxyphenyl)-N-hydroxyprop-2-enamide
-
-
(2E)-3-(4-chloro-2-methylphenyl)-N-hydroxyprop-2-enamide
-
-
(2E)-3-(4-chloro-2-nitrophenyl)-N-hydroxyprop-2-enamide
-
-
(2E)-3-(4-chlorophenyl)-N-hydroxyprop-2-enamide
-
a trans-cinnamic hydroxamate
(2E)-3-[4-chloro-2-(iminomethyl)phenyl]-N-hydroxyprop-2-enamide
-
-
(2E)-3-[4-chloro-2-(methylsulfanyl)phenyl]-N-hydroxyprop-2-enamide
-
-
(2E)-3-[4-chloro-2-(methylsulfonyl)phenyl]-N-hydroxyprop-2-enamide
-
-
(2E)-3-[4-chloro-2-(trifluoromethyl)phenyl]-N-hydroxyprop-2-enamide
-
-
(2E)-4-[(7-nitro-9H-fluoren-2-yl)amino]-4-oxobut-2-enoic acid
-
19.5% inhibition at 0.02 mM
(3alpha,5beta,7alpha,12alpha,17alpha)-24-([2-[(7-chloroquinolin-4-yl)amino]ethyl]amino)cholane-3,7,12-triyl triacetate
P10845
90% inhibition at 0.02 mM
(3R)-3-(2,4-dichlorophenyl)-N,5-dihydroxypentanamide
-
-
(3R)-3-(4-chlorophenyl)-N,5-dihydroxypentanamide
-
-
(3S)-3-(2,4-dichlorophenyl)-N,5-dihydroxypentanamide
-
-
(3S)-3-(4-chlorophenyl)-N,5-dihydroxypentanamide
-
-
([[5-[[1-(4-ammoniobutyl)-2-phenyl-1H-indol-6-yl]carbonyl]-2-(3-hydroxyphenyl)thiophen-3-yl]acetyl]amino)oxidanide
-
synthesis and binding structure, overview, multiple molecular dynamics simulations of the endopeptidase in complex with inhibitor 2 using the dummy atom approach, overview
1,10-phenanthroline
-
-
1-(2,4-dichlorobenzyl)-1H-pyrrole-2,5-dione
-
inhibitor is providing relatively potent BoNT protection in a cellular assay. It inhibits the biological activity of BoNT/A1 in neuronal cells. This inhibitor is about 7 to 10times more potent than 2-(2,4-dichlorobenzylidene)cyclopent-4-ene-1,3-dione
2'-((9H-fluoren-2-ylamino)carbonyl)-4,4'-bis(hydroxy(oxido)amino)[1,1'-biphenyl]-2-carboxylic acid
-
82% inhibition at 0.02 mM
2'-[(7-fluoro-9H-fluoren-2-yl)carbamoyl][1,1'-biphenyl]-2-carboxylic acid
-
47.6% inhibition at 0.02 mM
2'-[(7-methoxy-9H-fluoren-2-yl)carbamoyl]biphenyl-2-carboxylic acid
-
20.9% inhibition at 0.02 mM
2'-[(9-hydroxy-9H-fluoren-2-yl)carbamoyl]biphenyl-2-carboxylic acid
-
20% inhibition at 0.02 mM
2'-[(9-oxo-9H-fluoren-2-yl)carbamoyl][1,1'-biphenyl]-2-carboxylic acid
-
20.2% inhibition at 0.02 mM
2'-[(9H-fluoren-2-yl)carbamoyl][1,1'-biphenyl]-2-carboxylic acid
-
37.2% inhibition at 0.02 mM
2(9H-fluorene-2-carbonyl)benzoic acid
-
80.1% inhibition at 0.02 mM
2,2'-(1,4-dioxobutane-1,4-diyl)dibenzoic acid
-
21.2% inhibition at 0.02 mM
2,4-dichlorocinnamic acid hydroxamate
-
-
2,4-dichlorocinnamic hydroxamate
-
binding site and complex structure, overview
2,5-dichlorocyclohexa-2,5-diene-1,4-dione
A5HZZ9
-
2,5-dimethoxy-3-(4-methylphenyl)naphthalene-1,4-dione
A5HZZ9
-
2-(1,2-dihydroacenaphthylene-5-carbonyl)benzoic acid
-
11.5% inhibition at 0.02 mM
2-(1H-benzo[d]imidazol-2-yl)-3-(5-(furan-2-yl)thiophen-2-yl)acrylonitrile
-
-
2-(1H-benzo[d]imidazol-2-yl)-3-(biphenyl-4-yl)acrylonitrile
-
-
2-(2,3-dihydro-1H-indene-5-carbonyl)benzoic acid
-
16.3% inhibition at 0.02 mM
2-(2,4-dichlorobenzylidene)cyclopent-4-ene-1,3-dione
-
inhibits the biological activity of BoNT/A1 in neuronal cells. This inhibitor is about 7 to 10times less potent than 1-(2,4-dichlorobenzyl)-1H-pyrrole-2,5-dione
2-(2,4-dihydroxybenzoyl)benzoic acid
-
14.7% inhibition at 0.02 mM
2-(2-oxo-2,3-dihydro-1,3-benzoxazole-5-carbonyl)benzoic acid
-
35% inhibition at 0.02 mM
2-(3,5-dichloro-2-hydroxybenzoyl)benzoic acid
-
19.2% inhibition at 0.02 mM
2-(3,6-dioxocyclohexa-1,4-dien-1-yl)acetic acid
A5HZZ9
-
2-(3-methyl-5,6,7,8-tetrahydronaphthalene-2-carbonyl)benzoic acid
-
24.8% inhibition at 0.02 mM
2-(4-(2,4-dichlorophenoxy)phenyl)-6-(4,5-dihydro-1H-imidazol-2-yl)-1H-indole
-
-
2-(4-(2-chloro-4-cyanophenoxy)phenyl)-1H-indole-6-carbonitrile
-
-
2-(4-(2-chloro-4-cyanophenoxy)phenyl)-6-(4,5-dihydro-1H-imidazol-2-yl)indole
-
-
2-(4-(4-(6-(1,4,5,6-tetrahydropyrimidin-2-yl)benzo[b]thiophen-2-yl)phenoxy)phenyl)-1,4,5,6-tetrahydropyrimidine
-
-
2-(4-(4-(6-(4,5-dihydro-1H-imidazol-2-yl)benzo[b]thiophen-2-yl)phenoxy)phenyl)-4,5-dihydro-1H-imidazole
-
-
2-(4-(4-(6-(5-hydroxy-1,4,5,6-tetrahydropyrimidin-2-yl)-1H-indol-2-yl)phenoxy)phenyl)-1,4,5,6-tetrahydropyrimidin-5-ol
-
-
2-(4-(4-carbamoylphenoxy)phenyl)-1H-indole-6-carboxamide
-
-
2-(4-(4-cyanophenoxy)phenyl)-1H-indole-6-carboximidamide
-
-
2-(4-(4-cyanophenoxy)phenyl)indole-6-carbonitrile
-
-
2-(4-(6-(1,4,5,6-tetrahydropyrimidin-2-yl)benzo[b]thiophen-2-yl)phenyl)-1,4,5,6-tetrahydropyrimidine
-
-
2-(4-(6-(4,5-dihydro-1H-imidazol-2-yl)benzo[b]thiophen-2-yl)-phenyl)-4,5-dihydro-1H-imidazole
-
-
2-(4-carboxybenzoyl)benzoic acid
-
13.7% inhibition at 0.02 mM
2-(4-fluorophenyl)-1H-indole-6-carbonitrile
-
-
2-(4-fluorophenyl)-1H-indole-6-carboxamide
-
-
2-(4-fluorophenyl)-1H-indole-6-carboximidamide
-
-
2-(4-iodophenyl)cyclohexa-2,5-diene-1,4-dione
A5HZZ9
-
2-(4-methoxyphenyl)-1H-indole-6-carboxamide
-
-
2-(4-methoxyphenyl)-1H-indole-6-carboximidamide
-
-
2-(4-methoxyphenyl)-6-(4,5-dihydro-1H-imidazol-2-yl)-1H-indole
-
-
2-(4-methylphenyl)naphthalene-1,4-dione
A5HZZ9
-
2-(5-(4-cyanophenoxy)pyridin-2-yl)-1H-indole-6-carbonitrile
-
-
2-(5-fluoro-2-pyridyl)-6-benzo[b]thiophenecarboxamide
-
-
2-(5-{[1-(4-aminobutyl)-2-phenyl-1H-indol-6-yl]carbonyl}-2-phenylthiophen-3-yl)-N-hydroxyacetamide
-
i.e. 2-(5-[[1-(4-aminobutyl)-2-phenyl-1H-indol-6-yl]carbonyl]-2-phenylthiophen-3-yl)-N-hydroxyacetamide
2-(9H-fluorene-2-carbonyl)benzoic acid
-
-
2-(pyridin-2-ylamino)cyclohexa-2,5-diene-1,4-dione
A5HZZ9
-
2-([1,1'-biphenyl]-4-carbonyl)benzoic acid
-
37.8% inhibition at 0.02 mM
2-amino-N-(4-phenoxyphenyl)acetamide
A5HZZ9
-
2-amino-N-[3-(benzyloxy)phenyl]acetamide
A5HZZ9
-
2-benzoylbenzoic acid
-
15.9% inhibition at 0.02 mM
2-bromo-4-chlorocinnamic acid hydroxamate
-
-
2-chlorocyclohexa-2,5-diene-1,4-dione
A5HZZ9
-
2-mercapto-3-phenylpropionyl-R
-
-
2-mercapto-3-phenylpropionyl-RA
-
-
2-mercapto-3-phenylpropionyl-RAAKML
-
-
2-mercapto-3-phenylpropionyl-RAT
-
-
2-mercapto-3-phenylpropionyl-RATAML
-
-
2-mercapto-3-phenylpropionyl-RATK
-
-
2-mercapto-3-phenylpropionyl-RATKAL
-
-
2-mercapto-3-phenylpropionyl-RATKM
-
-
2-mercapto-3-phenylpropionyl-RATKML
-
-
2-mercapto-3-phenylpropionyl-RATKMLGSG
-
-
2-mercapto-3-phenylpropionyl-RVTKML
-
-
2-methoxy-3-(4-methylphenyl)cyclohexa-2,5-diene-1,4-dione
A5HZZ9
-
2-methoxycyclohexa-2,5-diene-1,4-dione
A5HZZ9
-
2-methyl-4-chlorocinnamic acid hydroxamate
-
-
2-methyl-7-[phenyl[(pyridin-2-yl)amino]methyl]quinolin-8-ol
-
-
2-methyl-7-[phenyl[(pyridin-3-yl)amino]methyl]quinolin-8-ol
-
-
2-methyl-7-[phenyl[(pyrimidin-2-yl)amino]methyl]quinolin-8-ol
-
-
2-methylcyclohexa-2,5-diene-1,4-dione
A5HZZ9
-
2-methylnaphthalene-1,4-dione
A5HZZ9
-
2-phenylcyclohexa-2,5-diene-1,4-dione
A5HZZ9
-
2-trifluoromethyl-4-chlorocinnamic acid hydroxamate
-
-
2-[(3-bromo-9-oxo-9H-fluoren-2-yl)carbamoyl]cyclohexane-1-carboxylic acid
-
19.3% inhibition at 0.02 mM
2-[(4-bromo-9-oxo-9H-fluoren-2-yl)carbamoyl]benzoic acid
-
26.2% inhibition at 0.02 mM
2-[(9-oxo-9H-fluoren-2-yl)carbamoyl]benzoic acid
-
14.8% inhibition at 0.02 mM
2-[(9-oxo-9H-fluoren-2-yl)carbamoyl]cyclohexane-1-carboxylic acid
-
18.3% inhibition at 0.02 mM
2-[(9H-fluoren-2-yl)carbamoyl]cyclohexane-1-carboxylic acid
-
12% inhibition at 0.02 mM
-
2-[1-cyano-2-(3-bromo-5-methoxy-4-hydroxyphenyl)vinyl]benzimidazole
-
-
2-[1-cyano-2-(3-chloro-5-methoxy-4-hydroxyphenyl)vinyl]benzimidazole
-
-
2-[4-(methylamino)-3-nitrobenzoyl]benzoic acid
-
14.1% inhibition at 0.02 mM
2-[5-{[1-(4-aminobutyl)-2-phenyl-1H-indol-6-yl]carbonyl}-2-(3-hydroxyphenyl)thiophen-3-yl]-N-hydroxyacetamide
-
i.e. 2-[5-[[1-(4-aminobutyl)-2-phenyl-1H-indol-6-yl]carbonyl]-2-(3-hydroxyphenyl)thiophen-3-yl]-N-hydroxyacetamide, 79% inhibition of BoNTA at 0.02 mM
2-[5-{[1-(4-aminobutyl)-3-fluoro-2-phenyl-1H-indol-6-yl]carbonyl}-2-(3-aminophenyl)thiophen-3-yl]-N-hydroxyacetamide
-
i.e. 2-(5-(1-(4-aminobutyl)-3-fluoro-2-phenyl-1H-indole-6-carbonyl)-2-(3-aminophenyl)thiophen-3-yl)-N-hydroxyacetamide, 47% inhibition of BoNTA at 0.02 mM. The hydroxamate coordinates the zinc ion embedded in the active site and forms a hydrogen bond to Glu224. The cation shows pi-interaction of the thiophene-substituted phenyl group with Arg363. Occurence of pi-pi interactions of the thiophene-substituted phenyl group with Phe194 and Tyr366, of interaction of the ketone oxygen atom with Asp370 that is bridged by at least one water molecule, and of cation-pi and pi-pi interactions of the indole-substituted phenyl group with Lys66 and Gln162, respectively
2-[5-{[1-(4-aminobutyl)-3-fluoro-2-phenyl-1H-indol-6-yl]carbonyl}-2-(4-hydroxyphenyl)thiophen-3-yl]-N-hydroxyacetamide
-
i.e. 2-(5-(1-(4-aminobutyl)-3-fluoro-2-phenyl-1H-indole-6-carbonyl)-2-(4-hydroxyphenyl)thiophen-3-yl)-N-hydroxyacetamide, 82% inhibition of BoNTA at 0.02 mM. The hydroxamate coordinates the zinc ion embedded in the active site and forms a hydrogen bond to Glu224. The cation shows pi-interaction of the thiophene-substituted phenyl group with Arg363. Occurence of pi-pi interactions of the thiophene-substituted phenyl group with Phe194 and Tyr366, of interaction of the ketone oxygen atom with Asp370 that is bridged by at least one water molecule, and of cation-pi and pi-pi interactions of the indole-substituted phenyl group with Lys66 and Gln162, respectively
2-[[17-oxoestra-1,3,5(10)-trien-3-yl]oxy]cyclohexa-2,5-diene-1,4-dione
A5HZZ9
-
24-mer C-terminal peptide of LcE1
-
the activity of the light chain of botulinum toxin A is significantly reduced to 32% by the peptide with sequence TGRGLVKKIIRFCKNIVSVKGIRK
-
3'-O-ethyl-dynasore
A5HZZ9
-
3,9-dichloro-6-(5,7-dichloro-9H-fluoren-2-yl)-5H-dibenzo[c,e]azepine-5,7(6H)-dione
-
68.9% inhibition at 0.02 mM
3,9-dichloro-6-(9H-fluoren-2-yl)-5H-dibenzo[c,e]azepine-5,7(6H)-dione
-
48% inhibition at 0.02 mM
3-(2,20-bithiophen-5-yl)-2-(1H-benzo-imidazol-2-yl)acrylonitrile
-
-
3-(2,4-dichlorophenyl)-5-(4-fluorophenethoxy)-N-hydroxypentanamide
A5HZZ9
-
3-(2,4-dichlorophenyl)-N1-(4-fluoro-2-methoxyphenyl)-N5-hydroxypentanediamide
A5HZZ9
-
3-(2,4-dichlorophenyl)-N1-(4-fluorophenethyl)-N5-hydroxypentanediamide
A5HZZ9
-
3-(2,4-dichlorophenyl)-N1-hydroxy-N5-(4-methoxyphenethyl)pentanediamide
A5HZZ9
-
3-(2,4-dichlorophenyl)-N1-hydroxy-N5-(o-tolyl)pentanediamide
A5HZZ9
-
3-(3,6-dioxocyclohexa-1,4-dien-1-yl)propanoic acid
A5HZZ9
-
3-(4-(1H-imidazol-1-yl)phenyl)-2-(1H-benzoimidazol-2-yl)acrylonitrile
-
-
3-(4-chloro-2-methylphenyl)-N-hydroxypropanamide
-
-
3-fluoro-2-(naphthalene-2-carbonyl)benzoic acid
-
43.9% inhibition at 0.02 mM
3-hydroxy-N'-[(E)-(2-hydroxyphenyl)methylidene]naphthalene-2-carbohydrazide
A5HZZ9
-
3-hydroxy-N'-[(E)-(3,4,5-trihydroxyphenyl)methylidene]naphthalene-2-carbohydrazide
A5HZZ9
competitive inhibition
3-hydroxy-N'-[(E)-(3-hydroxyphenyl)methylidene]naphthalene-2-carbohydrazide
A5HZZ9
-
3-hydroxy-N-phenylanthracene-2-carboxamide
-
70.1% inhibition at 0.02 mM
32-mer C-terminal peptide of LcA
-
the activity of the light chain of botulinum toxin A is significantly reduced to 15% by the peptide with sequence KNFTGLFEFYKLLCVRGIITSKTKSLDKGYNK
-
3H-dynasore
A5HZZ9
-
3H-dyngo-4a
A5HZZ9
-
4,4'-dichloro-2'-((9H -fluoren-2-ylamino)carbonyl)[1,1'-biphenyl]-2-carboxylic acid
-
88.3% inhibition at 0.02 mM
4,4'-dichloro-2'-[(5,7-dichloro-9H-fluoren-2-yl)carbamoyl][1,1'-biphenyl]-2-carboxylic acid
-
79.11% inhibition at 0.02 mM
4-(2-amino-3-sulfanylpropyl)benzamide
-
-
4-(2-amino-3-sulfanylpropyl)benzenesulfonamide
-
-
4-(2-amino-3-sulfanylpropyl)benzenesulfonic acid
-
-
4-amino-7-chloroquinoline
-
12% inhibition at 0.05 mM
4-chloro-(3-fluorophenyl)methyl benzenesulfonamide
-
i.e. MSU84, competitive inhibitor of botulinum neurotoxin type A light chain
4-chloro-N-[(4-fluorophenyl)methyl] pyridin-3-amine
-
i.e. MSU58, competitive inhibitor of botulinum neurotoxin type A light chain
4-chlorocinnamic hydroxamate
4-[((2S)-2-amino-3-[1-(1-benzylcarbamoyl-(2R)-2-phenylethylcarbamoyl)-(2S)-2-biphenyl-4-yl-ethylcarbamoyl]-3(S)sulfanylpropyl)]benzoic acid
-
-
4-[((2S)-2-amino-3-[1-(1-benzylcarbamoyl-(2S)-2-(4-hydroxyphenyl)ethylcarbamoyl)-(2S)-2-biphenyl-4-yl-ethylcarbamoyl]-3(S)sulfanylpropyl)]benzoic acid
-
-
4-[((2S)-2-amino-3-[1-(1-benzylcarbamoyl-(2S)-2-phenylethylcarbamoyl)-(2S)-2-(1H-indol-3-yl)ethylcarbamoyl]-3(S)sulfanylpropyl)]benzoic acid
-
-
4-[(2S)-2-amino-3-[1-(1-benzylcarbamoyl-(2S)-2-(3H-imidazol-4-yl)ethylcarbamoyl]-(2S)-2-biphenyl-4-ylethylcarbamoyl)-3(S)sulfanylpropyl]benzoic acid
-
-
4-[(2S)-2-amino-3-[1-(1-benzylcarbamoyl-(2S)-2-methylbutylcarbamoyl)-(2S)-2-biphenyl-4-ylethylcarbamoyl]-3(S)-sulfanylpropyl]benzoic acid
-
-
4-[(2S)-2-amino-3-[1-(1-benzylcarbamoyl-(2S)-2-phenylethylcarbamoyl)-(2R)-2-biphenyl-4-yl-ethylcarbamoyl]-3(S)sulfanylpropyl]benzoic acid
-
-
4-[(2S)-2-amino-3-[1-(1-benzylcarbamoyl-(2S)-2-phenylethylcarbamoyl)-(2S)-2-(1-methyl-1H-indol-3-yl)ethylcarbamoyl]-3(S)sulfanylpropyl] benzoic acid
-
-
4-[(2S)-2-amino-3-[1-(1-benzylcarbamoyl-(2S)-2-phenylethylcarbamoyl)-(2S)-2-naphthalen-1-yl-ethylcarbamoyl]-3(S)sulfanylpropyl] benzoic acid
-
-
4-[(2S)-2-amino-3-[1-(1-benzylcarbamoyl-(2S)-2-phenylethylcarbamoyl]-3(S)sulfanylpropyl)] benzoic acid
-
-
4-[(2S)-2-amino-3-[1-(2S)-2-benzol[beta]thiophen-3-yl-1-benzylcarbamoylethylcarbamoyl-(2S)-2-biphenyl-4-yl-ethylcarbamoyl]-3-(S)-sulfanylpropyl] benzoic acid
-
-
4-[(2S)-2-amino-3-[1-(2S)-2-benzo[b]thiophen-3-yl-1-benzylcarbamoylethylcarbamoyl-(2S)-2-biphenyl-4-yl-ethylcarbamoyl]-3(S)-sulfanylpropyl]benzoic acid
-
-
4-{(2S)-2-amino-3-[1-(1-benzylcarbamoyl-(2R)-2-phenylethylcarbamoyl)-(2S)-2-biphenyl-4-yl-ethylcarbamoyl]-3(S)sulfanylpropyl}benzoic acid
-
-
4-{(2S)-2-amino-3-[1-(1-benzylcarbamoyl-(2S)-2-(3H-imidazol-4-yl)ethylcarbamoyl]-(2S)-2-biphenyl-4-yl-ethylcarbamoyl}-3(S)sulfanylpropyl)}benzoic acid
-
-
4-{(2S)-2-amino-3-[1-(1-benzylcarbamoyl-(2S)-2-(4-hydroxyphenyl)ethylcarbamoyl)-(2S)-2-biphenyl-4-yl-ethylcarbamoyl]-3(S)sulfanylpropyl}benzoic acid
-
-
4-{(2S)-2-amino-3-[1-(1-benzylcarbamoyl-(2S)-2-phenylethylcarbamoyl)-(2R)-2-biphenyl-4-yl-ethylcarbamoyl]-3(S)sulfanylpropyl}benzoic acid
-
-
4-{(2S)-2-amino-3-[1-(1-benzylcarbamoyl-(2S)-2-phenylethylcarbamoyl)-(2S)-2-(1-methyl-1H-indol-3-yl)ethylcarbamoyl]-3(S)sulfanylpropyl}benzoic acid
-
-
4-{(2S)-2-amino-3-[1-(1-benzylcarbamoyl-(2S)-2-phenylethylcarbamoyl)-(2S)-2-(1H-indol-3-yl)ethylcarbamoyl]-3(S)sulfanylpropyl}benzoic acid
-
-
4-{(2S)-2-amino-3-[1-(1-benzylcarbamoyl-(2S)-2-phenylethylcarbamoyl)-(2S)-2-naphthalen-1-yl-ethylcarbamoyl]-3(S)sulfanylpropyl}benzoic acid
-
-
4-{(2S)-2-amino-3-[1-(1-benzylcarbamoyl-(2S)-2-phenylethylcarbamoyl]-3(S)-sulfanylpropyl)}benzoic acid
-
-
5,8-dihydroxynaphthalene-1,4-dione
A5HZZ9
-
5,8-dioxo-5,8-dihydronaphthalen-1-yl acetate
A5HZZ9
-
5,8-dioxo-5,8-dihydronaphthalen-1-yl cyclopentanecarboxylate
A5HZZ9
-
5-((3-bromoadamantan-1-yl)methoxy)-3-(2,4-dichlorophenyl)-N-hydroxypentanamide
A5HZZ9
-
5-(allyloxy)-3-(2,4-dichlorophenyl)-N-hydroxypentanamide
A5HZZ9
-
5-(benzyloxy)-3-(2,4-dichlorophenyl)-N-hydroxypentanamide
A5HZZ9
-
5-(benzyloxy)naphthalene-1,4-dione
A5HZZ9
-
5-chloro-7-[(2,4-difluorophenyl)[(pyridin-2-yl)amino]methyl]quinolin-8-ol
-
-
5-chloro-7-[(2,4-difluorophenyl)[(pyridin-3-yl)amino]methyl]quinolin-8-ol
-
-
5-chloro-7-[(2,4-difluorophenyl)[(pyrimidin-2-yl)amino]methyl]quinolin-8-ol
-
-
5-chloro-7-[(2-fluorophenyl)[(pyridin-2-yl)amino]methyl]quinolin-8-ol
-
-
5-chloro-7-[(2-fluorophenyl)[(pyridin-3-yl)amino]methyl]quinolin-8-ol
-
-
5-chloro-7-[(2-fluorophenyl)[(pyrimidin-2-yl)amino]methyl]quinolin-8-ol
-
-
5-chloro-7-[(4-fluorophenyl)[(pyridin-2-yl)amino]methyl]quinolin-8-ol
-
-
5-chloro-7-[(4-fluorophenyl)[(pyridin-3-yl)amino]methyl]quinolin-8-ol
-
-
5-chloro-7-[(4-fluorophenyl)[(pyrimidin-2-yl)amino]methyl]quinolin-8-ol
-
-
5-chloro-7-[phenyl[(pyridin-2-yl)amino]methyl]quinolin-8-ol
-
-
5-chloro-7-[phenyl[(pyridin-3-yl)amino]methyl]quinolin-8-ol
-
-
5-chloro-7-[phenyl[(pyrimidin-2-yl)amino]methyl]quinolin-8-ol
-
-
5-hydroxynaphthalene-1,4-dione
A5HZZ9
-
5-methoxynaphthalene-1,4-dione
A5HZZ9
-
5-methyl-2-(propan-2-yl)naphthalene-1,4-dione
A5HZZ9
-
6-(1,4,5,6-tetrahydropyrimidin-2-yl)-2-(4-(4-(1,4,5,6-tetrahydropyrimidin-2-yl)phenoxy)phenyl)-1H-benzo[d]imidazole
-
-
6-(1,4,5,6-tetrahydropyrimidin-2-yl)-2-(4-(4-(1,4,5,6-tetrahydropyrimidin-2-yl)phenoxy)phenyl)-1H-indole
-
-
6-(1,4,5,6-tetrahydropyrimidin-2-yl)-2-{5-[4-(1,4,5,6-tetrahydropyrimidin-2-yl)phenoxy]pyridin-2-yl}-1H-indole
-
-
6-(3,4,5,6-tetrahydropyrimidin-2-yl)-2-(4-(3,4,5,6-tetrahydropyrimidin-2-yl)phenyl)-1H-indole
-
-
6-(4,5-dihydro-1H-imidazol-2-yl)-2-(4-(4,5-dihydro-1H-imidazol-2-yl)phenyl)-1H-indole
-
-
6-(4,5-dihydro-1H-imidazol-2-yl)-2-(4-(4-(4,5-dihydro-1H-imidazol-2-yl)phenoxy)phenyl)-1H-benzo[d]imidazole
-
-
6-(4,5-dihydro-1H-imidazol-2-yl)-2-(4-(4-(4,5-dihydro-1H-imidazol-2-yl)phenoxy)phenyl)-1H-indole
-
-
6-(4,5-dihydro-1H-imidazol-2-yl)-2-(4-fluorophenyl)-1H-indole
-
-
6-(4,5-dihydroimidazol-2-yl)-2-(5-(4-(4,5-dihydroimidazol-2-yl)phenoxy)pyridine-2-yl)indole
-
-
6-(9H-fluoren-2-yl)-3,9-dinitro-5H-dibenzo[c,e]azepine-5,7(6H)-dione
-
24.7% inhibition at 0.02 mM
6-bromo-N-hydroxynaphthalene-2-carboxamide
-
-
6-chloro-2-(4-(4-(4,5-dihydro-1H-imidazol-2-yl)phenoxy)-phenyl)-1H-indole
-
-
6-chloro-N-hydroxy-1-benzothiophene-2-carboxamide
-
-
6-chloro-N-hydroxy-1-methyl-1H-indole-2-carboxamide
-
-
6-chloro-N-hydroxy-1H-indene-2-carboxamide
-
-
6-chloro-N-hydroxynaphthalene-2-carboxamide
-
-
6-hydroxynaphthalene-1,4-dione
A5HZZ9
-
6-[(2,5-dimethoxyphenyl)amino]-N-(4-phenoxybenzyl)picolinamide
A5HZZ9
-
6-[(3,6-dioxocyclohexa-1,4-dien-1-yl)amino]-N-(4-phenoxybenzyl)picolinamide
A5HZZ9
-
7-((4-nitroanilino)(phenyl)methyl)-8-quinolinol
-
NSC 1010
7-N-phenylcarbamoylamino-4-chloro-3-propyloxyisocoumarin
-
ICD 1578
7-[(2,4-difluorophenyl)[(pyridin-2-yl)amino]methyl]-2-methylquinolin-8-ol
-
-
7-[(2,4-difluorophenyl)[(pyridin-2-yl)amino]methyl]quinolin-8-ol
-
-
7-[(2,4-difluorophenyl)[(pyridin-3-yl)amino]methyl]-2-methylquinolin-8-ol
-
-
7-[(2,4-difluorophenyl)[(pyridin-3-yl)amino]methyl]quinolin-8-ol
-
-
7-[(2,4-difluorophenyl)[(pyrimidin-2-yl)amino]methyl]-2-methylquinolin-8-ol
-
-
7-[(2,4-difluorophenyl)[(pyrimidin-2-yl)amino]methyl]quinolin-8-ol
-
-
7-[(2-fluorophenyl)[(pyridin-2-yl)amino]methyl]-2-methylquinolin-8-ol
-
-
7-[(2-fluorophenyl)[(pyridin-2-yl)amino]methyl]quinolin-8-ol
-
-
7-[(2-fluorophenyl)[(pyridin-3-yl)amino]methyl]-2-methylquinolin-8-ol
-
-
7-[(2-fluorophenyl)[(pyridin-3-yl)amino]methyl]quinolin-8-ol
-
-
7-[(2-fluorophenyl)[(pyrimidin-2-yl)amino]methyl]-2-methylquinolin-8-ol
-
-
7-[(2-fluorophenyl)[(pyrimidin-2-yl)amino]methyl]quinolin-8-ol
-
-
7-[(4-fluorophenyl)[(pyridin-2-yl)amino]methyl]-2-methylquinolin-8-ol
-
-
7-[(4-fluorophenyl)[(pyridin-2-yl)amino]methyl]quinolin-8-ol
-
-
7-[(4-fluorophenyl)[(pyridin-3-yl)amino]methyl]-2-methylquinolin-8-ol
-
-
7-[(4-fluorophenyl)[(pyridin-3-yl)amino]methyl]quinolin-8-ol
-
-
7-[(4-fluorophenyl)[(pyrimidin-2-yl)amino]methyl]-2-methylquinolin-8-ol
-
-
7-[(4-fluorophenyl)[(pyrimidin-2-yl)amino]methyl]quinolin-8-ol
-
-
7-[phenyl[(pyridin-2-yl)amino]methyl]quinolin-8-ol
-
-
7-[phenyl[(pyridin-3-yl)amino]methyl]quinolin-8-ol
-
-
7-[phenyl[(pyrimidin-2-yl)amino]methyl]quinolin-8-ol
-
-
9H-fluorene
-
17.3% inhibition at 0.02 mM
Ac-SNKTRIDEACQRATKML-NH2
-
-
Ac-SNKTRIDEAN(D)CRATKML-NH2
-
-
Ac-SNKTRIDEAN(D)QCRATKML-NH2
-
-
Ac-SNKTRIDEANCRATKML-NH2
-
-
Ac-SNKTRIDEANQCATKML-NH2
-
-
Ala-Ser-Gln-Phe-Glu-Thr-Ser
-
synthetic peptide containing cleavage site of synaptobrevin, inhibits toxin action on buccal ganglion of Aplysia californica, serotype BoNT/B, not A or E
aminopterin
P10845
11% inhibition at 0.01 mM
ammonium chloride
-
affects the acidification step, acts to inhibit by neutralizing the endosomal pH and show antagonism against BoNT-induced paralysis
amodiaquine
-
antimalarial drug, 30% inhibition
antibody F1-40
-
F1-40 binds a peptide fragment of the BoNT/A light chain, designated L1-3, which spans from T125 to L200, with recognition motif QPDRS. No binding to BoNT/A mutant Q138G/P139G/D140G. Wild-type residues Q138, P139 and D140 form a loop on the external surface of BoNT/A, exposed to solvent
-
AQVDEVVDIMRVNVDKVLERDQ
-
residues 37-58 of vesicle-associated membrane protein VAMP. Inhibitor exhibits a high degree of specificity for BoNT F, compared to other BoNT serotypes
bafilomycin A1
-
inhibits all BoNT serotypes. The ATPase inhibitor also functions as antagonist of the acidification process
bis-aminoquinoline
P10845
60% inhibition at 0.02 mM
bisquinoline Q2-15
-
60% inhibition
bisquinoline Q2-61
-
50% inhibition
buforin I
-
natural peptide, isolated from the stomach of the Asian toad Bufo bufo gargarizans
-
caftaric acid
-
-
captopril
CB 7969312
-
the quinolinol-based analogue effectively neutralizes BoNT/A toxicity, ex vivo protection at 500 nM
CB7967495
-
inhibitor of botulinum neurotoxin serotypes B, C, E, and F
CB7969312
-
inhibitor of botulinum neurotoxin serotypes B, C, E, and F
chicoric acid iso-propyl ester
A5HZZ9
competitive partial inhibition
chlorogenic acid
-
-
Chloroquine
Chloroquinone
P10845
7% inhibition at 0.02 mM
cinnamic acid hydroxamate
-
-
concanamycin A
CpA
-
i.e. [5-(4-chlorobenzoyl)-2-phenylthiophen-3-yl]acetic acid, 15% inhibition of BoNTA at 0.1 mM
CRATKML
-
competitive peptide inhibitor
cyclohexa-2,5-diene-1,4-dione
A5HZZ9
-
D-chicoric acid
-
mechanism of inhibition, overview. The inhibitor binds to an exosite, displays noncompetitive partial inhibition, and is synergistic with a competitive inhibitor I2 when used in combination
desmosine
P10845
25% inhibition at 0.01 mM
dipicolinic acid
-
-
dynasore
A5HZZ9
-
Dyngo-4a
A5HZZ9
endocytic inhibitor of BoNT/A neurotoxicity through dynamin inhibition, competitive inhibition. Complete inhibition of the BoNT/A light chain at 0.02 mM
expoxomicin
-
increases ubiquitination of BoNT/B light chain in neuronal cells. Ubiquitination in vitro and in cells decreases the biological activity of BoNT/B light chain
ganglioside GT1b glycoconjugate
-
the synthetic glycoconjugates based on GT1b prevents SNAP25 cleavage in spinal cord cells of rat embryos
GGPPAPPPNLTSNRRLQQTQAQVDEVVDIMRVNVDKVLERDQ
-
residues 17-58 of vesicle-associated membrane protein VAMP
Gln-Phe-Glu-Thr
-
synthetic peptide containing cleavage site of synaptobrevin, inhibits toxin action on buccal ganglion of Aplysia californica, serotype BoNT/B, not A or E
GRKKRRQRRRPPQC
-
90% inhibition
L-Arginine hydroxamate
L-chicoric acid
-
-
lomofungin
A5HZZ9
-
LQQTQAQVDEVVDIMRVNVDKVLERDQ
-
residues 32-58 of vesicle-associated membrane protein VAMP. Inhibitor exhibits a high degree of specificity for BoNT F, compared to other BoNT serotypes
mefloquine
P10845
28% inhibition at 0.02 mM
methyl 3alpha-(N-[(7-chloroquinolin-4-yl)amino]ethyl)amino,7alpha,12alpha-diacetoxy-5beta-cholan-24-oate
-
-
methyl 3alpha-(N-[(7-chloroquinolin-4-yl)amino]ethyl)oxy,7alpha,12alpha-diacetoxy-5beta-cholan-24-oate
-
9% inhibition at 0.05 mM
methyl 3alpha-amino-7alpha,12alpha-diacetoxycholan-24-oate
-
13% inhibition at 0.05 mM
methyl 3beta-(N-[(7-chloroquinolin-4-yl)amino]ethyl)amino,7alpha,12alpha-diacetoxy-5beta-cholan-24-oate
-
-
methyl 6-[(3,6-dioxocyclohexa-1,4-dien-1-yl)amino]picolinate
A5HZZ9
-
methylamine hydrochloride
-
affects the acidification step, acts to inhibit by neutralizing the endosomal pH and show antagonism against BoNT-induced paralysis
monensin
P10845
38% inhibition at 0.01 mM
N'-(2-(dimethylamino)ethyl)-2-(4-(4-(N'-2-(dimethylaminoethyl)carbamimidoyl)phenoxy)phenyl)-1H-indole-6-carboximidamide
-
-
N'-[(E)-(2,4,5-trihydroxyphenyl)methylidene]benzohydrazide
A5HZZ9
-
N'-[(E)-(2,4,5-trihydroxyphenyl)methylidene]naphthalene-2-carbohydrazide
A5HZZ9
-
N,N-bis(7-aminoheptyl)-1-benzyl-4-[3-(hydroxyamino)-3-oxopropyl]-5-(3-hydroxy-3,3-diphenylpropyl)-1H-pyrrole-2-carboxamide
-
a tetrasubstituted pyrrole inhibitor
N-(2,6-dimethylphenyl)-2-(pyridine-4-carbonyl)hydrazine-1-carbothioamide
-
28% inhibition at 0.02 mM
N-(2-chlorophenyl)-2-(pyridine-4-carbonyl)hydrazine-1-carbothioamide
-
19% inhibition at 0.02 mM
N-(3-amino-9H-fluoren-2-yl)acetamide
-
13.7% inhibition at 0.02 mM
N-(3alpha,7alpha,12alpha-triacetoxy-5beta-cholan-24-yl)-N'-(7'-chloroquinolin-4'-yl)-ethane-1,2-diamine
-
-
N-(4-bromobenzyl)-N'-(7-chloroquinolin-4-yl)ethane-1,2-diamine
P10845
69% inhibition at 0.02 mM
N-(4-bromobenzyl)-N'-(7-chloroquinolin-4-yl)propane-1,3-diamine
P10845
68% inhibition at 0.02 mM
N-(4-phenoxybenzyl)picolinamide
A5HZZ9
-
N-(4-tert-butylbenzyl)-N'-(7-chloroquinolin-4-yl)ethane-1,2-diamine
P10845
47% inhibition at 0.02 mM
N-(4-tert-butylbenzyl)-N'-(7-chloroquinolin-4-yl)propane-1,3-diamine
P10845
50.28% inhibition at 0.02 mM
N-(7-chloroquinolin-4-yl)-N'-(4-fluorobenzyl)ethane-1,2-diamine
P10845
68% inhibition at 0.02 mM
N-(7-chloroquinolin-4-yl)-N'-(4-fluorobenzyl)propane-1,3-diamine
P10845
50.09% inhibition at 0.02 mM
N-(7-chloroquinolin-4-yl)-N'-(4-methoxybenzyl)ethane-1,2-diamine
P10845
18% inhibition at 0.02 mM
N-(7-chloroquinolin-4-yl)-N'-(4-methoxybenzyl)propane-1,3-diamine
P10845
14% inhibition at 0.02 mM
N-(7-chloroquinolin-4-yl)-N'-(pyridin-3-ylmethyl)ethane-1,2-diamine
P10845
25% inhibition at 0.02 mM
N-(7-chloroquinolin-4-yl)-N'-(pyridin-3-ylmethyl)propane-1,3-diamine
P10845
39.89% inhibition at 0.02 mM
N-(7-chloroquinolin-4-yl)-N'-(pyridin-4-ylmethyl)ethane-1,2-diamine
P10845
24% inhibition at 0.02 mM
N-(7-chloroquinolin-4-yl)-N'-(pyridin-4-ylmethyl)propane-1,3-diamine
P10845
42.29% inhibition at 0.02 mM
N-(7-chloroquinolin-4-yl)-N'-adamantylethane-1,2-diamine
P10845
51.4% inhibition at 0.02 mM
N-(7-chloroquinolin-4-yl)-N'-[(4-methoxypyridin-3-yl)methyl]ethane-1,2-diamine
P10845
19% inhibition at 0.02 mM
N-(7-chloroquinolin-4-yl)-N'-[(4-methoxypyridin-3-yl)methyl]propane-1,3-diamine
P10845
43.25% inhibition at 0.02 mM
N-(9-oxo-9H-fluoren-2-yl)benzamide
-
12.7% inhibition at 0.02 mM
N-(methyl 7alpha,12alpha-diacetoxy-5beta-cholan-24-oate,3alpha-yloxy)-ethyl-N'-(7-chloroquinolin-4-yl)-ethane-1,2-diamine
-
62% inhibition at 0.05 mM
N-(pyridin-2-yl)prop-2-enamide
A5HZZ9
-
N-(pyridin-3-yl)prop-2-enamide
A5HZZ9
-
N-([1,1'-biphenyl]-4-ylmethyl)-1-(2,5-dimethoxybenzyl)-1H-1,2,4-triazole-3-carboxamide
A5HZZ9
-
N-([1,1'-biphenyl]-4-ylmethyl)-1-[(3,6-dioxocyclohexa-1,4-dien-1-yl)methyl]-1H-1,2,4-triazole-3-carboxamide
A5HZZ9
-
N-([1,1'-biphenyl]-4-ylmethyl)-1H-1,2,4-triazole-3-carboxamide
A5HZZ9
-
N-([1,1'-biphenyl]-4-ylmethyl)-2-aminoacetamide
A5HZZ9
-
N-Ac-CRATKML
P10845
an inhibitory peptide, structure of the serotype A toxin light chain with an inhibitory peptide bound at the catalytic Zn(II) ion, the peptide is bound with the Cys Sgamma atom coordinating the metal ion, overview
N-acetyl neuraminic acid
-
both binding and permeation of toxins are potently inhibited by N-acetyl neuraminic acid in the cell culture mediumor by treatment of the cells with neuraminidase, but neither galactose, lactose nor N-acetyl galactosamine inhibit binding or permeation of toxins
N-acetyl-CRATKML-amide
-
-
N-benzyl-N'-(7-chloroquinolin-4-yl)ethane-1,2-diamine
P10845
52% inhibition at 0.02 mM
N-benzyl-N'-(7-chloroquinolin-4-yl)propane-1,3-diamine
P10845
51.83% inhibition at 0.02 mM
N-hydroxy-2-(tricyclo[3.3.1.13,7]dec-1-yl)acetamide
A5HZZ9
-
N-hydroxy-4-pentylbenzamide
-
-
N-hydroxyacetamidoadamantan
-
a synthetic hydroxamate
N-[(4-chloropyridin-3-yl)methyl]-N'-(7-chloroquinolin-4-yl)ethane-1,2-diamine
P10845
23% inhibition at 0.02 mM
N-[(4-chloropyridin-3-yl)methyl]-N'-(7-chloroquinolin-4-yl)propane-1,3-diamine
P10845
35.87% inhibition at 0.02 mM
N-[3-(benzyloxy)phenyl]-2-[(2,5-dimethoxybenzyl)amino]acetamide
A5HZZ9
-
N-[3-(benzyloxy)phenyl]-2-[[(3,6-dioxocyclohexa-1,4-dien-1-yl)methyl]amino]acetamide
A5HZZ9
-
N1-(2-cyclopropylethyl)-3-(2,4-dichlorophenyl)-N5-hydroxypentanediamide
A5HZZ9
-
N1-(4-bromophenyl)-3-(2,4-dichlorophenyl)-N5-hydroxypentanediamide
A5HZZ9
-
N1-(6-(6-(4,5-dihydro-1H-imidazol-2-yl)benzo[b]thiophen-2-yl)-pyridine-3-yl)ethane-1,2-diamine
-
-
N1-(7-chloroquinolin-4-yl)-ethane-1,2-diamine
-
33% inhibition at 0.05 mM
N1-(7-chloroquinolin-4-yl)-propane-1,3-diamine
-
22% inhibition at 0.05 mM
naphthalene-1,4-dione
A5HZZ9
-
NSC 119889
-
56% inhibition
NSC 130796
-
48% inhibition
NSC 240898
-
NSC 240898, a potent BoNT/A LC endopeptidase inhibitor, 75% inhibition at 0.02 mM, no cytotoxicity
NSC 357756
-
57% inhibition
NSC 402959
-
40% inhibition
NSC 625324 (silver sulfadiazine)
-
100% inhibition
NSC 661755 (michellamine B)
-
62% inhibition
NSC 86372
-
51% inhibition
paclitaxel
P10845
95% inhibition at 0.01 mM
phorbol 12-myristate 13-acetate
-
increases ubiquitination of BoNT/B light chain in neuronal cells. Ubiquitination in vitro and in cells decreases the biological activity of BoNT/B light chain
PPPNLTSNRRLQQTQAQVDEVVDIMRVNVDKVLERDQ
-
residues 22-58 of vesicle-associated membrane protein VAMP. Inhibitor exhibits a high degree of specificity for BoNT F, compared to other BoNT serotypes
PTEN
P10845
a zinc-chelating agent
-
Quinacrine
-
antimalarial drug, 30% inhibition
RRGF
-
0.02 mM, 95% inhibition
S132B-C11
-
a RNA aptamer that inhibits the enzyme's endopeptidase activity in a non-competitive manner. The core sequence is GACAGCGUGCCUAGAAGUCCAAGCUUAAAUAACCACGCUCGACAAGC, structure, overview
-
S132B-C12
-
a RNA aptamer that inhibits the enzyme's endopeptidase activity in a non-competitive manner. The core sequence is ACAACCCGGAACAACGUCUAACAGUGUACCAUAACCCGGCAUUCA, structure, overview
-
S132B-C22
-
a RNA aptamer that inhibits the enzyme's endopeptidase activity in a non-competitive manner. The core sequence is AUUCGGGCCCAGGAACCAACUAUAUAAAUGUCCCGAAUGCUUCGACG, structure, overview
-
single-domain llama antibody Aa1
-
most potent antibody isolated from a single domain VHH, i.e. camelid heavy-chain variable region derived from heavy-chain-only antibody, antibodies, it is resistant to heat denaturation and reducing conditions. The Aa1 paratope coincides with an alpha-helical portion of the SNAP25 substrate. Structure of BoNT/A Lc-Aa1 VHH complex and inhibition mechanism, overview
-
synaptotagmin
-
-
-
synaptotagmin II luminal domain
-
the luminal domain of syt II, syt II-LD, inhibits the toxicity of BoNT/B by interfering with the toxin-receptor interaction. It contains toxin-binding sites that have a high affinity for BoNT/B heavy chain. Recombinant syt II-LD in vivo provides protection against BoNT/B intoxication in mice models to about 30% survivals at 0.27 mg/ml of sytII-LD, the neutralization effect is improved by using gangliosides to 60% survivals. Syt II-LD specifically binds to BoNT/B compared to other BoNT serotypes, overview
-
THF-toosendanin
-
tetrahydrofuran analogue of toosendanin, selectively arrests the light chain translocation step of intoxication with subnanomolar potency, and increases the unoccluded heavy chain channel propensity to open with micromolar efficacy, inhibitory profile on light chain translocation, overview. The bimodal modulation by toosendanin depends on the dynamic interactions between channel and cargo, highlighting their tight interplay during the progression of LC transit across endosomes
toosendanin
-
i.e. TSDN, selectively arrests the light chain translocation step of intoxication with subnanomolar potency, and increases the unoccluded heavy chain channel propensity to open with micromolar efficacy, inhibitory profile on light chain translocation, overview. The bimodal modulation by toosendanin depends on the dynamic interactions between channel and cargo, highlighting their tight interplay during the progression of LC transit across endosomes. Toosendanin modulates both cargo-dependent and cargo-free activities of the BoNT/E protein-conducting channel
tris-(2-carboxyethyl)-phosphine hydrochloride
-
i.e. TCEP, a non-odorous, oxygen-insensitive, non-toxic sulfhydryl reducing compound, reduces proteolytic activity of BoNT/B in human neuronal SHSY-5Y cells at higher concentrations above 4 mM, protects against BoNT/B inhibition of noradrenaline release, achieving 72% of the release from un-intoxicated controls. TCEP significantly changes the conformation of BoNT/B holotoxin. But TCEP does not fragment un-nicked BoNT/B holotoxin
tris[3-(7-chloroquinolin-4-yl)aminopropyl]amine
-
-
Triticum vulgaris lectin
-
a known competitive antagonist of BoNT, inhibits the activation of neurit outgrowth by BoNT/A
-
TSNRRLQQTQAQVDEVVDIMRVNVDKVLERDQ
-
residues 27-58 of vesicle-associated membrane protein VAMP. Inhibitor exhibits a high degree of specificity for BoNT F, compared to other BoNT serotypes
VAMP 22-58/Gln58D-cysteine
a substrate-based inhibitor, that binds to BoNT F in the canonical direction but is positioned specifically via three major exosites away from the active site
-
VAMP 27-58/Gln58D-cysteine
a substrate-based inhibitor, that binds to BoNT F in the canonical direction but is positioned specifically via three major exosites away from the active site. The cysteine sulfur of the inhibitors interacts with the zinc and exists as sulfinic acid
-
VVDIMRVNVDKVLERDQ
-
residues 42-58 of vesicle-associated membrane protein VAMP. Inhibitor exhibits a high degree of specificity for BoNT F, compared to other BoNT serotypes
Zn2+
-
addition of exogenous ZnCl2 to the assay mixture reduces the activity of BoNT/Am activity ratio of wild-type and mutant enzymes in presence or absence of ZnCl2, overview
[[(5-[[1-(4-ammoniobutyl)-2-phenyl-1H-indol-6-yl]carbonyl]-2-phenylthiophen-3-yl)acetyl]amino]oxidanide
-
synthesis and binding structure, overview, multiple molecular dynamics simulations of the endopeptidase in complex with inhibitor 1 using the dummy atom approach, overview
additional information
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
5-phenyl-2-acylguanidyl thiophenes
-
compounds containing a 2-acylthiophene moiety as a zinc-binding functionality, combined with acylguanidyl groups as an arginine side chain mimetic, structure-activity relationship of 5-phenyl-2-acylguanidyl thiophene activators of BoNT LC/A under standard screening conditions, overview
5-[3-(butylsulfanyl)phenyl]-N-carbamimidoylthiophene-2-carboxamide
-
4fold activation of BoNT LC/A
5-[4-(butylsulfanyl)phenyl]-N-carbamimidoylthiophene-2-carboxamide
-
7fold activation, BoNT LC/A activation profile, overview
bovine serum albumin
-
dithiothreitol
-
-
goat serum albumin
-
stimulates hydrolysis of synthetic peptides
-
horse serum albumin
-
stimulates hydrolysis of synthetic peptides
-
Human serum albumin
-
stimulates hydrolysis of synthetic peptides
-
N-carbamimidoyl-5-[3-(ethylsulfanyl)phenyl]thiophene-2-carboxamide
-
4fold activation of BoNT LC/A
N-carbamimidoyl-5-[3-(methylsulfanyl)phenyl]thiophene-2-carboxamide
-
3fold activation of BoNT LC/A
N-carbamimidoyl-5-[4-(ethylsulfanyl)phenyl]thiophene-2-carboxamide
-
3.5fold activation of BoNT LC/A
N-carbamimidoyl-5-[4-(propylsulfanyl)phenyl]thiophene-2-carboxamide
-
7fold activation of BoNT LC/A
Proteases
-
rabbit serum albumin
-
stimulates hydrolysis of synthetic peptides
-
sheep serum albumin
-
stimulates hydrolysis of synthetic peptides
-
tris-(2-carboxyethyl)-phosphine hydrochloride
-
i.e. TCEP, a non-odorous, oxygen-insensitive, non-toxic sulfhydryl reducing compound, activates proteolytic activity of BoNT/B in human neuronal SHSY-5Y cells maximally at 1mM, protects against BoNT/B inhibition of noradrenaline release, achieving 72% of the release from un-intoxicated controls. TCEP significantly changes the conformation of BoNT/B holotoxin
Triton X-100
-
stimulates the catalytic efficiency of serotype A 35fold
additional information
-
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.0709
Ac-ERDQKLSELDDRADALQAG-(7-methoxy-4-methylcoumaryl)Lys-SQ-diaminopropionic acid(2,4-dinitrophenyl)-ESSAAKLKRKYWWKNLK-NH2
-
pH 7.4, 22°C
0.00013
Ac-IIGNLRH(Nle)ALD(Nle)GNEIDTQNRQIDRI(Nle)EKADSNKTRIDEAN(pNO2-Phe)RA(1-pyrenylalanine)K(Nle)L-NH2
-
pH 7.4, 37°C
0.00079
Ac-IIGNLRHMALDMGNEIDTQNRQIDRIMEKADSNKTRIDEAN(pNO2-Phe)RA(1-pyrenylalanine)K(Nle)L-NH2
-
pH 7.4, 37°C
0.011
Ac-KSDSNKTRIDEAN(pNO2-Phe)RA(1-pyrenylalanine)K(Nle)LGSG-NH2
-
pH 7.4, 37°C
0.032 - 0.038
Ac-RGSNKPKIDAGNQRATRXLGGR-NH2
0.59
Ac-SNKTRIDCANQRATKML-NH2
-
pH 7.3, 37°C
0.013
Ac-SNKTRIDEAN(pNO2-Phe)RA(1-pyrenylalanine)K(Nle)L-NH2
-
pH 7.4, 37°C
1.7
Ac-SNKTRIDEANQRATKML-NH2
-
pH 7.3, 37°C
0.89
Ac-SNKTRIDEANQRCTKML-NH2
-
pH 7.3, 37°C
0.4
Ac-SNKTRIDECNQRATKML-NH2
-
pH 7.3, 37°C
0.0086 - 4.29
SNAP-25
-
0.0083 - 4.81
SNAP25
-
0.045
SNAPtide
-
at pH 7.4 and 25°C
-
0.10058
SNAPtide 520
-
botulinum neurotoxin type A, at pH 7.4 and 37°C
-
0.0308
SNAPtide 521
-
recombinant light chain-translocation domain, at pH 7.4 and 37°C
-
0.6
SNKTRIDEAAQRATKML
-
pH 7.3, 37°C
0.83
SNKTRIDEANBRATKML
-
pH 7.3, 37°C
0.75
SNKTRIDEANNRATKML
-
pH 7.3, 37°C
1.3
SNKTRIDEANQRABKML
-
pH 7.3, 37°C
1
SNKTRIDEANQRATAML
-
pH 7.3, 37°C
0.9
SNKTRIDEANQRATK
-
pH 7.3, 37°C
1.9
SNKTRIDEANQRATKAL
-
pH 7.3, 37°C
1.6
SNKTRIDEANQRATKM
-
pH 7.3, 37°C
1.2 - 1.7
SNKTRIDEANQRATKML
0.58
SNKTRIDEANQRATKXL
-
pH 7.3, 37°C
1.8
SNKTRIDEANQRBTKML
-
pH 7.3, 37°C
1.1
SNKTRIDEBNQRATKML
-
pH 7.3, 37°C
0.75
SNKTRIDQANQRATKML
-
pH 7.3, 37°C
0.82
SNKTRINEANQRATKML
-
pH 7.3, 37°C
0.0079 - 37.5
synaptosome-associated protein SNAP-25
-
0.0067 - 0.218
VAMP-2
-
0.0016
VAMP2
-
pH 7.4, 22°C
-
0.0043
vesicle-associated membrane protein-1
at pH 7.1 and 37°C
-
0.00209 - 0.2535
vesicle-associated membrane protein-2
-
additional information
additional information
-
TURNOVER NUMBER [1/s]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
3.81
Ac-ERDQKLSELDDRADALQAG-(7-methoxy-4-methylcoumaryl)Lys-SQ-diaminopropionic acid(2,4-dinitrophenyl)-ESSAAKLKRKYWWKNLK-NH2
-
pH 7.4, 22°C
1.15
Ac-IIGNLRH(Nle)ALD(Nle)GNEIDTQNRQIDRI(Nle)EKADSNKTRIDEAN(pNO2-Phe)RA(1-pyrenylalanine)K(Nle)L-NH2
-
pH 7.4, 37°C
2.08
Ac-IIGNLRHMALDMGNEIDTQNRQIDRIMEKADSNKTRIDEAN(pNO2-Phe)RA(1-pyrenylalanine)K(Nle)L-NH2
-
pH 7.4, 37°C
1.01
Ac-KSDSNKTRIDEAN(pNO2-Phe)RA(1-pyrenylalanine)K(Nle)LGSG-NH2
-
pH 7.4, 37°C
23
Ac-SNKTRIDCANQRATKML-NH2
-
pH 7.3, 37°C
0.79
Ac-SNKTRIDEAN(pNO2-Phe)RA(1-pyrenylalanine)K(Nle)L-NH2
-
pH 7.4, 37°C
47
Ac-SNKTRIDEANQRATKML-NH2
-
pH 7.3, 37°C
31
Ac-SNKTRIDEANQRCTKML-NH2
-
pH 7.3, 37°C
4.6
Ac-SNKTRIDECNQRATKML
-
pH 7.3, 37°C
0.042 - 38.1
SNAP-25
-
0.02 - 63
SNAP25
-
0.21
SNAPtide
-
at pH 7.4 and 25°C
-
0.343
SNAPtide 520
-
botulinum neurotoxin type A, at pH 7.4 and 37°C
-
0.052
SNAPtide 521
-
recombinant light chain-translocation domain, at pH 7.4 and 37°C
-
1.8
SNKTRIDEAAQRATKML
-
pH 7.3, 37°C
7.7
SNKTRIDEANBRATKML
-
pH 7.3, 37°C
19
SNKTRIDEANNRATKML
-
pH 7.3, 37°C
35
SNKTRIDEANQRABKML
-
pH 7.3, 37°C
8
SNKTRIDEANQRATAML
-
pH 7.3, 37°C
1
SNKTRIDEANQRATK
-
pH 7.3, 37°C
25
SNKTRIDEANQRATKAL
-
pH 7.3, 37°C
56
SNKTRIDEANQRATKM
-
pH 7.3, 37°C
9 - 47
SNKTRIDEANQRATKML
30
SNKTRIDEANQRATKXL
-
pH 7.3, 37°C
39
SNKTRIDEANQRBTKML
-
pH 7.3, 37°C
11
SNKTRIDEBNQRATKML
-
pH 7.3, 37°C
51
SNKTRIDQANQRATKML
-
pH 7.3, 37°C
5
SNKTRINEANQRATKML
-
pH 7.3, 37°C
0.00075 - 11.1
synaptosome-associated protein SNAP-25
-
0.0014 - 594.6
VAMP-2
-
1
VAMP2
-
pH 7.4, 22°C
-
4.52
vesicle-associated membrane protein-1
at pH 7.1 and 37°C
-
0.02 - 938.9
vesicle-associated membrane protein-2
-
kcat/KM VALUE [1/mMs-1]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
8850
Ac-IIGNLRH(Nle)ALD(Nle)GNEIDTQNRQIDRI(Nle)EKADSNKTRIDEAN(pNO2-Phe)RA(1-pyrenylalanine)K(Nle)L-NH2
-
pH 7.4, 37°C
2630
Ac-IIGNLRHMALDMGNEIDTQNRQIDRIMEKADSNKTRIDEAN(pNO2-Phe)RA(1-pyrenylalanine)K(Nle)L-NH2
-
pH 7.4, 37°C
92
Ac-KSDSNKTRIDEAN(pNO2-Phe)RA(1-pyrenylalanine)K(Nle)LGSG-NH2
-
pH 7.4, 37°C
61
Ac-SNKTRIDEAN(pNO2-Phe)RA(1-pyrenylalanine)K(Nle)L-NH2
-
pH 7.4, 37°C
0.11 - 2.68
SNAP-25
-
3.3
SNAPtide 520
-
botulinum neurotoxin type A, at pH 7.4 and 37°C
-
1.6
SNAPtide 521
-
recombinant light chain-translocation domain, at pH 7.4 and 37°C
-
0.19 - 34570
VAMP-2
-
1050
vesicle-associated membrane protein-1
at pH 7.1 and 37°C
-
2.5 - 183020
vesicle-associated membrane protein-2
-
Ki VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.00016
(3R)-3-(2,4-dichlorophenyl)-N,5-dihydroxypentanamide
-
pH 7.4, 22.5°C
0.0017
(3R)-3-(4-chlorophenyl)-N,5-dihydroxypentanamide
-
pH 7.4, 22.5°C
0.0038
([[5-[[1-(4-ammoniobutyl)-2-phenyl-1H-indol-6-yl]carbonyl]-2-(3-hydroxyphenyl)thiophen-3-yl]acetyl]amino)oxidanide
-
pH 7.3, 37°C, hydroxyl-containing analogue of BoNTA endopeptidase
0.00129
2(9H-fluorene-2-carbonyl)benzoic acid
-
at pH 7.4 and 37°C
0.007
2-(5-{[1-(4-aminobutyl)-2-phenyl-1H-indol-6-yl]carbonyl}-2-phenylthiophen-3-yl)-N-hydroxyacetamide
-
pH not specified in the publication, temperature not specified in the publication
0.00129
2-(9H-fluorene-2-carbonyl)benzoic acid
-
pH and temperature not specified in the publication
0.06
2-mercapto-3-phenylpropionyl-R
-
pH 7.3, 37°C
0.06
2-mercapto-3-phenylpropionyl-RA
-
pH 7.3, 37°C
0.0007
2-mercapto-3-phenylpropionyl-RAAKML
-
pH 7.3, 37°C
0.03
2-mercapto-3-phenylpropionyl-RAT
-
pH 7.3, 37°C
0.003
2-mercapto-3-phenylpropionyl-RATAML
-
pH 7.3, 37°C
0.004
2-mercapto-3-phenylpropionyl-RATK
-
pH 7.3, 37°C
0.0007
2-mercapto-3-phenylpropionyl-RATKAL
-
pH 7.3, 37°C
0.0003
2-mercapto-3-phenylpropionyl-RATKM
-
pH 7.3, 37°C
0.0003
2-mercapto-3-phenylpropionyl-RATKML
-
pH 7.3, 37°C
0.0003
2-mercapto-3-phenylpropionyl-RATKMLGSG
-
pH 7.3, 37°C
0.002
2-mercapto-3-phenylpropionyl-RVTKML
-
pH 7.3, 37°C
0.004
2-[5-{[1-(4-aminobutyl)-2-phenyl-1H-indol-6-yl]carbonyl}-2-(3-hydroxyphenyl)thiophen-3-yl]-N-hydroxyacetamide
-
pH not specified in the publication, temperature not specified in the publication
0.0021
3-(2,4-dichlorophenyl)-5-(4-fluorophenethoxy)-N-hydroxypentanamide
A5HZZ9
at pH 7.4 and 37°C
0.001
3-(2,4-dichlorophenyl)-N1-(4-fluoro-2-methoxyphenyl)-N5-hydroxypentanediamide
A5HZZ9
at pH 7.4 and 37°C
0.00046
3-hydroxy-N'-[(E)-(3,4,5-trihydroxyphenyl)methylidene]naphthalene-2-carbohydrazide
A5HZZ9
pH and temperature not specified in the publication
0.00453
32-mer C-terminal peptide of LcA
-
full-length light chain of botulinum toxin A, in 50 mM HEPES, pH 7.4, at 37°C
-
0.06
4-(2-amino-3-sulfanylpropyl)benzamide
-
-
0.065
4-(2-amino-3-sulfanylpropyl)benzenesulfonamide
-
-
0.022
4-(2-amino-3-sulfanylpropyl)benzenesulfonic acid
-
-
0.0062
4-chloro-(3-fluorophenyl)methyl benzenesulfonamide
-
at pH 7.4 and 25°C
0.0032
4-chloro-N-[(4-fluorophenyl)methyl] pyridin-3-amine
-
at pH 7.4 and 25°C
0.00058
4-[((2S)-2-amino-3-[1-(1-benzylcarbamoyl-(2R)-2-phenylethylcarbamoyl)-(2S)-2-biphenyl-4-yl-ethylcarbamoyl]-3(S)sulfanylpropyl)]benzoic acid
-
-
0.00081
4-[((2S)-2-amino-3-[1-(1-benzylcarbamoyl-(2S)-2-(4-hydroxyphenyl)ethylcarbamoyl)-(2S)-2-biphenyl-4-yl-ethylcarbamoyl]-3(S)sulfanylpropyl)]benzoic acid
-
-
0.00035
4-[((2S)-2-amino-3-[1-(1-benzylcarbamoyl-(2S)-2-phenylethylcarbamoyl)-(2S)-2-(1H-indol-3-yl)ethylcarbamoyl]-3(S)sulfanylpropyl)]benzoic acid
-
-
0.0005
4-[(2S)-2-amino-3-[1-(1-benzylcarbamoyl-(2S)-2-(3H-imidazol-4-yl)ethylcarbamoyl]-(2S)-2-biphenyl-4-ylethylcarbamoyl)-3(S)sulfanylpropyl]benzoic acid
-
-
0.00054
4-[(2S)-2-amino-3-[1-(1-benzylcarbamoyl-(2S)-2-methylbutylcarbamoyl-(2S)-2-biphenyl-4-ylethylcarbamoyl]-3(S)-sulfanylpropyl)] benzoic acid
-
-
0.00054
4-[(2S)-2-amino-3-[1-(1-benzylcarbamoyl-(2S)-2-phenylethylcarbamoyl)-(2R)-2-biphenyl-4-yl-ethylcarbamoyl]-3(S)sulfanylpropyl]benzoic acid
-
-
0.00017
4-[(2S)-2-amino-3-[1-(1-benzylcarbamoyl-(2S)-2-phenylethylcarbamoyl)-(2S)-2-(1-methyl-1H-indol-3-yl)ethylcarbamoyl]-3(S)sulfanylpropyl] benzoic acid
-
-
0.00022
4-[(2S)-2-amino-3-[1-(1-benzylcarbamoyl-(2S)-2-phenylethylcarbamoyl)-(2S)-2-naphthalen-1-yl-ethylcarbamoyl]-3(S)sulfanylpropyl] benzoic acid
-
-
0.00016
4-[(2S)-2-amino-3-[1-(1-benzylcarbamoyl-(2S)-2-phenylethylcarbamoyl]-3(S)sulfanylpropyl)] benzoic acid
-
-
0.00002
4-[(2S)-2-amino-3-[1-(2S)-2-benzol[beta]thiophen-3-yl-1-benzylcarbamoylethylcarbamoyl-(2S)-2-biphenyl-4-yl-ethylcarbamoyl]-3-(S)-sulfanylpropyl] benzoic acid
-
-
0.22
Ac-SNKTRIDEACQRATKML-NH2
-
pH 7.3, 37°C
0.004
Ac-SNKTRIDEAN(D)CRATKML-NH2
-
pH 7.3, 37°C
0.65
Ac-SNKTRIDEAN(D)QCRATKML-NH2
-
pH 7.3, 37°C
0.11
Ac-SNKTRIDEANCRATKML-NH2
-
pH 7.3, 37°C
2
Ac-SNKTRIDEANQCATKML-NH2
-
pH 7.3, 37°C
0.00028
AQVDEVVDIMRVNVDKVLERDQ
-
-
0.0018
chicoric acid iso-propyl ester
A5HZZ9
pH and temperature not specified in the publication
0.002
CRATKML
-
pH 6.5, 22°C
0.00032
Dyngo-4a
A5HZZ9
pH and temperature not specified in the publication
0.0013
GGPPAPPPNLTSNRRLQQTQAQVDEVVDIMRVNVDKVLERDQ
-
-
0.000096
GRKKRRQRRRPPQC
-
pH 7.4, 37°C
0.000034
LQQTQAQVDEVVDIMRVNVDKVLERDQ
-
-
0.00046
N-hydroxy-2-(tricyclo[3.3.1.13,7]dec-1-yl)acetamide
A5HZZ9
at pH 7.4 and 37°C
0.001
PPPNLTSNRRLQQTQAQVDEVVDIMRVNVDKVLERDQ
-
-
0.000158 - 0.000664
RRGC
0.000358
RRGF
-
pH 7.4, 37°C
0.000786
RRGI
-
pH 7.4, 37°C
0.000845
RRGM
-
pH 7.4, 37°C
0.0019
TSNRRLQQTQAQVDEVVDIMRVNVDKVLERDQ
-
-
0.009
VVDIMRVNVDKVLERDQ
-
-
0.007
[[(5-[[1-(4-ammoniobutyl)-2-phenyl-1H-indol-6-yl]carbonyl]-2-phenylthiophen-3-yl)acetyl]amino]oxidanide
-
pH 7.3, 37°C, wild-type BoNTA endopeptidase
additional information
additional information
-
IC50 VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.007
(2E)-2-(1H-benzimidazol-2-yl)-3-(3-iodo-4-methoxyphenyl)prop-2-enenitrile
Clostridium botulinum
-
37°C, pH not specified in the publication
0.0004 - 0.0009
(2E)-3-(2,4-dichlorophenyl)-N-hydroxyprop-2-enamide
0.025
(2E)-3-(2-amino-4-chlorophenyl)-N-hydroxyprop-2-enamide
Clostridium botulinum
-
-
0.0007
(2E)-3-(2-bromo-4-chlorophenyl)-N-hydroxyprop-2-enamide
Clostridium botulinum
-
-
0.0044
(2E)-3-(4-chloro-2-fluorophenyl)-N-hydroxyprop-2-enamide
Clostridium botulinum
-
-
0.013
(2E)-3-(4-chloro-2-hydroxyphenyl)-N-hydroxyprop-2-enamide
Clostridium botulinum
-
-
0.009
(2E)-3-(4-chloro-2-methoxyphenyl)-N-hydroxyprop-2-enamide
Clostridium botulinum
-
-
0.0008
(2E)-3-(4-chloro-2-methylphenyl)-N-hydroxyprop-2-enamide
0.002
(2E)-3-(4-chloro-2-nitrophenyl)-N-hydroxyprop-2-enamide
Clostridium botulinum
-
-
0.015
(2E)-3-(4-chlorophenyl)-N-hydroxyprop-2-enamide
Clostridium botulinum
-
pH 7.4, 22.5°C
0.012
(2E)-3-[4-chloro-2-(iminomethyl)phenyl]-N-hydroxyprop-2-enamide
Clostridium botulinum
-
-
0.0051
(2E)-3-[4-chloro-2-(methylsulfanyl)phenyl]-N-hydroxyprop-2-enamide
Clostridium botulinum
-
-
0.017
(2E)-3-[4-chloro-2-(methylsulfonyl)phenyl]-N-hydroxyprop-2-enamide
Clostridium botulinum
-
-
0.0006
(2E)-3-[4-chloro-2-(trifluoromethyl)phenyl]-N-hydroxyprop-2-enamide
Clostridium botulinum
-
-
0.01
(3alpha,5beta,7alpha,12alpha,17alpha)-24-([2-[(7-chloroquinolin-4-yl)amino]ethyl]amino)cholane-3,7,12-triyl triacetate
Clostridium botulinum
P10845
pH and temperature not specified in the publication
0.001
(3R)-3-(2,4-dichlorophenyl)-N,5-dihydroxypentanamide
Clostridium botulinum
-
pH 7.4, 22.5°C
0.008
(3R)-3-(4-chlorophenyl)-N,5-dihydroxypentanamide
Clostridium botulinum
-
pH 7.4, 22.5°C
0.021
(3S)-3-(2,4-dichlorophenyl)-N,5-dihydroxypentanamide
Clostridium botulinum
-
pH 7.4, 22.5°C
0.036
(3S)-3-(4-chlorophenyl)-N,5-dihydroxypentanamide
Clostridium botulinum
-
pH 7.4, 22.5°C
0.0027
2'-((9H-fluoren-2-ylamino)carbonyl)-4,4'-bis(hydroxy(oxido)amino)[1,1'-biphenyl]-2-carboxylic acid
Clostridium botulinum
-
at pH 7.4 and 37°C
0.0009
2,4-dichlorocinnamic acid hydroxamate
Clostridium botulinum
-
-
0.0003
2,4-dichlorocinnamic hydroxamate
Clostridium botulinum
-
-
0.059
2-(1H-benzo[d]imidazol-2-yl)-3-(5-(furan-2-yl)thiophen-2-yl)acrylonitrile
Clostridium botulinum
-
37°C, pH not specified in the publication
0.086
2-(1H-benzo[d]imidazol-2-yl)-3-(biphenyl-4-yl)acrylonitrile
Clostridium botulinum
-
37°C, pH not specified in the publication
0.025
2-(4-(2,4-dichlorophenoxy)phenyl)-6-(4,5-dihydro-1H-imidazol-2-yl)-1H-indole
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.1
2-(4-(2-chloro-4-cyanophenoxy)phenyl)-1H-indole-6-carbonitrile
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.03
2-(4-(2-chloro-4-cyanophenoxy)phenyl)-6-(4,5-dihydro-1H-imidazol-2-yl)indole
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.054
2-(4-(4-(6-(1,4,5,6-tetrahydropyrimidin-2-yl)benzo[b]thiophen-2-yl)phenoxy)phenyl)-1,4,5,6-tetrahydropyrimidine
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.0071
2-(4-(4-(6-(4,5-dihydro-1H-imidazol-2-yl)benzo[b]thiophen-2-yl)phenoxy)phenyl)-4,5-dihydro-1H-imidazole
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.0073
2-(4-(4-(6-(5-hydroxy-1,4,5,6-tetrahydropyrimidin-2-yl)-1H-indol-2-yl)phenoxy)phenyl)-1,4,5,6-tetrahydropyrimidin-5-ol
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.1
2-(4-(4-carbamoylphenoxy)phenyl)-1H-indole-6-carboxamide
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.025
2-(4-(4-cyanophenoxy)phenyl)-1H-indole-6-carboximidamide
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.1
2-(4-(4-cyanophenoxy)phenyl)indole-6-carbonitrile
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.1
2-(4-(6-(1,4,5,6-tetrahydropyrimidin-2-yl)benzo[b]thiophen-2-yl)phenyl)-1,4,5,6-tetrahydropyrimidine
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.043
2-(4-(6-(4,5-dihydro-1H-imidazol-2-yl)benzo[b]thiophen-2-yl)-phenyl)-4,5-dihydro-1H-imidazole
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.1
2-(4-fluorophenyl)-1H-indole-6-carbonitrile
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.1
2-(4-fluorophenyl)-1H-indole-6-carboxamide
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.1
2-(4-fluorophenyl)-1H-indole-6-carboximidamide
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.1
2-(4-methoxyphenyl)-1H-indole-6-carboxamide
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.1
2-(4-methoxyphenyl)-1H-indole-6-carboximidamide
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.045
2-(4-methoxyphenyl)-6-(4,5-dihydro-1H-imidazol-2-yl)-1H-indole
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.1
2-(5-(4-cyanophenoxy)pyridin-2-yl)-1H-indole-6-carbonitrile
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.1
2-(5-fluoro-2-pyridyl)-6-benzo[b]thiophenecarboxamide
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.097
2-(pyridin-2-ylamino)cyclohexa-2,5-diene-1,4-dione
Clostridium botulinum
A5HZZ9
at pH 7.4 and 37°C
0.12
2-amino-N-(4-phenoxyphenyl)acetamide
Clostridium botulinum
A5HZZ9
at pH 7.4 and 37°C
0.417
2-amino-N-[3-(benzyloxy)phenyl]acetamide
Clostridium botulinum
A5HZZ9
at pH 7.4 and 37°C
0.0007
2-methyl-7-[phenyl[(pyridin-2-yl)amino]methyl]quinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0014
2-methyl-7-[phenyl[(pyridin-3-yl)amino]methyl]quinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0046
2-methyl-7-[phenyl[(pyrimidin-2-yl)amino]methyl]quinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.094
2-[1-cyano-2-(3-bromo-5-methoxy-4-hydroxyphenyl)vinyl]benzimidazole
Clostridium botulinum
-
37°C, pH not specified in the publication
0.059
2-[1-cyano-2-(3-chloro-5-methoxy-4-hydroxyphenyl)vinyl]benzimidazole
Clostridium botulinum
-
37°C, pH not specified in the publication
0.04
3'-O-ethyl-dynasore
Clostridium botulinum
A5HZZ9
IC50 above 0.04 mM, pH and temperature not specified in the publication
0.0098
3,9-dichloro-6-(5,7-dichloro-9H-fluoren-2-yl)-5H-dibenzo[c,e]azepine-5,7(6H)-dione
Clostridium botulinum
-
at pH 7.4 and 37°C
0.026
3-(2,20-bithiophen-5-yl)-2-(1H-benzo-imidazol-2-yl)acrylonitrile
Clostridium botulinum
-
37°C, pH not specified in the publication
0.00097
3-(2,4-dichlorophenyl)-5-(4-fluorophenethoxy)-N-hydroxypentanamide
Clostridium botulinum
A5HZZ9
at pH 7.4 and 37°C
0.0011
3-(2,4-dichlorophenyl)-N1-(4-fluoro-2-methoxyphenyl)-N5-hydroxypentanediamide
Clostridium botulinum
A5HZZ9
at pH 7.4 and 37°C
0.0026
3-(2,4-dichlorophenyl)-N1-(4-fluorophenethyl)-N5-hydroxypentanediamide
Clostridium botulinum
A5HZZ9
at pH 7.4 and 37°C
0.0067
3-(2,4-dichlorophenyl)-N1-hydroxy-N5-(4-methoxyphenethyl)pentanediamide
Clostridium botulinum
A5HZZ9
at pH 7.4 and 37°C
0.002
3-(2,4-dichlorophenyl)-N1-hydroxy-N5-(o-tolyl)pentanediamide
Clostridium botulinum
A5HZZ9
at pH 7.4 and 37°C
0.073
3-(4-(1H-imidazol-1-yl)phenyl)-2-(1H-benzoimidazol-2-yl)acrylonitrile
Clostridium botulinum
-
37°C, pH not specified in the publication
0.003
3-(4-chloro-2-methylphenyl)-N-hydroxypropanamide
Clostridium botulinum
-
pH 7.4, 22.5°C
0.04
3-hydroxy-N'-[(E)-(2-hydroxyphenyl)methylidene]naphthalene-2-carbohydrazide
Clostridium botulinum
A5HZZ9
IC50 above 0.04 mM, pH and temperature not specified in the publication
0.00194
3-hydroxy-N'-[(E)-(3,4,5-trihydroxyphenyl)methylidene]naphthalene-2-carbohydrazide
Clostridium botulinum
A5HZZ9
pH and temperature not specified in the publication
0.04
3-hydroxy-N'-[(E)-(3-hydroxyphenyl)methylidene]naphthalene-2-carbohydrazide
Clostridium botulinum
A5HZZ9
IC50 above 0.04 mM, pH and temperature not specified in the publication
0.0024
3-hydroxy-N-phenylanthracene-2-carboxamide
Clostridium botulinum
-
at pH 7.4 and 37°C
0.04
3H-dynasore
Clostridium botulinum
A5HZZ9
IC50 above 0.04 mM, pH and temperature not specified in the publication
0.04
3H-dyngo-4a
Clostridium botulinum
A5HZZ9
IC50 above 0.04 mM, pH and temperature not specified in the publication
0.0032
4,4'-dichloro-2'-((9H -fluoren-2-ylamino)carbonyl)[1,1'-biphenyl]-2-carboxylic acid
Clostridium botulinum
-
at pH 7.4 and 37°C
0.003
4,4'-dichloro-2'-[(5,7-dichloro-9H-fluoren-2-yl)carbamoyl][1,1'-biphenyl]-2-carboxylic acid
Clostridium botulinum
-
at pH 7.4 and 37°C
0.0058
4-chloro-(3-fluorophenyl)methyl benzenesulfonamide
Clostridium botulinum
-
at pH 7.4 and 25°C
0.0033
4-chloro-N-[(4-fluorophenyl)methyl] pyridin-3-amine
Clostridium botulinum
-
at pH 7.4 and 25°C
0.015
4-chlorocinnamic hydroxamate
Clostridium botulinum
-
-
0.013
5-((3-bromoadamantan-1-yl)methoxy)-3-(2,4-dichlorophenyl)-N-hydroxypentanamide
Clostridium botulinum
A5HZZ9
at pH 7.4 and 37°C
0.0054
5-(allyloxy)-3-(2,4-dichlorophenyl)-N-hydroxypentanamide
Clostridium botulinum
A5HZZ9
at pH 7.4 and 37°C
0.0029
5-(benzyloxy)-3-(2,4-dichlorophenyl)-N-hydroxypentanamide
Clostridium botulinum
A5HZZ9
at pH 7.4 and 37°C
0.0007
5-chloro-7-[(2,4-difluorophenyl)[(pyridin-2-yl)amino]methyl]quinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0006
5-chloro-7-[(2,4-difluorophenyl)[(pyridin-3-yl)amino]methyl]quinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0022
5-chloro-7-[(2,4-difluorophenyl)[(pyrimidin-2-yl)amino]methyl]quinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0014
5-chloro-7-[(2-fluorophenyl)[(pyridin-2-yl)amino]methyl]quinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0007
5-chloro-7-[(2-fluorophenyl)[(pyridin-3-yl)amino]methyl]quinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.004
5-chloro-7-[(2-fluorophenyl)[(pyrimidin-2-yl)amino]methyl]quinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0006
5-chloro-7-[(4-fluorophenyl)[(pyridin-2-yl)amino]methyl]quinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0023
5-chloro-7-[(4-fluorophenyl)[(pyridin-3-yl)amino]methyl]quinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0007
5-chloro-7-[(4-fluorophenyl)[(pyrimidin-2-yl)amino]methyl]quinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0015
5-chloro-7-[phenyl[(pyridin-2-yl)amino]methyl]quinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0035
5-chloro-7-[phenyl[(pyridin-3-yl)amino]methyl]quinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0045
5-chloro-7-[phenyl[(pyrimidin-2-yl)amino]methyl]quinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.028
6-(1,4,5,6-tetrahydropyrimidin-2-yl)-2-(4-(4-(1,4,5,6-tetrahydropyrimidin-2-yl)phenoxy)phenyl)-1H-benzo[d]imidazole
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.021
6-(1,4,5,6-tetrahydropyrimidin-2-yl)-2-(4-(4-(1,4,5,6-tetrahydropyrimidin-2-yl)phenoxy)phenyl)-1H-indole
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.067
6-(1,4,5,6-tetrahydropyrimidin-2-yl)-2-{5-[4-(1,4,5,6-tetrahydropyrimidin-2-yl)phenoxy]pyridin-2-yl}-1H-indole
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.1
6-(3,4,5,6-tetrahydropyrimidin-2-yl)-2-(4-(3,4,5,6-tetrahydropyrimidin-2-yl)phenyl)-1H-indole
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.02
6-(4,5-dihydro-1H-imidazol-2-yl)-2-(4-(4,5-dihydro-1H-imidazol-2-yl)phenyl)-1H-indole
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.0245
6-(4,5-dihydro-1H-imidazol-2-yl)-2-(4-(4-(4,5-dihydro-1H-imidazol-2-yl)phenoxy)phenyl)-1H-benzo[d]imidazole
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.0125
6-(4,5-dihydro-1H-imidazol-2-yl)-2-(4-(4-(4,5-dihydro-1H-imidazol-2-yl)phenoxy)phenyl)-1H-indole
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.1
6-(4,5-dihydro-1H-imidazol-2-yl)-2-(4-fluorophenyl)-1H-indole
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.069
6-(4,5-dihydroimidazol-2-yl)-2-(5-(4-(4,5-dihydroimidazol-2-yl)phenoxy)pyridine-2-yl)indole
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.071
6-bromo-N-hydroxynaphthalene-2-carboxamide
Clostridium botulinum
-
-
0.1
6-chloro-2-(4-(4-(4,5-dihydro-1H-imidazol-2-yl)phenoxy)-phenyl)-1H-indole
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.045
6-chloro-N-hydroxy-1-benzothiophene-2-carboxamide
Clostridium botulinum
-
-
0.038
6-chloro-N-hydroxy-1-methyl-1H-indole-2-carboxamide
Clostridium botulinum
-
-
0.041
6-chloro-N-hydroxy-1H-indene-2-carboxamide
Clostridium botulinum
-
-
0.021
6-chloro-N-hydroxynaphthalene-2-carboxamide
Clostridium botulinum
-
-
0.2
6-[(2,5-dimethoxyphenyl)amino]-N-(4-phenoxybenzyl)picolinamide
Clostridium botulinum
A5HZZ9
at pH 7.4 and 37°C
0.0023
6-[(3,6-dioxocyclohexa-1,4-dien-1-yl)amino]-N-(4-phenoxybenzyl)picolinamide
Clostridium botulinum
A5HZZ9
at pH 7.4 and 37°C
0.0027
7-[(2,4-difluorophenyl)[(pyridin-2-yl)amino]methyl]-2-methylquinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0036
7-[(2,4-difluorophenyl)[(pyridin-2-yl)amino]methyl]quinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0123
7-[(2,4-difluorophenyl)[(pyridin-3-yl)amino]methyl]-2-methylquinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0044
7-[(2,4-difluorophenyl)[(pyridin-3-yl)amino]methyl]quinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0043
7-[(2,4-difluorophenyl)[(pyrimidin-2-yl)amino]methyl]-2-methylquinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0127
7-[(2,4-difluorophenyl)[(pyrimidin-2-yl)amino]methyl]quinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0014
7-[(2-fluorophenyl)[(pyridin-2-yl)amino]methyl]-2-methylquinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0012
7-[(2-fluorophenyl)[(pyridin-2-yl)amino]methyl]quinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0007
7-[(2-fluorophenyl)[(pyridin-3-yl)amino]methyl]-2-methylquinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0024
7-[(2-fluorophenyl)[(pyridin-3-yl)amino]methyl]quinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.012
7-[(2-fluorophenyl)[(pyrimidin-2-yl)amino]methyl]-2-methylquinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0019
7-[(2-fluorophenyl)[(pyrimidin-2-yl)amino]methyl]quinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0016
7-[(4-fluorophenyl)[(pyridin-2-yl)amino]methyl]-2-methylquinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0041
7-[(4-fluorophenyl)[(pyridin-2-yl)amino]methyl]quinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0008
7-[(4-fluorophenyl)[(pyridin-3-yl)amino]methyl]-2-methylquinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0046
7-[(4-fluorophenyl)[(pyridin-3-yl)amino]methyl]quinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0042
7-[(4-fluorophenyl)[(pyrimidin-2-yl)amino]methyl]-2-methylquinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0017
7-[(4-fluorophenyl)[(pyrimidin-2-yl)amino]methyl]quinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0015
7-[phenyl[(pyridin-2-yl)amino]methyl]quinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0062
7-[phenyl[(pyridin-3-yl)amino]methyl]quinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0027
7-[phenyl[(pyrimidin-2-yl)amino]methyl]quinolin-8-ol
Clostridium botulinum
-
pH and temperature not specified in the publication
0.0113
bis-aminoquinoline
Clostridium botulinum
P10845
at pH 7.3 and 37°C
0.0293
dynasore
Clostridium botulinum
A5HZZ9
pH and temperature not specified in the publication
0.06
L-Arginine hydroxamate
Clostridium botulinum
-
-
0.007
methyl 3alpha-(N-[(7-chloroquinolin-4-yl)amino]ethyl)amino,7alpha,12alpha-diacetoxy-5beta-cholan-24-oate
Clostridium botulinum
-
-
0.017
methyl 3beta-(N-[(7-chloroquinolin-4-yl)amino]ethyl)amino,7alpha,12alpha-diacetoxy-5beta-cholan-24-oate
Clostridium botulinum
-
-
0.014
methyl 6-[(3,6-dioxocyclohexa-1,4-dien-1-yl)amino]picolinate
Clostridium botulinum
A5HZZ9
at pH 7.4 and 37°C
0.0025
N'-(2-(dimethylamino)ethyl)-2-(4-(4-(N'-2-(dimethylaminoethyl)carbamimidoyl)phenoxy)phenyl)-1H-indole-6-carboximidamide
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.04
N'-[(E)-(2,4,5-trihydroxyphenyl)methylidene]benzohydrazide
Clostridium botulinum
A5HZZ9
IC50 above 0.04 mM, pH and temperature not specified in the publication
0.00625
N'-[(E)-(2,4,5-trihydroxyphenyl)methylidene]naphthalene-2-carbohydrazide
Clostridium botulinum
A5HZZ9
pH and temperature not specified in the publication
0.01
N-(3alpha,7alpha,12alpha-triacetoxy-5beta-cholan-24-yl)-N'-(7'-chloroquinolin-4'-yl)-ethane-1,2-diamine
Clostridium botulinum
-
-
0.57
N-(4-phenoxybenzyl)picolinamide
Clostridium botulinum
A5HZZ9
at pH 7.4 and 37°C
0.0189
N-(7-chloroquinolin-4-yl)-N'-adamantylethane-1,2-diamine
Clostridium botulinum
P10845
pH and temperature not specified in the publication
0.1
N-(pyridin-2-yl)prop-2-enamide
Clostridium botulinum
A5HZZ9
at pH 7.4 and 37°C
0.048
N-(pyridin-3-yl)prop-2-enamide
Clostridium botulinum
A5HZZ9
at pH 7.4 and 37°C
0.04
N-([1,1'-biphenyl]-4-ylmethyl)-1-(2,5-dimethoxybenzyl)-1H-1,2,4-triazole-3-carboxamide
Clostridium botulinum
A5HZZ9
at pH 7.4 and 37°C
0.0025
N-([1,1'-biphenyl]-4-ylmethyl)-1-[(3,6-dioxocyclohexa-1,4-dien-1-yl)methyl]-1H-1,2,4-triazole-3-carboxamide
Clostridium botulinum
A5HZZ9
at pH 7.4 and 37°C
0.21
N-([1,1'-biphenyl]-4-ylmethyl)-1H-1,2,4-triazole-3-carboxamide
Clostridium botulinum
A5HZZ9
at pH 7.4 and 37°C
0.16
N-([1,1'-biphenyl]-4-ylmethyl)-2-aminoacetamide
Clostridium botulinum
A5HZZ9
at pH 7.4 and 37°C
0.041
N-hydroxy-4-pentylbenzamide
Clostridium botulinum
-
pH not specified in the publication, temperature not specified in the publication
0.025
N-[3-(benzyloxy)phenyl]-2-[(2,5-dimethoxybenzyl)amino]acetamide
Clostridium botulinum
A5HZZ9
at pH 7.4 and 37°C
0.018
N-[3-(benzyloxy)phenyl]-2-[[(3,6-dioxocyclohexa-1,4-dien-1-yl)methyl]amino]acetamide
Clostridium botulinum
A5HZZ9
at pH 7.4 and 37°C
0.0092
N1-(2-cyclopropylethyl)-3-(2,4-dichlorophenyl)-N5-hydroxypentanediamide
Clostridium botulinum
A5HZZ9
at pH 7.4 and 37°C
0.0064
N1-(4-bromophenyl)-3-(2,4-dichlorophenyl)-N5-hydroxypentanediamide
Clostridium botulinum
A5HZZ9
at pH 7.4 and 37°C
0.056
N1-(6-(6-(4,5-dihydro-1H-imidazol-2-yl)benzo[b]thiophen-2-yl)-pyridine-3-yl)ethane-1,2-diamine
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.011
NSC 240898
Clostridium botulinum
-
pH 7.4, 37°C, BoNT/A light chain
0.0052
paclitaxel
Clostridium botulinum
P10845
at pH 8.2 and 37°C
0.00000047
single-domain llama antibody Aa1
Clostridium botulinum
-
pH not specified in the publication, temperature not specified in the publication
-
0.0032
tris[3-(7-chloroquinolin-4-yl)aminopropyl]amine
Clostridium botulinum
-
-
0.000001
VAMP 22-58/Gln58D-cysteine
Clostridium botulinum
pH not specified in the publication, temperature not specified in the publication
-
0.0000019
VAMP 27-58/Gln58D-cysteine
Clostridium botulinum
pH not specified in the publication, temperature not specified in the publication
-
SPECIFIC ACTIVITY [µmol/min/mg]
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
15.8
-
69nM purified native BoNT/A1 toxin, substrate SNAP25, pH 7.3, 37°C
additional information
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
7.4
P10844, P10845
assay at
7.2
-
assay at
additional information
-
different serotypes were found to possess different optimal cleavage pHs
TEMPERATURE RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
37 - 50
the light chain of subtype BoNT/B loses its activity beyond 37°C, with total loss at 50°C
25 - 37
-
the enzyme shows 33% activity at 25°C compared to it optimum at 37°C
25 - 50
-
20% of maximal activity at 20°C, as the temperature is increased to 45°C, the endopeptidase activity dramatically decreases to 21% cleavage of SNAP-25, but at 50°C its enzymatic activity increases again to 64% cleavage of SNAP-25, 4% of maximal activity at 60°C
37 - 50
the light chain of subtype BoNT/E loses its activity beyond 37°C but remains active even up to 50°C, retaining about 44% activity
pI VALUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
5.2
-
isoelectric focusing
5.5
-
calculated from sequence
6
-
recombinant catalytically inactive BoNT/A1 mutant H223A/E224A/H227A holoprotein, sequence calculation
8.7
-
light chain, isoelectric focusing
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
additional information
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
-
accumulates until bacterial lysis
Manually annotated by BRENDA team
-
the C2II binding component forms cation-selective and chloroquine-sensitive heptameric channels into lipid bilayer membranes, which is essential for C2I catalytic component transport into target cells
Manually annotated by BRENDA team
additional information
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
malfunction
metabolism
-
the light chain domain of BoNT/A specifically cleaves synaptosome associated protein of 25 kDa, resulting in the inhibition of neurotransmission at the synapse of peripheral neurons
physiological function
additional information
UNIPROT
ENTRY NAME
ORGANISM
NO. OF AA
NO. OF TRANSM. HELICES
MOLECULAR WEIGHT[Da]
SOURCE
SEQUENCE
LOCALIZATION PREDICTION?
BXB_CLOBO
1291
0
150803
Swiss-Prot
-
PDB
SCOP
CATH
UNIPROT
ORGANISM
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
100000
1 * 100000 + 1 * 50000, SDS-PAGE
149900
P10844, P10845
subtype BoNT/A, liquid chromatography-mass spectrometry
150000
P10844, P10845
subtype BoNT/A, gel filtration
50000
1 * 100000 + 1 * 50000, SDS-PAGE
100000
102000
-
1 * 50000 + 1 * 102000, Clostridium botulinum, serotype BoNT/E, calculated from amino acid sequence, 1 * 51000 + 1 * 104000, Clostridium botulinum, serotype BoNT/B, calculated from amino acid sequence, 1 * 53000 + 1 * 97000, Clostridium botulinum, serotype BoNT/A, calculated from amino acid sequence
104000
-
1 * 50000 + 1 * 102000, Clostridium botulinum, serotype BoNT/E, calculated from amino acid sequence, 1 * 51000 + 1 * 104000, Clostridium botulinum, serotype BoNT/B, calculated from amino acid sequence, 1 * 53000 + 1 * 97000, Clostridium botulinum, serotype BoNT/A, calculated from amino acid sequence
146000
recombinant His-tagged BoNT AE and EA chimeras, gel filtration
146900
-
Clostridium botulinum, serotype BoNT/D, calculated from nucleotide sequence
147300
-
calculated from sequence
148700
-
Clostridium botulinum, serotype BoNT/C1, calculated from nucleotide sequence
149400
-
Clostridium botulinum, serotype BoNT/A, calculated from nucleotide sequence
149500
-
Clostridium botulinum, serotype BoNT/A, calculated from nucleotide sequence
149900
P10844, P10845
subtype BoNT/A, liquid chromatography-mass spectrometry
150000
152000
-
Clostridium botulinum, serotype BoNT/E, calculated from amino acid sequence
155000
-
Clostridium botulinum, serotype BoNT/B, calculated from amino acid sequence
51000
-
1 * 50000 + 1 * 102000, Clostridium botulinum, serotype BoNT/E, calculated from amino acid sequence, 1 * 51000 + 1 * 104000, Clostridium botulinum, serotype BoNT/B, calculated from amino acid sequence, 1 * 53000 + 1 * 97000, Clostridium botulinum, serotype BoNT/A, calculated from amino acid sequence
53000
-
1 * 50000 + 1 * 102000, Clostridium botulinum, serotype BoNT/E, calculated from amino acid sequence, 1 * 51000 + 1 * 104000, Clostridium botulinum, serotype BoNT/B, calculated from amino acid sequence, 1 * 53000 + 1 * 97000, Clostridium botulinum, serotype BoNT/A, calculated from amino acid sequence
60000
-
7 * 60000, activated C2II binding component, which oligomerizes into heptamers and forms channels in lipid bilayer membranes, residues 303-330 of C2II contain a conserved pattern of alternating hydrophobic and hydrophilic residues, which is involved in the formation of two amphipathic beta-strands involved in membrane insertion and channel formation
97000
-
1 * 50000 + 1 * 102000, Clostridium botulinum, serotype BoNT/E, calculated from amino acid sequence, 1 * 51000 + 1 * 104000, Clostridium botulinum, serotype BoNT/B, calculated from amino acid sequence, 1 * 53000 + 1 * 97000, Clostridium botulinum, serotype BoNT/A, calculated from amino acid sequence
additional information
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
?
x * 50000, light chain subunit of botulinum neurotoxin B, SDS-PAGE
heterodimer
1 * 100000 + 1 * 50000, SDS-PAGE
dimer
heptamer
-
7 * 60000, activated C2II binding component, which oligomerizes into heptamers and forms channels in lipid bilayer membranes, residues 303-330 of C2II contain a conserved pattern of alternating hydrophobic and hydrophilic residues, which is involved in the formation of two amphipathic beta-strands involved in membrane insertion and channel formation
heterodimer
oligomer
oligomerization of BoNT/E is dependent only on GT1b and does not require low pH
additional information
POSTTRANSLATIONAL MODIFICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
proteolytic modification
additional information
-
BoNT/B LC is processed for removal via the proteasome-dependent degradation pathway after ubiquitination in neuronal cells
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
binding domain of subtype BoNT/, sitting drop vapor diffusion method, using 10 mM spermine tetrahydrochloride, 10 mM spermidine trihydrochloride, 10 mM 1,4-diaminobutane dihydrochloride, 10 mM DL-ornithine monohydrochloride, 0.1 M MOPSO/bis-Tris pH 6.5, 15% (w/v) PEG 3 K, 20% (w/v), 1,2,4-butanetriol, 1% (w/v) NDSB 256
binding domain of subtype BoNT/A4, sitting drop vapor diffusion method, using 10 mM spermine tetrahydrochloride, 10 mM spermidine trihydrochloride, 10 mM 1,4-diaminobutane dihydrochloride, 10 mM DL-ornithine monohydrochloride, 0.1 M MOPSO/bis-Tris pH 6.5, 15% (w/v) PEG 3 K, 20% (w/v), 1,2,4-butanetriol, 1% (w/v) NDSB 256
BoNT E holotoxin, sitting-drop vapor diffusion, 8 mg/ml toxin in 50 mM HEPES buffer and 100 mM NaCl at pH 7.0, is mixed in a 1:1 ratio with reservoir solution containing 10% PEG 8000, 100 mM NaCl, and 100 mM HEPES at pH 7.0 at 18 °C, crystals appear after 1 weeks and grow to full-size within 2 weeks, X-ray diffraction structure determination and analysis at 2.65 A resolution
BoNT/F in complex with inhibitors VAMP 22-58/Gln58D-cysteine and VAMP 27-58/Gln58D-cysteine, X-ray diffraction structure determination and analysis at 2.1 A and 2.17 A resolution, respectively
botulinum neurotoxin A-receptor-binding domain in complex with the SV2C luminal domain, vapor diffusion method, using 100 mM HEPES, pH 7.5, 6% (w/v) PEG 8000, 8% (v/v) glycerol and 100 mM NaCl
P10845
botulinum neurotoxin E light chain, sitting drop vapor diffusion method
-
catalytic and translocation domain of botulinum neurotoxin type D, sitting drop vapor diffusion method, using 0.1 M sodium actetate pH 5.5, 0.8 M sodium formate, 10% (w/v) polyethylene glycol 8000, 10% (w/v) polyethylene glycol 1000
complex between the botulinum neurotoxin A light chain and the inhibitory peptide N-Ac-CRATKML, X-ray diffraction structure determination and analysis at 1.4 A resolution, and in a second approach unliganded enzyme light chain with and without the Zn2+ cofactor bound, X-ray diffraction structure determination and anaylsis at 1.25 A and 1.20 A resolution, respectively, 6-8 mg/ml purified BoNT/ALC, residues 1-425, in 50 mM NaPO4, pH 6.0, and 2 mM EDTA, hanging drop vapor diffusion method, mixing of protein solution with reservoir solution containing 20% PEG 3,350, 0.2 M diammonium tartrate, pH 6.6, and equilibration against 0.5 ml reservoir solution, the crystals are soaked prior to cryo-cooling in the crystallization solution plus 10 mM Zn(NO3)2 for 4.5 h or 5 mM Zn(NO3)2 and 2 mM N-Ac-CRATKML for 23 h, respectively, modeling
P10845
complex of botulinum neurotoxin serotype A protease bound to human SNAP-25, 2.1 A resolution
-
crystal structure of BoNT/CD-HCR (S867-E1280) is determined at 1.56 A resolution and compared to previously reported structures for BoNT/DHCR. The BoNT/CD-HCR structure is similar to the two sub-domain organization observed for other BoNT HCRs: an N-terminal jellyroll barrel motif and a C-terminal beta-trefoil fold
enzyme in a product-bound state, hanging drop vapor diffusion
-
full length Clostridium botulinum neurotoxin type E light chain, sitting drop vapor diffusion method, crystals diffract to better than 2.1 A, crystals belong to space group P2(1)2(1)2 with cell dimensions a = 88.33 A, b = 144.45 A, c = 83.37 A
-
hanging drop vapor diffusion at 22°C, crystal structure of Clostridium botulinum neurotoxin protease in a product-bound state
-
hanging drop vapor diffusion method, using either 19% (w/v) PEG1500, 0.1 M MMT pH 6.0 or 11% (w/v) PEG20000, 0.1 M MES pH 6.5, 10 mM EDTA
hemagglutinin 33 component of botulinum neurotoxin type B progenitor toxin complex bound to lactose, hanging drop vapor diffusion method, using 0.1 M HEPES (pH 7.0), 5% MPD, 5% (w/v) PEG [poly(ethylene glycol)] 6k, and 20 mM lactose
-
high-resolution structure of botulinum neurotoxin serotype F light chain in two crystal forms, sitting drop vapor diffusion method
-
in complex with non-toxic non-hemagglutinin protein, small-angle X-ray scattering
P10845
light chain protease domain of botulinum neurotoxin type HA, hanging drop vapor diffusion method, using 100 mM calcium acetate, 100 mM sodium cacodylate, pH 5.5 and 4% (w/v) polyethylene glycol 8000
-
mutant enzyme E1191M/S1199Y in complex with synaptotagmin 1, sitting drop vapor diffusion method, using 1.1 M sodium malonate dibasic monohydrate, HEPES (pH 7.0), and 0.5% (v/v) Jeffamine ED-2003. Mutant enzyme E1191M/S1199Y in complex with synaptotagmin 2, sitting drop vapor diffusion method, using 0.2 M MgCl2, Tris (pH 7.0), and 10% (w/v) PEG 8000
-
nanodroplet vapor diffusion method, 1.65 A resolution crystal structure of the catalytic domain of BoNT serotype D light chain. Structural analysis has identified a hydrophobic pocket potentially involved in substrate recognition of the P1' VAMP residue (Leu 60) and a second remote site for recognition of the V1 SNARE motif that is critical for activity. A structural comparison of BoNT/D-LC with BoNT/F-LC that also recognizes VAMP-2 one residue away from the BoNT/D-LC site provides additional molecular details about the unique serotype specific activities. In particular, BoNT/D prefers a hydrophobic interaction for the V1 motif of VAMP-2, while BoNT/F adopts a more hydrophilic strategy for recognition of the same V1 motif
-
nanodroplet vapor diffusion method, crystal structure of botulinum neurotoxin type G light chain at 2.35 A resolution
-
purified recombinant enzyme free or in complex with substrate analogue inhibitor peptides, sitting drop vapor diffusion method at room temperature, 0.002 ml of 20 mg/ml enzyme in 2 mM DTT, 200 mM NaCl, and 20 mM HEPES, pH 7.4, is mixed with 0.002 ml reservoir solution containing 15% w/v PEG 3350, 0.3 M ammonium sulfate and 100 mM Bis-Tris buffer, pH 6.8 , equilibration against 0.8 ml of reservoir solution, plate-like crystals within a week, recombinant Balc424 is co-crystallized individually with the tetrapeptides, sitting drop vapor diffusion method at room temperature using conditions similar to native protein, Balc424 gives good complex crystals with RRGC, RRGM, RRGL and RRGI at stoichiometric ratios of 1:30, 1:30, 1:40 and 1:40, respectively, X-ray diffraction structure determination and analysis at 1.6-1.8 A resolution
P10845
purified recombinant His-tagged BoNT/C1-LC, vapour diffusion method, 12 mg/ml protein in 20 mM HEPES, pH 7.4, is mixed with an equal volume of reservoir solution containing 1.6 M sodium formate and 0.1 M sodium citrate, pH 4.6-5.0, 4°C, cryoprotection in the same mother liquor supplemented with 20% glycerol, X-ray structure determination and analysis at 1.75 A resolution, molecular replacement
-
purified recombinant His-tagged BoNT/G HCR, hanging drop vapour diffusion method, 11.5 mg/mL protein in mother liquor containing 12-15% w/v PEG 3350, 20 mM Bis-Tris buffer, pH 5.75-6.5, and 20-25 mM MgCl, X-ray diffraction structure determination and analysis at 2.0 A resolution, modelling
purified recombinant His-tagged truncated enzyme, residues 1-424, in complex with inhibitors 4-chlorocinnamic hydroxamate, 2,4-dichlorocinnamic hydroxamate, and L-arginine hydroxamate, hanging drop vapor diffusion method, drops are formed of equal parts BoNT/A-LC(1-424) at 10 mg/ml in 20 mM HEPES, pH 7.5, 50 mM NaCl and well solution containing 10%-15% PEG-2000 monomethyl ether, 0.3M(NH4)2HPO4, 50 mM Tris, pH 8.5, co-crystallization with inhibitor by addition of 0.5 mM ligand to the protein solution, 1.3 days, larger crystals by microseeding, X-ray diffraction structure determination and analysis at 1.9-2.5 A resolution, modeling
-
purified recombinant native and SeMet-derivative enzyme, mixing of 0.001 ml protein solution containing 1 mg/ml protein in 20 mM Tris-HCl, pH 8.0, and 200 mM NaCl, with 0.001 ml reservoir buffer, containing 0.2 M potassium/sodium tartrate, 0.1 M trisodium citrate, pH 5.6, and 1 M ammonium sulfate for the native enzyme, and 0.1 M MES pH 6.5, 1.6 M magnesium sulfate, and 1 M sodium chloride for the selenium methionine-labeled enzyme, equilibration against 0.1 ml reservoir buffer, 20°C, X-ray diffraction structure determination and analysis at 2.8 A and 3.1 A resolution, respectively
purified recombinant protein consisting of the receptor-binding domain of botulinum neurotoxin serotype B fused to the luminal domain of synaptotagmin II, vapour diffusion method, 20°C, using first 13% PEG 6000 and 0.1 M HEPES pH 7.0, and second, 0.8 M sodium citrate, pH 6.5, X-ray diffraction structure detremination and analysis at 2.15 A resolution, molecular replacement and modeling
-
receptor binding domains of BoNT/A and BoNT/F
sructures of BoNT/A, BoNT/B, and BoNT/E holotoxins
-
subtype BoNT/B bound to both its protein receptor and ganglioside 1a, vapor diffusion method, using 0.2 M MgCl2, 0.1M HEPES pH 7.0-7.2 and 20-24% (w/v) PEG 6000
subtype BoNT/CD-heavy chain receptor binding domain, hanging drop vapor diffusion method, using 1.6 M (NH4)2SO4, 2% (w/v) PEG 400, and 0.1 M HEPES, pH 7.5
the crystal structure of the BoNT/F receptor-binding domain in complex with the sugar moiety of ganglioside GD1a is reported. GD1a binds in a shallow groove formed by a conserved peptide motif, with additional stabilizing interactions provided by two arginine residues
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
D877N
the mutant shows 20% reduced neurotoxicity compared to the wild type
E224Q/H227Y
P10844, P10845
the mutation removes the endopeptidase activity of BoNT/A LH fragment
E231Q/H234Y
P10844, P10845
the mutation removes the endopeptidase activity of BoNT/B LH fragment
E48Q
the mutant shows 64% reduced neurotoxicity compared to the wild type
E48Q/D877N
the mutant shows 8% increased neurotoxicity due to faster cytosolic delivery of the enzymatic domain
E48Q/E653K
the mutant shows 9% reduced neurotoxicity compared to the wild type
E48Q/E653Q
the mutant shows 38% reduced neurotoxicity compared to the wild type
E48Q/E653Q/D877N
the mutant shows 54% increased neurotoxicity due to faster cytosolic delivery of the enzymatic domain
E653 K/D877N
the mutant shows 28% increased neurotoxicity due to faster cytosolic delivery of the enzymatic domain
E653K
the mutant shows 15% reduced neurotoxicity compared to the wild type
E653Q
the mutant shows 31% reduced neurotoxicity compared to the wild type
E653Q/D877N
the mutant shows 32% increased neurotoxicity due to faster cytosolic delivery of the enzymatic domain
A308L
-
the mutant shows 8.7% of wild type SNAP-25 cleavage activity
A308V
-
the mutant shows 86.4% of wild type SNAP-25 cleavage activity
C134A
-
site-directed mutagenesis, mutation of a binding site residue, the mutant shows reduced activity compared to the wild-type enzyme
C461S
the mutant shows similar levels of activity as the wild type enzyme
C467S
the mutant shows similar levels of activity as the wild type enzyme
D130A
-
site-directed mutagenesis, the mutant shows reduced activity and an altered ratio of activity in absence or presence of exogenous ZnCl2 compared to the wild-type enzyme
D161A
-
the mutant exhibits a 1000fold reduction of wild type activity
D341A
-
site-directed mutagenesis, a C2II component mutant, the mutant shows unaltered channel forming activity compared to the wild-type enzyme
D342C
-
site-directed mutagenesis, a C2II component mutant, the mutant shows unaltered channel forming activity compared to the wild-type enzyme
D369N
-
site-directed mutagenesis, the mutant shows reduced activity and an altered ratio of activity in absence or presence of exogenous ZnCl2 compared to the wild-type enzyme
D370A
-
site-directed mutagenesis, mutation of an S1' pocket residue, the mutant shows reduced activity compared to the wild-type enzyme
D370R
-
site-directed mutagenesis, mutation of an S1' pocket residue, the mutant shows reduced activity compared to the wild-type enzyme
D426A
-
site-directed mutagenesis, a C2II component mutant, the mutant shows unaltered channel forming activity compared to the wild-type enzyme
D70A
-
the mutant exhibits a 10fold reduction of wild type activity
D70A/D161A
-
inactive
E110A
the mutant shows similar activity to wild-type BoNT/F
E1172A
-
the binding of radioactively-labeled, in vitro translated HCE E1172A to rat brain synaptosomes is highly decreased to 8.5% of wild-type levels, as well as the binding of Escherichia coli derived HCE mutants to isolated GT1b
E1191C/S1199W
-
the mutations enhance enzyme binding to human synaptotagmin II and human synaptotagmin I
E1191M/S1199Y
E1191Q/S1199W
-
the mutation enhances binding to the human receptor synaptotagmin 2
E1191V/S1199W
-
the mutations enhance enzyme binding to human synaptotagmin II and human synaptotagmin I
E1195A
-
the HCF mutant E1195A displays a diminished affinity of 31.6% to synaptosomes as well as a reduction of about 85% in binding to isolated GT1b compared to HCF wild-type
E147A/E308A
-
the mutant exhibits a 5fold reduction of wild type activity
E147R
-
the mutant exhibits a 80fold reduction of wild type activity
E148A
-
the mutant shows 8.2% of wild type SNAP-25 cleavage activity
E148K
-
the mutant shows 1.7% of wild type SNAP-25 cleavage activity
E148R
-
the mutant shows 4.0% of wild type SNAP-25 cleavage activity
E158A/T159A/N160A
-
kcat/KM for synaptosome-associated protein SNAP-25 is 7.4fold lower than the wild-type value
E163L
-
site-directed mutagenesis, the mutant shows reduced activity and an altered ratio of activity in absence or presence of exogenous ZnCl2 compared to the wild-type enzyme
E163Q
-
site-directed mutagenesis, the mutant shows reduced activity and an altered ratio of activity in absence or presence of exogenous ZnCl2 compared to the wild-type enzyme
E170A
-
site-directed mutagenesis, the mutant shows reduced activity and an altered ratio of activity in absence or presence of exogenous ZnCl2 compared to the wild-type enzyme
E200A
-
Km (VAMP-2) similar to wild-type, kcat strongly decreased compared to wild-type
E212A/E335Q
-
no detectable activity with synaptosome-associated protein SNAP-25
E224A
-
the mutation abrogates the catalytic activity of the endopeptidase of BoNT/A
E224A/E262A
-
the recombinant full length botulinum type A with mutation in its two active site residues is a detoxified BoNT/A mutant since it lacks its endopeptidase activity
E224D
-
site-directed mutagenesis, the mutant shows highly reduced activity compared to the wild-type enzyme
E224Q/H227Y
P10844, P10845
the mutation removes the endopeptidase activity of BoNT/A LH fragment
E224Q/R363A/Y366F
P10845
enzymatically inactive
E249A
-
kcat/KM for synaptosome-associated protein SNAP-25 is 20fold lower than the wild-type value
E256A
-
site-directed mutagenesis, the mutant shows reduced activity compared to the wild-type enzyme in addition of ZnCl2 but not in absence of it, the ratio of activity in absence or presence of exogenous ZnCl2 is altered compared to the wild-type enzyme
E257A
-
site-directed mutagenesis, mutation of an S4' pocket residue, the mutant shows reduced activity compared to the wild-type enzyme
E257K
-
site-directed mutagenesis, mutation of an S4' pocket residue, the mutant shows reduced activity compared to the wild-type enzyme
E262D
-
site-directed mutagenesis, the mutant shows a three-fold reduced activity compared to the wild-type enzyme
E262Q
-
site-directed mutagenesis, the mutant shows highly reduced activity compared to the wild-type enzyme
E272A
-
site-directed mutagenesis, a C2II component mutant, the mutant shows unaltered channel forming activity compared to the wild-type enzyme
E280C
-
site-directed mutagenesis, a C2II component mutant, the mutant shows unaltered channel forming activity compared to the wild-type enzyme
E308R
-
the mutant exhibits a 0.8fold reduction of wild type activity
E315A
-
Km (VAMP-2) increased compared to wild-type, kcat similar to wild-type
E335A
-
kcat/KM for synaptosome-associated protein SNAP-25 is 37fold lower than the wild-type value
E335Q
-
kcat/KM for synaptosome-associated protein SNAP-25 is 7300fold lower than the wild-type value. Mutation causes the toxin to transform into a persistent apoenzyme decoid of zinc
E346A
-
site-directed mutagenesis, a C2II component mutant, the mutant shows unaltered channel forming activity compared to the wild-type enzyme
E399/D426A/F428A
-
site-directed mutagenesis, a C2II component mutant, the mutant shows almost no channel forming activity
E399A
-
site-directed mutagenesis, a C2II component mutant, the mutant shows unaltered channel forming activity compared to the wild-type enzyme
E399A/D425A
-
site-directed mutagenesis, a C2II component mutant, the mutant shows almost no channel forming activity
E54A
-
site-directed mutagenesis, the mutant shows reduced activity and an altered ratio of activity in absence or presence of exogenous ZnCl2 compared to the wild-type enzyme
E63A
-
site-directed mutagenesis, the mutant shows reduced activity and an altered ratio of activity in absence or presence of exogenous ZnCl2 compared to the wild-type enzyme
F163A
-
site-directed mutagenesis, mutation of an S1' pocket residue, the mutant shows reduced activity compared to the wild-type enzyme
F194A
-
site-directed mutagenesis, mutation of an S1' pocket residue, the mutant shows reduced activity compared to the wild-type enzyme
F194A/T220A
-
site-directed mutagenesis, mutation of S1' pocket residues, the mutant shows reduced activity compared to the wild-type enzyme
F428A
-
site-directed mutagenesis, a C2II component mutant, the mutant shows altered chloroquine binding and almost no channel formation activity compared to the wild-type enzyme
F428D
-
site-directed mutagenesis, a C2II component mutant, the mutant shows altered chloroquine binding and almost no channel formation activity compared to the wild-type enzyme
F428W
-
site-directed mutagenesis, a C2II component mutant, the mutant shows altered chloroquine binding and almost no channel formation activity compared to the wild-type enzyme
F428Y
-
site-directed mutagenesis, a C2II component mutant, the mutant shows altered chloroquine binding and almost no channel formation activity compared to the wild-type enzyme
F50A
the mutant shows wild type activity
F50A/I191A
the mutant shows 60fold activity reduction compared to the wild type enzyme
F50D
the mutant shows 4fold activity reduction compared to the wild type enzyme
F50D/I191D
the mutant shows 400fold activity reduction compared to the wild type enzyme
H1241K
mutant shows an increased affinity for GD1a and confers the ability to bind ganglioside GM1a
H132A
the mutant shows wild type activity
H132Q
the mutant shows 100fold activity reduction compared to the wild type enzyme
H223A
-
the mutation abrogates the catalytic activity of the endopeptidase of BoNT/A
H223A/E224A/H227A
-
site-directed mutagenesis of active site residues, catalytically inactive BoNT/A1 mutant
H227A
-
the mutation abrogates the catalytic activity of the endopeptidase of BoNT/A
H233Y/E230Q
inactive
H269A
-
site-directed mutagenesis, the mutant shows unaltered activity compared to the wild-type enzyme
I115A
-
site-directed mutagenesis, mutation of a binding site residue, the mutant shows reduced activity compared to the wild-type enzyme
I151A
the mutant shows 2fold activity reduction compared to the wild type enzyme
I151D
the mutant shows 1000fold activity reduction compared to the wild type enzyme
I152D
the mutant shows 2fold activity reduction compared to the wild type enzyme
I191A
the mutant shows wild type activity
I191D
the mutant shows 4fold activity reduction compared to the wild type enzyme
I52A
-
Km (VAMP-2) increased compared to wild-type, kcat decreased compared to wild-type
K165L
-
site-directed mutagenesis, the mutant shows reduced activity and an altered ratio of activity in absence or presence of exogenous ZnCl2 compared to the wild-type enzyme
K172A
-
Km (VAMP-2) increased compared to wild-type, kcat moderately decreased compared to wild-type
K218A
-
inactive
K218D
-
inactive
K218R
-
the mutant exhibits an 8fold reduction of wild type activity
K224D
-
mutation of BoNT/E light chain. The mutant shows extended substrate specificity to cleave SNAP-23, and the natural substrate, SNAP-25, but not SNAP-29 or SNAP-47, introduction into HeLa cells
K23A
-
the mutant shows 111% of wild type SNAP-25 cleavage activity
K23D
-
the mutant shows 72% of wild type SNAP-25 cleavage activity
K29A
the BoNT F K29A mutation does not abrogate VAMP cleavability
K337A
-
the mutant shows 55% of wild type SNAP-25 cleavage activity
K337E
-
the mutant shows 28.5% of wild type SNAP-25 cleavage activity
K340A
-
the mutant shows 99.5% of wild type SNAP-25 cleavage activity
K340D
-
the mutant shows 71.5% of wild type SNAP-25 cleavage activity
K340H
-
the mutant shows 64.1% of wild type SNAP-25 cleavage activity
K340R
-
the mutant shows 147.5% of wild type SNAP-25 cleavage activity
K41A
-
site-directed mutagenesis, mutation of a binding site residue, the mutant shows reduced activity compared to the wild-type enzyme
K58A
-
the mutant exhibits a 250fold reduction of wild type activity
L173A
-
Km (VAMP-2) increased compared to wild-type, kcat moderately decreased compared to wild-type
L175A
-
site-directed mutagenesis, mutation of an S5 pocket residue, the mutant shows reduced activity compared to the wild-type enzyme
L175A/R177A
-
site-directed mutagenesis, mutation of S5 pocket residues, the mutant shows reduced activity compared to the wild-type enzyme
L200A
the mutant shows 2fold activity reduction compared to the wild type enzyme
L200D
the mutant shows 8fold activity reduction compared to the wild type enzyme
L256E
-
the mutant shows 13.9% of wild type SNAP-25 cleavage activity
L256E/V258P
-
the mutant shows 49.3% of wild type SNAP-25 cleavage activity
L260F/I264R
-
these mutations do not alter the activity of the enzyme
M106A
-
the mutant shows 73% of wild type SNAP-25 cleavage activity
M344A
-
the mutant shows 73% of wild type SNAP-25 cleavage activity
N26D
-
the mutant shows 90.8% of wild type SNAP-25 cleavage activity
N26K
-
the mutant shows 82.8% of wild type SNAP-25 cleavage activity
P154D
the mutant shows 4fold activity reduction compared to the wild type enzyme
P25A
-
Km (VAMP-2) increased compared to wild-type, kcat decreased compared to wild-type
Q138G/P139G/D140G
-
site-directed mutagenesis, the mutant is no longer recognized by antibody F1-40
Q161A
-
site-directed mutagenesis, the mutant shows reduced activity and an altered ratio of activity in absence or presence of exogenous ZnCl2 compared to the wild-type enzyme
Q162A
Q34A
-
the mutation reduces the VAMP-2 cleavability by about 3fold compared to the wild type enzyme
Q66A
-
site-directed mutagenesis, the mutant shows reduced activity and an altered ratio of activity in absence or presence of exogenous ZnCl2 compared to the wild-type enzyme
R1111A/H1241K/R1256A
triple mutant binds GD1a 17fold greater than the double-mutant
R1111A/R1256A
triple mutant binds GD1a 17fold greater than the double-mutant
R133A
R133K
the BoNT/F mutant shows over 95% reduced activity with VAMP substrate compared to the wild-type enzyme
R171A
-
Km (VAMP-2) increased compared to wild-type, kcat decreased compared to wild-type
R171K
the exosite 1 variant BoNT F shows about 98% reduction in activity with VAMP compared to the wild-type enzyme
R177A
R177D
-
the mutant shows 77% of wild type SNAP-25 cleavage activity
R230K
-
site-directed mutagenesis, the mutant shows reduced activity and an altered ratio of activity in absence or presence of exogenous ZnCl2 compared to the wild-type enzyme
R230L
R23A
the mutant shows wild type activity
R23D/H132A
the mutant shows 25fold activity reduction compared to the wild type enzyme
R240A
-
Km (VAMP-2) similar to wild-type, kcat decreased compared to wild-type
R263A
-
Km (VAMP-2) similar to wild-type, kcat decreased compared to wild-type
R347A
-
kcat/KM for synaptosome-associated protein SNAP-25 is 1060fold lower than the wild-type value
R362L
-
site-directed mutagenesis, the mutant shows reduced activity and an altered ratio of activity in absence or presence of exogenous ZnCl2 compared to the wild-type enzyme
R370A/373F
-
inactive
R372A
the mutant shows 40fold activity reduction compared to the wild type enzyme
R63A
the mutant shows 10fold activity reduction compared to the wild type enzyme
R63E
the mutant shows 50fold activity reduction compared to the wild type enzyme
S147A
-
Km (VAMP-2) increased compared to wild-type, kcat similar to wild-type
S224A
-
Km (VAMP-2) similar to wild-type, kcat decreased compared to wild-type
S28E
-
the mutation reduces the VAMP-2 cleavability by about 2fold compared to the wild type enzyme
T132D
-
the mutant shows 42.5% of wild type SNAP-25 cleavage activity
T176A
-
site-directed mutagenesis, mutation of an S5 pocket residue, the mutant shows reduced activity compared to the wild-type enzyme
T192A
-
the mutant exhibits a 3fold reduction of wild type activity
T220A
-
site-directed mutagenesis, mutation of an S1' pocket residue, the mutant shows reduced activity compared to the wild-type enzyme
V129A
-
site-directed mutagenesis, mutation of a binding site residue, the mutant shows reduced activity compared to the wild-type enzyme
V137A
-
Km (VAMP-2) increased compared to wild-type, kcat decreased compared to wild-type
V148/I151A
the mutant shows 15fold activity reduction compared to the wild type enzyme
V148A
the mutant shows wild type activity
V148D
the mutant shows wild type activity
V258A
-
the mutant shows 33.1% of wild type SNAP-25 cleavage activity
W1224L
-
the binding of radioactively-labeled, in vitro translated HCE W1224L to rat brain synaptosomes is highly decreased to 3.7% of wild-type levels, as well as the binding of Escherichia coli derived HCE mutants to isolated GT1b
W1250L
-
the HCF mutant W1250L displays a diminished affinity of 20.5% to synaptosomes as well as a reduction of about 85% in binding to isolated GT1b compared to HCF wild-type
W1266L
-
the mutant HCA W1266L that lacks ganglioside binding, does not interfere with BoNT/A neurotoxicity
W315A
the mutant shows 20fold activity reduction compared to the wild type enzyme
W315D
the mutant shows 40fold activity reduction compared to the wild type enzyme
W319A
-
Km (VAMP-2) increased compared to wild-type, kcat similar to wild-type
W44A
-
Km (VAMP-2) increased compared to wild-type, kcat similar to wild-type
W44A/I152A/P154A
the mutant shows 20fold activity reduction compared to the wild type enzyme
W44D
the mutant shows 2fold activity reduction compared to the wild type enzyme
Y113A
-
Km (VAMP-2) increased compared to wild-type, kcat similar to wild-type
Y133A
-
Km (VAMP-2) increased compared to wild-type, kcat decreased compared to wild-type
Y168A
Y168A/L200A
the mutant shows 2fold activity reduction compared to the wild type enzyme
Y168D
the mutant shows 2fold activity reduction compared to the wild type enzyme
Y168D/L200D
the mutant shows 60fold activity reduction compared to the wild type enzyme
Y183A
-
the mutant exhibits a 3.2fold reduction of wild type activity
Y183A/Y239A
-
the mutant exhibits a 1000fold reduction of wild type activity
Y239A
-
the mutant exhibits an 8fold reduction of wild type activity
Y26A/Y50A/T192A
-
the mutant exhibits a 600fold reduction of wild type activity
Y322A
-
Km (VAMP-2) increased compared to wild-type, kcat similar to wild-type
Y350A
-
no detectable activity with synaptosome-associated protein SNAP-25
Y361A
the BoNT/F mutant shows about 18% reduction in activity with VAMP compared to the wild-type enzyme
Y365F
-
site-directed mutagenesis, the mutant shows reduced activity compared to the wild-type enzyme
Y365N
Y368A
-
Km (VAMP-2) similar to wild-type, kcat strongly decreased compared to wild-type
Y50A
-
the mutant exhibits a 10fold reduction of wild type activity
additional information
pH STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
5.5
-
the BoNT complex and its components precipitate below pH 5.5, overview
710875
TEMPERATURE STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
38 - 41
-
thermal denaturation of wild-type and mutant BoNT/As, overview
44 - 52
-
temperature denaturation Tm is significantly decreased upon removal of Zn2+
46.4
melting temperature
51 - 60
the melting temperature is around 51°C at pH 7.2 and 60.4°C at pH 4.5
additional information
-
thermodynamic parameters for temperature-induced denaturation of BoNT/E, overview
GENERAL STABILITY
ORGANISM
UNIPROT
LITERATURE
targeting the enzyme to vesicles improves its efficacy
BoNT/A is sensitive to proteolysis at 44°C. Only EDTA and EDTA (1 mM) block degradation
-
stable in many freeze and thawing processes
-
ORGANIC SOLVENT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
Glycerol
secondary and tertiary structures are substantially stabilized by the presence of 10-50% (v/v) glycerol
OXIDATION STABILITY
ORGANISM
UNIPROT
LITERATURE
extremely sensitive to oxidants
-
31426
STORAGE STABILITY
ORGANISM
UNIPROT
LITERATURE
-20°C, HEPES buffer, 10-20% glycerol, stable
-
-80°C, in 10 mM HEPES buffer, pH 7.2, 50 mM NaCl, after freezing in liquid N2, stable
-
the recombinant enzyme is most stable stored at pH 4.0 in 15 mM succinate
-
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
HisTrap nickel affinity column chromatography
native BoNT/A1, BoNT/A3, BoNT/B1, and BoNT/B4 from strains ATCC 3502, NCTC 2012, Okra, and Eklund 17B strains, respectively, by ultrafiltration, hydrophobic interaction and anion exchange chromatography, followed by hydroxyapatite chromatography and dialysis
P10844, P10845
native BoNT/B1, and BoNT/B4 by ultrafiltration, hydrophobic interaction and anion exchange chromatography, followed by hydroxyapatite chromatography and dialysis
P10844, P10845
ammonium sulfate precipitation, DEAE column chromatography, and 4-aminobenzyl 1-thio-beta-D-galactopyranoside agarose affinity column chromatography
-
ammonium sulfate precipitation, DEAE column chromatography, CM Sepharose column chromatography, and Mono-Q column chromatography
ammonium sulfate precipitation, Ni-NTA agarose column chromatography, and DEAE-Sephadex gel filtration
-
anion exchange column chromatography
P10845, Q58GH1
BoNT HCR/A and HCR/B co-purify with synaptic vesicle protein complexes
-
BoNT serotype D and enzyme large toxin complex, L-TC, from strain 4947, by ammonium sulfate fractionation, cation exchange chromatography, another step of ammonium sulfate fractionation, and gel filtration
-
botulinum neurotoxin E light chain
-
botulinum neurotoxin serotype F light chain
-
BuHP Sepharose column chromatography, Q Sepharose column chromatography, and phenyl Sepharose column chromatography
-
C-terminal quarter of the heavy chain of botulinum neurotoxin type A
P10845
cobalt affinity column chromatography, trypsinization, and QAE Sephadex A-50 anion exchange column chromatography
-
commercial preparations of BoNT/A and BoNT/E further purified
-
extraction of enzymatic activity of botulinum neurotoxins/A1, /A2, and /A3 from Clostridium botulinum strain Loch Maree by a panel of monoclonal anti-BoNT/A antibodies, overview
-
full length Clostridium botulinum neurotoxin type E light chain
-
GST-affinity column chromatography and Superdex S200 gel filtration
-
HisTrap column chromatography and phenyl Sepharose column chromatography
-
HisTrap column chromatography and Superdex S200 gel filtration
immobilized metal affinity chromatography or GST Sepharose affinity chromatography followed by Superdex 200 gel filtration
P10845
method is based on filtration and chromatography procedures only, which can easily be scaled up from the laboratory purification to industrial needs
-
native BoNT/A free and in complex. Recombinant His-tagged BoNT/A mutant E224A/E262A from Escherichia coli by nickel affinity chromatography, separation of the light and heavy chains
-
native BoNT/A1 and BoNT/A3, by ultrafiltration, hydrophobic interaction and anion exchange chromatography, followed by hydroxyapatite chromatography and dialysis
P10844, P10845
native BoNT/A2 toxin complex and BoNT/A2 from Clostridium botulinum A2 strain by ammonium sulfate fractionation, and by two different steps of each anion exchange and cation exchange chromatographies
-
native BONT/B from Clostridium botulinum by ion exchange chromatography
-
Ni-NTA agarose bead chromatography
Ni-NTA agarose column chromatography
Ni-NTA column chromatography
Ni-NTA column chromatography and Superdex 200 gel filtration
Ni-NTA column chromatography and Superdex S200 gel filtration
-
Ni-NTA column chromatography, MonoQ column chromatography, and Superdex 200 gel filtration
-
Ni2+-charged chelating Sepharose column chromatography and phenyl Sepharose column chromatography
recombinant C-terminally His-tagged wild-type and SeMet-labeled BoNT/OFD05 receptor-binding domain from Escherichia coli strain B843 (DE3) by nickel affinity chromatography, dialysis, and gel filtration
recombinant catalytically inactive BoNT/A1 mutant H223A/E224A/H227A holoprotein from Pichia pastoris by cation exchange chromatography to about 95% homogeneity. The purified ciBoNT/A1 HP is a mixed population of singlechain and nicked dichain
-
recombinant GST-tagged HC-fragments pHCAS, pHCBS, pHCCS, pHCDS, pHCES, pHCFS, and pHCGS, and the full-length BoNT/A, BoNT/B, BoNT/D, BoNT/G, and Strep-tagged pBoNTCS-Thro encoding from Escherichia coli by glutathione and streptavidin affinity chromatography, respectively
-
recombinant GST-tagged wild-type and mutant C2II components from Escherichia coli strain BL21
-
recombinant His-tagged and/or FLAG-tagged heavy chains, BoNT/G HCR, BoNT/A HCR, and BoNT/B HCR, from Escherichia coli by nickel affinity chromatography and gel filtration
recombinant His-tagged BoNT AE and EA chimeras from Escherichia coli strain BL21 by immobilized metal affinity and adsorption chromatography, followed by gel filtration, to homogeneity, near-complete conversion of the SC to a disulfide-linked DC as revealed by the appearance of the HC and LC upon SDS-PAGE in the presence of DTT
recombinant His-tagged BoNT/C1(1-430) from Escherichia coli strain B21(DE3) by nickel affinity chromatography
-
recombinant His-tagged BoNT/C1-LC from Escherichia coli strain M15[pREP4] by nickel affinity chromatography
-
recombinant His-tagged BoNT/E fragment HC1163-1256 from Escherichia coli strain BL21(DE3) by nickel affinity chromatography
-
recombinant His-tagged truncated enzyme, residues 1-424, from Escherichia coli strain BL21(DE3) by metal ion affinity chromatography
-
recombinant His6-tagged BoNT/A heavy chain fragment from Escherichia coli by nickel affinity chromatography
P10845
recombinant His6-tagged light chains of the BoNT subtypes from Escherichia coli by nickel affinity chromatography
-
recombinant light chain
-
recombinantly expressed His6-tagged type B botulinum neurotoxin heavy chain transmembrane and binding domain, isolation from Escherichia coli inclusion body, purification, and refolding in a single step by Ni2+ affinity chromatography
-
scale-up, recombinant heavy chain fragment C of botulinum neurotoxin serotype E GS115
-
serotypes BoNT/A, B, E (and their H-chain and L-chain)
-
serotypes BoNT/A, B, E, C, D, F
-
the light chain is purified by nickel affinity column chromatography
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
catalytically inactive, mutated fragments, designated LHN, comprise the light chain and translocation domains of each neurotoxin and are devoid of any neuron-binding activity. Using codon-optimized genes, LHN fragments, derived from BoNT serotype B, are expressed in Escherichia coli in high yield as soluble proteins
P10844, P10845
catalytically inactive, mutated fragments, designated LHN, comprise the light chain and translocation domains of each neurotoxin and are devoid of any neuron-binding activity. Using codon-optimized genes, LHN fragments, derived from BoNT serotypes A and B, are expressed in Escherichia coli in high yield as soluble proteins
P10844, P10845
expressed in Escherichia coli
the receptor-binding domain of botulinum neurotoxin serotype B is expressed in Escherichia coli BL21(DE3) cells
BoNT/A, DNA and amino acid sequence determination, BoNT/A is produced along with six neurotoxin associated proteins, including hemagglutinin Hn-33, through polycistronic expression of a clustered group of genes to form a complex, BoNT/AC. Expresssion of His-tagged BoNT/A mutant E224A/E262A in Escherichia coli
-
bont/F, bont/A, and bont/B genes, DNA and amino acid sequence determination and analysis, comparisons, and phylogenetic analysis
bont/F, bont/A, and bont/B genes, DNA and amino acid sequence determination and analysis, phylogenetic analysis
botulinum neurotoxin complex bont genes from different strains, genotyping and phylogenetic analysis, overview
-
botulinum neurotoxin serotype F light chain
-
botulinum neurotoxin type B strains type B, Ab, and A(B) contain five different subtypes of gene bont/B. B1 subtype gene bont/B DNA sequence determination and analysis. Genomic localization of the bont/B and /A subtype genes, plasmid carriage is bont/B subtype-related. Plasmid-borne bont/B PCR-RFLP subtype genes among Clostridium botulinum strains, overview
botulinum neurotoxin type B strains type B, Ab, and A(B) contain five different subtypes of gene bont/B. B2 subtype gene bont/B DNA sequence determination and analysis. Genomic localization of the bont/B and /A subtype genes, plasmid carriage is bont/B subtype-related. Plasmid-borne bont/B PCR-RFLP subtype genes among Clostridium botulinum strains, overview
botulinum neurotoxin type B strains type B, Ab, and A(B) contain five different subtypes of gene bont/B. Bivalent subtype gene bont/B DNA sequence determination and analysis. Genomic localization of the bont/B and /A subtype genes, plasmid carriage is bont/B subtype-related. Plasmid-borne bont/B PCR-RFLP subtype genes among Clostridium botulinum strains, overview
botulinum neurotoxin type B strains type B, Ab, and A(B) contain five different subtypes of gene bont/B. Non-proteolytic subtype gene bont/B DNA sequence determination and analysis. Genomic localization of the bont/B and /A subtype genes, plasmid carriage is bont/B subtype-related. Plasmid-borne bont/B PCR-RFLP subtype genes among Clostridium botulinum strains, overview
C-terminal quarter of the heavy chain of botulinum neurotoxin type A, expression in Escherichia coli
P10845
catalytically inactive, mutated fragments, designated LHN, comprise the light chain and translocation domains of each neurotoxin and are devoid of any neuron-binding activity. Using codon-optimized genes, LHN fragments, derived from BoNT serotype A, are expressed in Escherichia coli in high yield as soluble proteins
P10844, P10845
cell bank construction, expression of the C-terminal heavy chain fragment of botulinum neurotoxin serotype E in Pichia pastoris strain GS115, method development and evaluation using the pHILD4 Escherichia coli-Pichia pastoris shuttle plasmid, fermentation up-scaling, modeling, overview
-
cloning of the gene encoding the BoNT/A heavy chain as 1275 bp AHc fragment synthesized by PCR, and overexpression as His6-tagged protein in Escherichia coli
P10845
Clostridium botulinum
-
construction of an expression vector containing DNA encoding the enterokinase whose cleavage site positioned between LC and HC is replaced with a sequence encoding a second TEV cleavage site, His10- or GFP-tagged, expression in Escherichia coli, generation of a recombinant baculovirus containing BoNT/A LC peptide
-
DNA sequence encoding the receptor binding domain of BoNT/CD (S867-E1280) is codon-optimized for expression in Escherichia coli with a C-terminal His tag and cloned into the expression vector pJexpress411 and expressed in Escherichia coli
expressed in Escherichia coli
expressed in Escherichia coli BL-21(DE3)-RIL cells
-
expressed in Escherichia coli BL21 cells
expressed in Escherichia coli BL21(DE3) cells
expressed in Escherichia coli BL21(DE3)-RIL cells
expressed in Escherichia coli BL21-CodonPlus (DE3)-RIL cells
-
expressed in Escherichia coli BL21-RIL (DE3) cells
-
expressed in Escherichia coli BL21-Star (DE3) cells
-
expressed in Escherichia coli M15pREP4 cells
expressed in Escherichia coli NiCo21(DE3) cells
P10845
expressed in Escherichia coli SG13009 cells
-
expressed in Escherichia coli TG1
-
expressed in nonsporulating and nontoxigenic Clostridium botulinum expression host strain
-
expression in Escherichia coli strains BL21(DE3) and M15 of GST-tagged HC-fragments pHCAS, pHCBS, pHCCS, pHCDS, pHCES, pHCFS, and pHCGS, and the full-length BoNT/A, BoNT/B, BoNT/D, BoNT/G, as well as pBoNTCS-Thro encoding full-length BoNT/C fused C-terminally to a Streptag and containing an Escherichia coli protease sensitive peptide between LC and HC
-
expression of BoNT serotype A, B, and C light chains
-
expression of C-terminally His-tagged BoNT/C1-LC in Escherichia coli strain M15[pREP4]
-
expression of catalytically inactive BoNT/A1 mutant H223A/E224A/H227A holoprotein in Pichia pastoris
-
expression of GST-tagged wild-type and mutant C2II components in Escherichia coli strain BL21
-
expression of heavy chain fragment C of botulinum neurotoxin serotype E in Pichia pastoris
-
expression of His-tagged BoNT AE and EA chimeras in Escherichia coli strain BL21
expression of His-tagged BoNT/E fragment, composed by the 1163-1256 residues of botulinum type E neurotoxin HC gene and termed HC1163-1256, in Escherichia coli strain BL21(DE3)
-
expression of His-tagged truncated enzyme, residues 1-424, in Escherichia coli strain BL21(DE3)
-
expression of His6-tagged light chains of thr BoNT subtypes in Escherichia coli
-
expression of N-terminally GST-tagge BoNT/A peptide fragments
-
expression of recombinant His-tagged and/or FLAG-tagged heavy chains, BoNT/G HCR, BoNT/A HCR, and BoNT/B HCR, in Escherichia coli strain BL21(DE3)
expression of Strep-tagged HCB-Syt-II fusion protein
-
expression of tagged heavy chain domain, as EGFP-Hc-N/A or mCherry-Hc-N/A, in Escherichia coli strain BL21(DE3)
-
expression of the Clostridium botulinum A2 neurotoxin orfX gene cluster proteins ORFX1, ORFX3, P47, and the middle part of NTNH from Clostridium botulinum A2 strain Kyoto F, and NTNH of Clostridium botulinum A1 strain ATCC 3502 in Escherichia coli strain CA434 and in a Clostridium botulinum expression system involving type A transposon Tn916 mutant strain LNT01, expression analysis of orfX cluster genes in native A2 strain, overview
-
expression of wild-type and mutant enzymes in Escherichia coli strain BL21(DE3)
-
full length Clostridium botulinum neurotoxin type E light chain, expression in Escherichia coli
-
genes bont, 6 subtypes, DNA and amino acid sequence determination and analysis, sequence comparisons. The genes from proteolytic, group I, strains form subtypes F1 through F5, while the genes from nonproteolytic, group II, strains form subtype F6, phylogenetic analysis
genes bont, 6 subtypes, DNA and amino acid sequence determination and analysis. The genes from proteolytic, group I, strains form subtypes F1 through F5, while the genes from nonproteolytic, group II, strains form subtype F6, phylogenetic analysis
heavy and light chain DNA sequence determination, expression of GST-tagged wild-type BoNT/A light chain and of seven peptide fragments of BoNT/A light chain, Lc, L1, L2, L1-1, L1-2, L1-3, L1-4, as well as mutant L1-3 BoNT/A light chain peptide fragment in Escherichia coli strain Bl21(DE3)
-
high level overexpression by autoinduction method of botulinum neurotoxin serotype C1, comprising residues 1-430, in Escherichia coli strain BL21(DE3) as His-tagged protein
-
His6-tagged recombinant type B botulinum neurotoxin heavy chain transmembrane and binding domain, expression in Escherichia coli BL21
-
mouse microarray test to identify genes induced by injection of lysophosphatidic acid in a BoNT/C3-reversible manner
-
recombinant expression of the C-terminally His-tagged BoNT/OFD05 receptor-binding domain, wild-type and SeMet-labeled, in Escherichia coli strain B843 (DE3)
recombinant light chain type A BoNT LC expressed in Escherichia coli HB101
-
regulated expression of serotype B-LC in yeast leads to cleavage of the chimera and a conditional growth defect
-
serotypes BoNT/A
-
serotypes BoNT/A (3 fragments encompassing the structural gene)
-
the heavy chain domain is expressed in Escherichia coli M15 cells
-
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
medicine
analysis
drug development
medicine
molecular biology
-
botulinum neurotoxins BoNT/A-G are widely used as laboratory research tools
additional information
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Eisel, U.; Jarusch, W.; Goretzki, K.; Henschen, A.; Engels, J.; Weller, U.; Hudel, M.; Habermann, E.; Niemann, H.
Tetanus toxin: primary structure, expression in E. coli, and homology with botulinum toxins
EMBO J.
5
2495-2502
1986
Clostridium botulinum
Manually annotated by BRENDA team
Schiavo, G.; Benfenati, F.; Poulain, B.; Rossetto, O.; Polverino de Laureto, P.; DasGupta, B.R.; Montecucco, C.
Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin
Nature
359
832-835
1992
Clostridium botulinum
Manually annotated by BRENDA team
Montecucco, C.; Schiavo, G.
Mechanism of action of tetanus and botulinum neurotoxins
Mol. Microbiol.
13
1-8
1994
Clostridium baratii, Clostridium botulinum, Clostridium butyricum
Manually annotated by BRENDA team
Schiavo, G.; Montecucco, C.
Tetanus and botulism neurotoxins: isolation and assay
Methods Enzymol.
248
643-652
1995
Clostridium botulinum, Clostridium sp.
Manually annotated by BRENDA team
Schiavo, G.; Rossetto, O.; Santucci, A.; DasGupta, B.R.; Montecucco, C.
Botulinum neurotoxins are zinc proteins
J. Biol. Chem.
267
23479-23483
1992
Clostridium botulinum
Manually annotated by BRENDA team
Binz, T.; Kurazono, H.; Popoff, M.R.; Eklund, M.W.; Sakaguchi, G.; Kozaki, S.; Krieglstein, K.; Henschen, A.; Gill, D.M.; Niemann, H.
Nucleotide sequence of the gene encoding Clostridium botulinum neurotoxin type D
Nucleic Acids Res.
18
5556
1990
Clostridium botulinum
Manually annotated by BRENDA team
Hauser, D.; Eklund, M.W.; Kurazono, H.; Binz, T.; Niemann, H.; Gill, D.M.; Boquet, P.; Popoff, M.R.
Nucleotide sequence of Clostridium botulinum C1 neurotoxin
Nucleic Acids Res.
18
4924
1990
Clostridium botulinum
Manually annotated by BRENDA team
Saathyamoorthy, V.; DasGupta, B.R.
Separation, purification, partial characterization and comparison of the heavy and light chains of botulinum neurotoxin types A, B, and E
J. Biol. Chem.
260
10461-10466
1985
Clostridium botulinum
Manually annotated by BRENDA team
Thompson, D.E.; Brehm, J.K.; Oultram, J.D.; Swinfield, T.J.; Shone, C.C.; Atkinson, T.; Melling, J.; Minton, N.P.
The complete amino acid sequence of the Clostridium botulinum type A neurotoxin, deduced by nucleotide sequence analysis of the encoding gene
Eur. J. Biochem.
189
73-81
1990
Clostridium botulinum
Manually annotated by BRENDA team
Binz, T.; Kurazono, H.; Wille, M.; Frevert, J.; Wernars, K.; Niemann, H.
The complete sequence of botulinum neurotoxin type A and comparison with other clostridial neurotoxins
J. Biol. Chem.
265
9153-9158
1990
Clostridium botulinum
Manually annotated by BRENDA team
Schiavo, G.; Santucci, A.; DasGupta, B.R.; Mehta, P.P.; Jontes, J.; Benfenati, F.; Wilson, M.C.; Montecucco, C.
Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds
FEBS Lett.
335
99-103
1993
Clostridium botulinum
Manually annotated by BRENDA team
Schiavo, G.; Malizio, C.; Trimble, W.S.; Polverino de Laureto, P.; Milan, G.; Sugiyama, H.; Johnson, E.A.; Montecucco, C.
Botulinum G neurotoxin cleaves VAMP/synaptobrevin at a single Ala-Ala peptide bond
J. Biol. Chem.
269
20213-20216
1994
Clostridium botulinum, Clostridium botulinum type G
Manually annotated by BRENDA team
Burnett, J.C.; Schmidt, J.J.; Stafford, R.G.; Panchal, R.G.; Nguyen, T.L.; Hermone, A.R.; Vennerstrom, J.L.; McGrath, C.F.; Lane, D.J.; Sausville, E.A.; Zaharevitz, D.W.; Gussio, R.; Bavari, S.
Novel small molecule inhibitors of botulinum neurotoxin A metalloprotease activity
Biochem. Biophys. Res. Commun.
310
84-93
2003
Clostridium botulinum
Manually annotated by BRENDA team
Li, L.; Singh, B.R.
Role of zinc binding in type A botulinum neurotoxin light chain's toxic structure
Biochemistry
39
10581-10586
2000
Clostridium botulinum
Manually annotated by BRENDA team
Simpson, L.L.
Identification of the characteristics that underlie botulinum toxin potency: implications for designing novel drugs
Biochimie
82
943-953
2000
Clostridium baratii, Clostridium botulinum, Clostridium butyricum
Manually annotated by BRENDA team
Washbourne, P.; Pellizzari, R.; Baldini, G.; Wilson, M.C.; Montecucco, C.
Botulinum neurotoxin types A and E require the SNARE motif in SNAP-25 for proteolysis
FEBS Lett.
418
1-5
1997
Clostridium botulinum
Manually annotated by BRENDA team
Adler, M.; Nicholson, J.D.; Cornille, F.; Hackley, B.E., Jr.
Efficacy of a novel metalloprotease inhibitor on botulinum neurotoxin B activity
FEBS Lett.
429
234-238
1998
Clostridium botulinum
Manually annotated by BRENDA team
Schmidt, J.J.; Stafford, R.G.; Bostian, K.A.
Type A botulinum neurotoxin proteolytic activity: development of competitive inhibitors and implications for substrate specificity at the S1' binding subsite
FEBS Lett.
435
61-64
1998
Clostridium botulinum
Manually annotated by BRENDA team
Schmidt, J.J.; Stafford, R.G.
A high-affinity competitive inhibitor of type A botulinum neurotoxin protease activity
FEBS Lett.
532
423-426
2002
Clostridium botulinum
Manually annotated by BRENDA team
Garcia, G.E.; Moorad, D.R.; Gordon, R.K.
Buforin I, a natural peptide, inhibits botulinum neurotoxin B activity in vitro
J. Appl. Toxicol.
19 Suppl 1
S19-22
1999
Clostridium botulinum
Manually annotated by BRENDA team
Anne, C.; Turcaud, S.; Quancard, J.; Teffo, F.; Meudal, H.; Fournie-Zaluski, M.C.; Roques, B.P.
Development of potent inhibitors of botulinum neurotoxin type B
J. Med. Chem.
46
4648-4656
2003
Clostridium botulinum
Manually annotated by BRENDA team
Schmidt, J.J.; Bostian, K.A.
Endoproteinase activity of type A botulinum neurotoxin: substrate requirements and activation by serum albumin
J. Protein Chem.
16
19-26
1997
Clostridium botulinum
Manually annotated by BRENDA team
Antharavally, B.S.; DasGupta, B.R.
Covalent structure of botulinum neurotoxin type B; location of sulfhydryl groups and disulfide bridge and identification of C-termini of light and heavy chains
J. Protein Chem.
17
417-428
1998
Clostridium botulinum
Manually annotated by BRENDA team
Sagane, Y.; Watanabe, T.; Kouguchi, H.; Sunagawa, H.; Inoue, K.; Fujinaga, Y.; Oguma, K.; Ohyama, T.
Dichain structure of botulinum neurotoxin: identification of cleavage sites in types C, D, and F neurotoxin molecules
J. Protein Chem.
18
885-892
1999
Clostridium botulinum (P18640), Clostridium botulinum (P19321), Clostridium botulinum (P30996), Clostridium botulinum, Clostridium botulinum CB16 (P19321), Clostridium botulinum Stockholm (P18640)
Manually annotated by BRENDA team
Ahmed, S.A.; Byrne, M.P.; Jensen, M.; Hines, H.B.; Brueggemann, E.; Smith, L.A.
Enzymatic autocatalysis of botulinum A neurotoxin light chain
J. Protein Chem.
20
221-231
2001
Clostridium botulinum
Manually annotated by BRENDA team
Li, L.; Singh, B.R.
High-level expression, purification, and characterization of recombinant type A botulinum neurotoxin light chain
Protein Expr. Purif.
17
339-344
1999
Clostridium botulinum
Manually annotated by BRENDA team
Raffestin, S.; Marvaud, J.C.; Cerrato, R.; Dupuy, B.; Popoff, M.R.
Organization and regulation of the neurotoxin genes in Clostridium botulinum and Clostridium tetani
Anaerobe
10
93-100
2004
Clostridium botulinum
Manually annotated by BRENDA team
Agarwal, R.; Binz, T.; Swaminathan, S.
Structural analysis of botulinum neurotoxin serotype F light chain: implications on substrate binding and inhibitor design
Biochemistry
44
11758-11765
2005
Clostridium botulinum
Manually annotated by BRENDA team
Schmidt, J.J.; Stafford, R.G.
Botulinum neurotoxin serotype F: identification of substrate recognition requirements and development of inhibitors with low nanomolar affinity
Biochemistry
44
4067-4073
2005
Clostridium botulinum
Manually annotated by BRENDA team
Agarwal, R.; Binz, T.; Swaminathan, S.
Analysis of active site residues of botulinum neurotoxin E by mutational, functional, and structural studies: Glu335Gln is an apoenzyme
Biochemistry
44
8291-8302
2005
Clostridium botulinum
Manually annotated by BRENDA team
Arndt, J.W.; Yu, W.; Bi, F.; Stevens, R.C.
Crystal structure of botulinum neurotoxin type G light chain: serotype divergence in substrate recognition
Biochemistry
44
9574-9580
2005
Clostridium botulinum
Manually annotated by BRENDA team
Arndt, J.W.; Chai, Q.; Christian, T.; Stevens, R.C.
Structure of botulinum neurotoxin type D light chain at 1.65 A resolution: repercussions for VAMP-2 substrate specificity
Biochemistry
45
3255-3262
2006
Clostridium botulinum
Manually annotated by BRENDA team
Montecucco, C.; Molgo, J.
Botulinal neurotoxins: revival of an old killer
Curr. Opin. Pharmacol.
5
274-279
2005
Clostridium botulinum
Manually annotated by BRENDA team
Kirma, N.; Ferreira, J.L.; Baumstark, B.R.
Characterization of six type A strains of Clostridium botulinum that contain type B toxin gene sequences
FEMS Microbiol. Lett.
231
159-164
2004
Clostridium botulinum
Manually annotated by BRENDA team
Gessler, F.
A new scaleable method for the purification of botulinum neurotoxin type E
J. Biotechnol.
119
204-211
2005
Clostridium botulinum
Manually annotated by BRENDA team
Bade, S.; Rummel, A.; Reisinger, C.; Karnath, T.; Ahnert-Hilger, G.; Bigalke, H.; Binz, T.
Botulinum neurotoxin type D enables cytosolic delivery of enzymatically active cargo proteins to neurones via unfolded translocation intermediates
J. Neurochem.
91
1461-1472
2004
Clostridium botulinum
Manually annotated by BRENDA team
Couesnon, A.; Raffestin, S.; Popoff, M.R.
Expression of botulinum neurotoxins A and E, and associated non-toxin genes, during the transition phase and stability at high temperature: analysis by quantitative reverse transcription-PCR
Microbiology
152
759-770
2006
Clostridium botulinum, Clostridium botulinum type A
Manually annotated by BRENDA team
Breidenbach, M.A.; Brunger, A.T.
Substrate recognition strategy for botulinum neurotoxin serotype A
Nature
432
925-929
2004
Clostridium botulinum
Manually annotated by BRENDA team
Singh, B.R.
Botulinum neurotoxin structure, engineering, and novel cellular trafficking and targeting
Neurotox. Res.
9
73-92
2006
Clostridium botulinum
Manually annotated by BRENDA team
Segelke, B.; Knapp, M.; Kadkhodayan, S.; Balhorn, R.; Rupp, B.
Crystal structure of Clostridium botulinum neurotoxin protease in a product-bound state: Evidence for noncanonical zinc protease activity
Proc. Natl. Acad. Sci. USA
101
6888-6893
2004
Clostridium botulinum
Manually annotated by BRENDA team
Zhou, Y.; Singh, B.R.
Cloning, high-level expression, single-step purification, and binding activity of His6-tagged recombinant type B botulinum neurotoxin heavy chain transmembrane and binding domain
Protein Expr. Purif.
34
8-16
2004
Clostridium botulinum
Manually annotated by BRENDA team
Agarwal, R.; Eswaramoorthy, S.; Kumaran, D.; Dunn, J.J.; Swaminathan, S.
Cloning, high level expression, purification, and crystallization of the full length Clostridium botulinum neurotoxin type E light chain
Protein Expr. Purif.
34
95-102
2004
Clostridium botulinum
Manually annotated by BRENDA team
Sharma, S.; Zhou, Y.; Singh, B.R.
Cloning, expression, and purification of C-terminal quarter of the heavy chain of botulinum neurotoxin type A
Protein Expr. Purif.
45
288-295
2006
Clostridium botulinum (P10845)
Manually annotated by BRENDA team
Dux, M.P.; Barent, R.; Sinha, J.; Gouthro, M.; Swanson, T.; Barthuli, A.; Inan, M.; Ross, J.T.; Smith, L.A.; Smith, T.J.; Webb, R.; Loveless, B.; Henderson, I.; Meagher, M.M.
Purification and scale-up of a recombinant heavy chain fragment C of botulinum neurotoxin serotype E in Pichia pastoris GS115
Protein Expr. Purif.
45
359-367
2006
Clostridium botulinum
Manually annotated by BRENDA team
Hasegawa, K.; Watanabe, T.; Sato, H.; Sagane, Y.; Mutoh, S.; Suzuki, T.; Yamano, A.; Kouguchi, H.; Takeshi, K.; Kamaguchi, A.; Fujinaga, Y.; Oguma, K.; Ohyama, T.
Characterization of toxin complex produced by a unique strain of Clostridium botulinum serotype D 4947
Protein J.
23
371-378
2004
Clostridium botulinum
Manually annotated by BRENDA team
Purcell, A.L.; Hoard-Fruchey, H.M.
A capillary electrophoresis method to assay catalytic activity of botulinum neurotoxin serotypes: implications for substrate specificity
Anal. Biochem.
366
207-217
2007
Clostridium botulinum
Manually annotated by BRENDA team
Kaiser, E.; Haug, G.; Hliscs, M.; Aktories, K.; Barth, H.
Formation of a biologically active toxin complex of the binary Clostridium botulinum C2 toxin without cell membrane interaction
Biochemistry
45
13361-13368
2006
Clostridium botulinum
Manually annotated by BRENDA team
Jin, R.; Sikorra, S.; Stegmann, C.M.; Pich, A.; Binz, T.; Brunger, A.T.
Structural and biochemical studies of botulinum neurotoxin serotype C1 light chain protease: implications for dual substrate specificity
Biochemistry
46
10685-10693
2007
Clostridium botulinum, Clostridium tetani
Manually annotated by BRENDA team
Silvaggi, N.R.; Wilson, D.; Tzipori, S.; Allen, K.N.
Catalytic features of the botulinum neurotoxin A light chain revealed by high resolution structure of an inhibitory peptide complex
Biochemistry
47
5736-5745
2008
Clostridium botulinum (P10845), Clostridium botulinum
Manually annotated by BRENDA team
Kukreja, R.V.; Sharma, S.; Cai, S.; Singh, B.R.
Role of two active site Glu residues in the molecular action of botulinum neurotoxin endopeptidase
Biochim. Biophys. Acta
1774
213-222
2007
Clostridium botulinum
Manually annotated by BRENDA team
Capkova, K.; Yoneda, Y.; Dickerson, T.J.; Janda, K.D.
Synthesis and structure-activity relationships of second-generation hydroxamate botulinum neurotoxin A protease inhibitors
Bioorg. Med. Chem. Lett.
17
6463-6466
2007
Clostridium botulinum
Manually annotated by BRENDA team
Teymoortash, A.; Sommer, F.; Mandic, R.; Schulz, S.; Bette, M.; Aumueller, G.; Werner, J.A.
Intraglandular application of botulinum toxin leads to structural and functional changes in rat acinar cells
Br. J. Pharmacol.
152
161-167
2007
Clostridium botulinum
Manually annotated by BRENDA team
Silvaggi, N.R.; Boldt, G.E.; Hixon, M.S.; Kennedy, J.P.; Tzipori, S.; Janda, K.D.; Allen, K.N.
Structures of Clostridium botulinum neurotoxin serotype A light chain complexed with small-molecule inhibitors highlight active-site flexibility
Chem. Biol.
14
533-542
2007
Clostridium botulinum
Manually annotated by BRENDA team
Yerdelen, D.; Koc, F.; Sarica, Y.
Effects of botulinum toxin on strength-duration properties
Int. J. Neurosci.
117
1457-1464
2007
Clostridium botulinum
Manually annotated by BRENDA team
McAllister, L.A.; Hixon, M.S.; Kennedy, J.P.; Dickerson, T.J.; Janda, K.D.
Superactivation of the botulinum neurotoxin serotype A light chain metalloprotease: a new wrinkle in botulinum neurotoxin
J. Am. Chem. Soc.
128
4176-4177
2006
Clostridium botulinum
Manually annotated by BRENDA team
Chen, S.; Kim, J.J.; Barbieri, J.T.
Mechanism of substrate recognition by botulinum neurotoxin serotype A
J. Biol. Chem.
282
9621-9627
2007
Clostridium botulinum
Manually annotated by BRENDA team
Wang, J.; Meng, J.; Lawrence, G.W.; Zurawski, T.H.; Sasse, A.; Bodeker, M.O.; Gilmore, M.A.; Fernandez-Salas, E.; Francis, J.; Steward, L.E.; Aoki, K.R.; Dolly, J.O.
Novel chimeras of botulinum neurotoxin /A and /E unveil contributions from the binding, translocation and protease domains to their functional characteristics
J. Biol. Chem.
283
16993-17002
2008
Clostridium botulinum (Q00496)
Manually annotated by BRENDA team
Kumaran, D.; Rawat, R.; Ludivico, M.L.; Ahmed, S.A.; Swaminathan, S.
Structure and substrate based inhibitor design for clostridium botulinum neurotoxin serotype A
J. Biol. Chem.
283
18883-18891
2008
Clostridium botulinum (P10845), Clostridium botulinum
Manually annotated by BRENDA team
Neumeyer, T.; Schiffler, B.; Maier, E.; Lang, A.E.; Aktories, K.; Benz, R.
Clostridium botulinum C2 toxin. Identification of the binding site for chloroquine and related compounds and influence of the binding site on properties of the C2II channel
J. Biol. Chem.
283
3904-3914
2008
Clostridium botulinum
Manually annotated by BRENDA team
Sinha, J.; Inan, M.; Fanders, S.; Taoka, S.; Gouthro, M.; Swanson, T.; Barent, R.; Barthuli, A.; Loveless, B.M.; Smith, L.A.; Smith, T.; Henderson, I.; Ross, J.; Meagher, M.M.
Cell bank characterization and fermentation optimization for production of recombinant heavy chain C-terminal fragment of botulinum neurotoxin serotype E (rBoNTE(H(c)): antigen E) by Pichia pastoris
J. Biotechnol.
127
462-474
2007
Clostridium botulinum, Clostridium botulinum NCTC 11219
Manually annotated by BRENDA team
Burnett, J.C.; Opsenica, D.; Sriraghavan, K.; Panchal, R.G.; Ruthel, G.; Hermone, A.R.; Nguyen, T.L.; Kenny, T.A.; Lane, D.J.; McGrath, C.F.; Schmidt, J.J.; Vennerstrom, J.L.; Gussio, R.; Solaja, B.A.; Bavari, S.
A refined pharmacophore identifies potent 4-amino-7-chloroquinoline-based inhibitors of the botulinum neurotoxin serotype A metalloprotease
J. Med. Chem.
50
2127-2136
2007
Clostridium botulinum
Manually annotated by BRENDA team
Jin, R.; Rummel, A.; Binz, T.; Brunger, A.T.
Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity
Nature
444
1092-1095
2006
Clostridium botulinum
Manually annotated by BRENDA team
Tang, J.; Park, J.G.; Millard, C.B.; Schmidt, J.J.; Pang, Y.P.
Computer-aided lead optimization: improved small-molecule inhibitor of the zinc endopeptidase of botulinum neurotoxin serotype A
PLoS ONE
2
e761
2007
Clostridium botulinum
Manually annotated by BRENDA team
Fang, H.; Luo, W.; Henkel, J.; Barbieri, J.; Green, N.
A yeast assay probes the interaction between botulinum neurotoxin serotype B and its SNARE substrate
Proc. Natl. Acad. Sci. USA
103
6958-6963
2006
Clostridium botulinum
Manually annotated by BRENDA team
Rawat, R.; Ashraf Ahmed, S.; Swaminathan, S.
High level expression of the light chain of botulinum neurotoxin serotype C1 and an efficient HPLC assay to monitor its proteolytic activity
Protein Expr. Purif.
60
165-169
2008
Clostridium botulinum
Manually annotated by BRENDA team
Suzuki, T.; Kouguchi, H.; Watanabe, T.; Hasegawa, K.; Yoneyama, T.; Niwa, K.; Nishikawa, A.; Lee, J.C.; Oguma, K.; Ohyama, T.
Effect of nicking the C-terminal region of the Clostridium botulinum serotype D neurotoxin heavy chain on its toxicity and molecular properties
Protein J.
26
173-181
2007
Clostridium botulinum
Manually annotated by BRENDA team
Ahmed, S.A.; Olson, M.A.; Ludivico, M.L.; Gilsdorf, J.; Smith, L.A.
Identification of residues surrounding the active site of type A botulinum neurotoxin important for substrate recognition and catalytic activity
Protein J.
27
151-162
2008
Clostridium botulinum
Manually annotated by BRENDA team
Antonucci, F.; Bozzi, Y.; Caleo, M.
Intrahippocampal infusion of botulinum neurotoxin E (BoNT/E) reduces spontaneous recurrent seizures in a mouse model of mesial temporal lobe epilepsy
Epilepsia
50
963-966
2009
Clostridium botulinum
Manually annotated by BRENDA team
Oeconomou, A.; Madersbacher, H.; Kiss, G.; Berger, T.J.; Melekos, M.; Rehder, P.
Is botulinum neurotoxin type A (BoNT-A) a novel therapy for lower urinary tract symptoms due to benign prostatic enlargement? A review of the literature
Eur. Urol.
54
765-775
2008
Clostridium botulinum
Manually annotated by BRENDA team
Antonucci, F.; Di Garbo, A.; Novelli, E.; Manno, I.; Sartucci, F.; Bozzi, Y.; Caleo, M.
Botulinum neurotoxin E (BoNT/E) reduces CA1 neuron loss and granule cell dispersion, with no effects on chronic seizures, in a mouse model of temporal lobe epilepsy
Exp. Neurol.
210
388-401
2008
Clostridium botulinum
Manually annotated by BRENDA team
Uchida, H.; Matsumoto, M.; Ueda, H.
Profiling of BoNT/C3-reversible gene expression induced by lysophosphatidic acid: ephrinB1 gene up-regulation underlying neuropathic hyperalgesia and allodynia
Neurochem. Int.
54
215-221
2009
Clostridium botulinum, Clostridium botulinum C3
Manually annotated by BRENDA team
Nuemket, N.; Tanaka, Y.; Tsukamoto, K.; Tsuji, T.; Nakamura, K.; Kozaki, S.; Yao, M.; Tanaka, I.
Preliminary X-ray crystallographic study of the receptor-binding domain of the D/C mosaic neurotoxin from Clostridium botulinum
Acta Crystallogr. Sect. F
66
608-610
2010
Clostridium botulinum (A5JGM8), Clostridium botulinum
Manually annotated by BRENDA team
Tsai, C.Y.; Chiu, W.C.; Liao, Y.H.; Tsai, C.M.
Effects on craniofacial growth and development of unilateral botulinum neurotoxin injection into the masseter muscle
Am. J. Orthod. Dentofacial. Orthop.
135
142.e1-6
2009
Clostridium botulinum
Manually annotated by BRENDA team
Rowe, B.; Schmidt, J.J.; Smith, L.A.; Ahmed, S.A.
Rapid product analysis and increased sensitivity for quantitative determinations of botulinum neurotoxin proteolytic activity
Anal. Biochem.
396
188-193
2010
Clostridium botulinum
Manually annotated by BRENDA team
Ozanich, R.M.; Bruckner-Lea, C.J.; Warner, M.G.; Miller, K.; Antolick, K.C.; Marks, J.D.; Lou, J.; Grate, J.W.
Rapid multiplexed flow cytometric assay for botulinum neurotoxin detection using an automated fluidic microbead-trapping flow cell for enhanced sensitivity
Anal. Chem.
81
5783-5793
2009
Clostridium botulinum
Manually annotated by BRENDA team
Montal, M.
Botulinum neurotoxin: a marvel of protein design
Annu. Rev. Biochem.
79
591-617
2010
Clostridium botulinum
Manually annotated by BRENDA team
Roxas-Duncan, V.; Enyedy, I.; Montgomery, V.A.; Eccard, V.S.; Carrington, M.A.; Lai, H.; Gul, N.; Yang, D.C.; Smith, L.A.
Identification and biochemical characterization of small-molecule inhibitors of Clostridium botulinum neurotoxin serotype A
Antimicrob. Agents Chemother.
53
3478-3486
2009
Clostridium botulinum
Manually annotated by BRENDA team
Poras, H.; Ouimet, T.; Orng, S.V.; Fournie-Zaluski, M.C.; Popoff, M.R.; Roques, B.P.
Detection and quantification of botulinum neurotoxin type A by a novel rapid in vitro fluorimetric assay
Appl. Environ. Microbiol.
75
4382-4390
2009
Clostridium botulinum
Manually annotated by BRENDA team
De Medici, D.; Anniballi, F.; Wyatt, G.M.; Lindstroem, M.; Messelhaeusser, U.; Aldus, C.F.; Delibato, E.; Korkeala, H.; Peck, M.W.; Fenicia, L.
Multiplex PCR for detection of botulinum neurotoxin-producing clostridia in clinical, food, and environmental samples
Appl. Environ. Microbiol.
75
6457-6461
2009
Clostridium botulinum (A2I2R9), Clostridium botulinum (Q58GH1), Clostridium botulinum
Manually annotated by BRENDA team
Lin, G.; Tepp, W.H.; Pier, C.L.; Jacobson, M.J.; Johnson, E.A.
Expression of the Clostridium botulinum A2 neurotoxin gene cluster proteins and characterization of the A2 complex
Appl. Environ. Microbiol.
76
40-47
2010
Clostridium botulinum
Manually annotated by BRENDA team
Raphael, B.H.; Choudoir, M.J.; Luquez, C.; Fernandez, R.; Maslanka, S.E.
Sequence diversity of genes encoding botulinum neurotoxin type F
Appl. Environ. Microbiol.
76
4805-4812
2010
Clostridium botulinum (C5IWN7), Clostridium botulinum (D2KCK3), Clostridium botulinum (P30996), Clostridium botulinum (Q58GH1), Clostridium botulinum, Clostridium baratii (Q45851), Clostridium baratii
Manually annotated by BRENDA team
Muraro, L.; Tosatto, S.; Motterlini, L.; Rossetto, O.; Montecucco, C.
The N-terminal half of the receptor domain of botulinum neurotoxin A binds to microdomains of the plasma membrane
Biochem. Biophys. Res. Commun.
380
76-80
2009
Clostridium botulinum
Manually annotated by BRENDA team
Chang, T.W.; Blank, M.; Janardhanan, P.; Singh, B.R.; Mello, C.; Blind, M.; Cai, S.
In vitro selection of RNA aptamers that inhibit the activity of type A botulinum neurotoxin
Biochem. Biophys. Res. Commun.
396
854-860
2010
Clostridium botulinum
Manually annotated by BRENDA team
Henkel, J.S.; Jacobson, M.; Tepp, W.; Pier, C.; Johnson, E.A.; Barbieri, J.T.
Catalytic properties of botulinum neurotoxin subtypes A3 and A4
Biochemistry
48
2522-2528
2009
Clostridium botulinum
Manually annotated by BRENDA team
Fu, Z.; Chen, C.; Barbieri, J.T.; Kim, J.J.; Baldwin, M.R.
Glycosylated SV2 and gangliosides as dual receptors for botulinum neurotoxin serotype F
Biochemistry
48
5631-5641
2009
Clostridium botulinum (Q57236)
Manually annotated by BRENDA team
Kukreja, R.V.; Sharma, S.K.; Singh, B.R.
Molecular basis of activation of endopeptidase activity of botulinum neurotoxin type E
Biochemistry
49
2510-2519
2010
Clostridium botulinum
Manually annotated by BRENDA team
Schmitt, J.; Karalewitz, A.; Benefield, D.A.; Mushrush, D.J.; Pruitt, R.N.; Spiller, B.W.; Barbieri, J.T.; Lacy, D.B.
Structural analysis of botulinum neurotoxin type G receptor binding
Biochemistry
49
5200-5205
2010
Clostridium botulinum (Q60393)
Manually annotated by BRENDA team
Moghaddam, M.M.; Mousavi, L.; Shokrgozar, M.A.; Amani, J.; Nazariyan, S.; Azari, S.
Cloning and expression of a region of vesicle associated membrane protein2 (VAMP2) gene and its use as a recombinant peptide substrate for assaying clostridial neurotoxins in contaminated biologicals
Biologicals
38
113-119
2010
Clostridium botulinum
Manually annotated by BRENDA team
Mansour, A.A.; Mousavi, S.L.; Rasooli, I.; Nazarian, S.; Amani, J.; Farhadi, N.
Cloning, high level expression and immunogenicity of 1163-1256 residues of C-terminal heavy chain of C. botulinum neurotoxin type E
Biologicals
38
260-264
2010
Clostridium botulinum
Manually annotated by BRENDA team
Salzameda, N.T.; Barbieri, J.T.; Janda, K.D.
Synthetic substrate for application in both high and low throughput assays for botulinum neurotoxin B protease inhibitors
Bioorg. Med. Chem. Lett.
19
5848-5850
2009
Clostridium botulinum
Manually annotated by BRENDA team
Warner, M.G.; Grate, J.W.; Tyler, A.; Ozanich, R.M.; Miller, K.D.; Lou, J.; Marks, J.D.; Bruckner-Lea, C.J.
Quantum dot immunoassays in renewable surface column and 96-well plate formats for the fluorescence detection of botulinum neurotoxin using high-affinity antibodies
Biosens. Bioelectron.
25
179-184
2009
Clostridium botulinum
Manually annotated by BRENDA team
Pannek, J.; Goecking, K.; Bersch, U.
Long-term effects of repeated intradetrusor botulinum neurotoxin A injections on detrusor function in patients with neurogenic bladder dysfunction
BJU Int.
104
1246-1250
2009
Clostridium botulinum
Manually annotated by BRENDA team
Hill, K.K.; Xie, G.; Foley, B.T.; Smith, T.J.; Munk, A.C.; Bruce, D.; Smith, L.A.; Brettin, T.S.; Detter, J.C.
Recombination and insertion events involving the botulinum neurotoxin complex genes in Clostridium botulinum types A, B, E and F and Clostridium butyricum type E strains
BMC Biol.
7
66
2009
Clostridium botulinum, Clostridium butyricum
Manually annotated by BRENDA team
Scotcher, M.C.; Johnson, E.A.; Stanker, L.H.
Characterization of the epitope region of F1-2 and F1-5, two monoclonal antibodies to botulinum neurotoxin type A
Hybridoma
28
315-325
2009
Clostridium botulinum, Clostridium botulinum ATCC 3502
Manually annotated by BRENDA team
Shone, C.; Agostini, H.; Clancy, J.; Gu, M.; Yang, H.H.; Chu, Y.; Johnson, V.; Taal, M.; McGlashan, J.; Brehm, J.; Tong, X.
Bivalent recombinant vaccine for botulinum neurotoxin types A and B based on a polypeptide comprising their effector and translocation domains that is protective against the predominant A and B subtypes
Infect. Immun.
77
2795-2801
2009
Clostridium botulinum (P10844), Clostridium botulinum (P10845)
Manually annotated by BRENDA team
Cheng, L.W.; Stanker, L.H.; Henderson, T.D.; Lou, J.; Marks, J.D.
Antibody protection against botulinum neurotoxin intoxication in mice
Infect. Immun.
77
4305-4313
2009
Clostridium botulinum
Manually annotated by BRENDA team
Fach, P.; Fenicia, L.; Knutsson, R.; Wielinga, P.R.; Anniballi, F.; Delibato, E.; Auricchio, B.; Woudstra, C.; Agren, J.; Segerman, B.; de Medici, D.; van Rotterdam, B.J.
An innovative molecular detection tool for tracking and tracing Clostridium botulinum types A, B, E, F and other botulinum neurotoxin producing Clostridia based on the GeneDisc cycler
Int. J. Food Microbiol.
145
S145-151
2011
Clostridium baratii, Clostridium botulinum, Clostridium butyricum
Manually annotated by BRENDA team
Silhar, P.; Capkova, K.; Salzameda, N.T.; Barbieri, J.T.; Hixon, M.S.; Janda, K.D.
Botulinum neurotoxin A protease: discovery of natural product exosite inhibitors
J. Am. Chem. Soc.
132
2868-2869
2010
Clostridium botulinum
Manually annotated by BRENDA team
Evans, E.R.; Skipper, P.J.; Shone, C.C.
An assay for botulinum toxin types A, B and F that requires both functional binding and catalytic activities within the neurotoxin
J. Appl. Microbiol.
107
1384-1391
2009
Clostridium botulinum
Manually annotated by BRENDA team
Thanongsaksrikul, J.; Srimanote, P.; Maneewatch, S.; Choowongkomon, K.; Tapchaisri, P.; Makino, S.; Kurazono, H.; Chaicumpa, W.
A V H H that neutralizes the zinc metalloproteinase activity of botulinum neurotoxin type A
J. Biol. Chem.
285
9657-9666
2010
Clostridium botulinum (P10845)
Manually annotated by BRENDA team
Nuss, J.E.; Ruthel, G.; Tressler, L.E.; Wanner, L.M.; Torres-Melendez, E.; Hale, M.L.; Bavari, S.
Development of cell-based assays to measure botulinum neurotoxin serotype A activity using cleavage-sensitive antibodies
J. Biomol. Screen.
15
42-51
2010
Clostridium botulinum
Manually annotated by BRENDA team
Shi, X.; Garcia, G.E.; Neill, R.J.; Gordon, R.K.
TCEP treatment reduces proteolytic activity of BoNT/B in human neuronal SHSY-5Y cells
J. Cell. Biochem.
107
1021-1030
2009
Clostridium botulinum
Manually annotated by BRENDA team
Shi, X.; Curran, J.E.; Liao, Z.; Gordon, R.K.
The biological activity of ubiquitinated BoNT/B light chain in vitro and in human SHSY-5Y neuronal cells
J. Cell. Biochem.
108
660-667
2009
Clostridium botulinum
Manually annotated by BRENDA team
Li, B.; Pai, R.; Cardinale, S.C.; Butler, M.M.; Peet, N.P.; Moir, D.T.; Bavari, S.; Bowlin, T.L.
Synthesis and biological evaluation of botulinum neurotoxin A protease inhibitors
J. Med. Chem.
53
2264-2276
2010
Clostridium botulinum
Manually annotated by BRENDA team
Kumaran, D.; Eswaramoorthy, S.; Furey, W.; Navaza, J.; Sax, M.; Swaminathan, S.
Domain organization in Clostridium botulinum neurotoxin type E is unique: its implication in faster translocation
J. Mol. Biol.
386
233-245
2009
Clostridium botulinum (Q00496), Clostridium botulinum
Manually annotated by BRENDA team
Dong, J.; Thompson, A.A.; Fan, Y.; Lou, J.; Conrad, F.; Ho, M.; Pires-Alves, M.; Wilson, B.A.; Stevens, R.C.; Marks, J.D.
A single-domain llama antibody potently inhibits the enzymatic activity of botulinum neurotoxin by binding to the non-catalytic alpha-exosite binding region
J. Mol. Biol.
397
1106-1118
2010
Clostridium botulinum
Manually annotated by BRENDA team
Caleo, M.; Antonucci, F.; Restani, L.; Mazzocchio, R.
A reappraisal of the central effects of botulinum neurotoxin type A: by what mechanism?
J. Neurochem.
109
15-24
2009
Clostridium botulinum
Manually annotated by BRENDA team
Rummel, A.; Haefner, K.; Mahrhold, S.; Darashchonak, N.; Holt, M.; Jahn, R.; Beermann, S.; Karnath, T.; Bigalke, H.; Binz, T.
Botulinum neurotoxins C, E and F bind gangliosides via a conserved binding site prior to stimulation-dependent uptake with botulinum neurotoxin F utilising the three isoforms of SV2 as second receptor
J. Neurochem.
110
1942-1954
2009
Clostridium botulinum
Manually annotated by BRENDA team
Coffield, J.A.; Yan, X.
Neuritogenic actions of botulinum neurotoxin A on cultured motor neurons
J. Pharmacol. Exp. Ther.
330
352-358
2009
Clostridium botulinum
Manually annotated by BRENDA team
Thyagarajan, B.; Krivitskaya, N.; Potian, J.G.; Hognason, K.; Garcia, C.C.; McArdle, J.J.
Capsaicin protects mouse neuromuscular junctions from the neuroparalytic effects of botulinum neurotoxin A
J. Pharmacol. Exp. Ther.
331
361-371
2009
Clostridium botulinum
Manually annotated by BRENDA team
Pellett, S.; Tepp, W.H.; Toth, S.I.; Johnson, E.A.
Comparison of the primary rat spinal cord cell (RSC) assay and the mouse bioassay for botulinum neurotoxin type A potency determination
J. Pharmacol. Toxicol. Methods
61
304-310
2010
Clostridium botulinum
Manually annotated by BRENDA team
Sun, S.; Ossandon, M.; Kostov, Y.; Rasooly, A.
Lab-on-a-chip for botulinum neurotoxin a (BoNT-A) activity analysis
Lab Chip
9
3275-3281
2009
Clostridium botulinum
Manually annotated by BRENDA team
Shi, J.; Li, T.; Hou, X.; Cai, K.; Bao, S.; Liu, H.; Gao, X.; Xiao, L.; Tu, W.; Wang, Q.; Yin, J.; Wang, H.
Recombinant luminal domain of human synaptotagmin II in combination with gangliosides inhibits the toxicity of botulinum neurotoxins in mice
Microbes Infect.
12
319-323
2010
Clostridium botulinum
Manually annotated by BRENDA team
Agarwal, R.; Schmidt, J.J.; Stafford, R.G.; Swaminathan, S.
Mode of VAMP substrate recognition and inhibition of Clostridium botulinum neurotoxin F
Nat. Struct. Mol. Biol.
16
789-794
2009
Clostridium botulinum (P30996), Clostridium botulinum
Manually annotated by BRENDA team
Antonucci, F.; Cerri, C.; Vetencourt, J.F.; Caleo, M.
Acute neuroprotection by the synaptic blocker botulinum neurotoxin E in a rat model of focal cerebral ischaemia
Neuroscience
169
395-401
2010
Clostridium botulinum
Manually annotated by BRENDA team
Stowe, G.N.; Silhar, P.; Hixon, M.S.; Silvaggi, N.R.; Allen, K.N.; Moe, S.T.; Jacobson, A.R.; Barbieri, J.T.; Janda, K.D.
Chirality holds the key for potent inhibition of the botulinum neurotoxin serotype A protease
Org. Lett.
12
756-759
2010
Clostridium botulinum
Manually annotated by BRENDA team
Miller, D.; Richardson, D.; Eisa, M.; Bajwa, R.J.; Jabbari, B.
Botulinum neurotoxin-A for treatment of refractory neck pain: a randomized, double-blind study
Pain Med.
10
1012-1017
2009
Clostridium botulinum
Manually annotated by BRENDA team
Carmichael, N.M.; Dostrovsky, J.O.; Charlton, M.P.
Peptide-mediated transdermal delivery of botulinum neurotoxin type A reduces neurogenic inflammation in the skin
Pain
149
316-324
2010
Clostridium botulinum
Manually annotated by BRENDA team
Franciosa, G.; Maugliani, A.; Scalfaro, C.; Aureli, P.
Evidence that plasmid-borne botulinum neurotoxin type B genes are widespread among Clostridium botulinum serotype B strains
PLoS ONE
4
e4829
2009
Clostridium botulinum (A2I2U3), Clostridium botulinum (A2I2W1), Clostridium botulinum (Q08077), Clostridium botulinum (Q93G71), Clostridium botulinum
Manually annotated by BRENDA team
Scotcher, M.C.; McGarvey, J.A.; Johnson, E.A.; Stanker, L.H.
Epitope characterization and variable region sequence of f1-40, a high-affinity monoclonal antibody to botulinum neurotoxin type a (Hall strain)
PLoS ONE
4
e4924
2009
Clostridium botulinum
Manually annotated by BRENDA team
Kalb, S.R.; Lou, J.; Garcia-Rodriguez, C.; Geren, I.N.; Smith, T.J.; Moura, H.; Marks, J.D.; Smith, L.A.; Pirkle, J.L.; Barr, J.R.
Extraction and inhibition of enzymatic activity of botulinum neurotoxins/A1, /A2, and /A3 by a panel of monoclonal anti-BoNT/A antibodies
PLoS ONE
4
e5355
2009
Clostridium botulinum
Manually annotated by BRENDA team
Pang, Y.P.; Davis, J.; Wang, S.; Park, J.G.; Nambiar, M.P.; Schmidt, J.J.; Millard, C.B.
Small molecules showing significant protection of mice against botulinum neurotoxin serotype A
PLoS ONE
5
e10129
2010
Clostridium botulinum
Manually annotated by BRENDA team
Conway, J.O.; Sherwood, L.J.; Collazo, M.T.; Garza, J.A.; Hayhurst, A.
Llama single domain antibodies specific for the 7 botulinum neurotoxin serotypes as heptaplex immunoreagents
PLoS ONE
5
e8818
2010
Clostridium botulinum
Manually annotated by BRENDA team
Fischer, A.; Nakai, Y.; Eubanks, L.M.; Clancy, C.M.; Tepp, W.H.; Pellett, S.; Dickerson, T.J.; Johnson, E.A.; Janda, K.D.; Montal, M.
Bimodal modulation of the botulinum neurotoxin protein-conducting channel
Proc. Natl. Acad. Sci. USA
106
1330-1335
2009
Clostridium botulinum
Manually annotated by BRENDA team
Chen, S.; Barbieri, J.T.
Engineering botulinum neurotoxin to extend therapeutic intervention
Proc. Natl. Acad. Sci. USA
106
9180-9184
2009
Clostridium botulinum
Manually annotated by BRENDA team
Band, P.A.; Blais, S.; Neubert, T.A.; Cardozo, T.J.; Ichtchenko, K.
Recombinant derivatives of botulinum neurotoxin A engineered for trafficking studies and neuronal delivery
Protein Expr. Purif.
71
62-73
2010
Clostridium botulinum
Manually annotated by BRENDA team
Chen, R.; Shi, J.; Cai, K.; Tu, W.; Hou, X.; Liu, H.; Xiao, L.; Wang, Q.; Tang, Y.; Wang, H.
Improved soluble expression and characterization of the Hc domain of Clostridium botulinum neurotoxin serotype A in Escherichia coli by using a PCR-synthesized gene and a Trx co-expression strain
Protein Expr. Purif.
71
79-84
2010
Clostridium botulinum (P10845), Clostridium botulinum
Manually annotated by BRENDA team
Pires-Alves, M.; Ho, M.; Aberle, K.K.; Janda, K.D.; Wilson, B.A.
Tandem fluorescent proteins as enhanced FRET-based substrates for botulinum neurotoxin activity
Toxicon
53
392-399
2009
Clostridium botulinum
Manually annotated by BRENDA team
Kukreja, R.; Chang, T.W.; Cai, S.; Lindo, P.; Riding, S.; Zhou, Y.; Ravichandran, E.; Singh, B.R.
Immunological characterization of the subunits of type A botulinum neurotoxin and different components of its associated proteins
Toxicon
53
616-624
2009
Clostridium botulinum, Clostridium botulinum ATCC 3502
Manually annotated by BRENDA team
Baldwin, M.R.; Barbieri, J.T.
Association of botulinum neurotoxins with synaptic vesicle protein complexes
Toxicon
54
570-574
2009
Clostridium botulinum
Manually annotated by BRENDA team
Atassi, M.Z.
Immune recognition of BoNTs A and B: how anti-toxin antibodies that bind to the heavy chain obstruct toxin action
Toxicon
54
600-613
2009
Clostridium botulinum
Manually annotated by BRENDA team
Hakami, R.M.; Ruthel, G.; Stahl, A.M.; Bavari, S.
Gaining ground: assays for therapeutics against botulinum neurotoxin
Trends Microbiol.
18
164-172
2010
Clostridium baratii, Clostridium botulinum, Clostridium butyricum
Manually annotated by BRENDA team
Amend, B.; Castro-Diaz, D.; Chartier-Kastler, E.; De Ridder, D.; Everaert, K.; Spinelli, M.; van Keerebroeck, P.; Sievert, K.D.
[Second-line-Therapie der idiopathisch beraktiven Blase. Sakrale Neuromodulation und Botulinumtoxin A]
Urologe
49
245-252
2010
Clostridium botulinum
Manually annotated by BRENDA team
Webb, R.P.; Smith, T.J.; Wright, P.; Brown, J.; Smith, L.A.
Production of catalytically inactive BoNT/A1 holoprotein and comparison with BoNT/A1 subunit vaccines against toxin subtypes A1, A2, and A3
Vaccine
27
4490-4497
2009
Clostridium botulinum
Manually annotated by BRENDA team
Niwa, K.; Yoneyama, T.; Ito, H.; Taira, M.; Chikai, T.; Kouguchi, H.; Suzuki, T.; Hasegawa, K.; Miyata, K.; Inui, K.; Ikeda, T.; Watanabe, T.; Ohyama, T.
Sialic acid-dependent binding and transcytosis of serotype D botulinum neurotoxin and toxin complex in rat intestinal epithelial cells
Vet. Microbiol.
141
312-320
2010
Clostridium botulinum
Manually annotated by BRENDA team
Wang, H.H.; Riding, S.; Lindo, P.; Singh, B.R.
Endopeptidase activities of botulinum neurotoxin type B complex, holotoxin, and light chain
Appl. Environ. Microbiol.
76
6658-6663
2010
Clostridium botulinum
Manually annotated by BRENDA team
Kalb, S.R.; Baudys, J.; Egan, C.; Smith, T.J.; Smith, L.A.; Pirkle, J.L.; Barr, J.R.
Different substrate recognition requirements for cleavage of synaptobrevin-2 by Clostridium baratii and Clostridium botulinum type F neurotoxins
Appl. Environ. Microbiol.
77
1301-1308
2011
Clostridium baratii, Clostridium botulinum
Manually annotated by BRENDA team
Jacobson, M.J.; Lin, G.; Tepp, W.; Dupuy, J.; Stenmark, P.; Stevens, R.C.; Johnson, E.A.
Purification, modeling, and analysis of botulinum neurotoxin subtype A5 (BoNT/A5) from Clostridium botulinum strain A661222
Appl. Environ. Microbiol.
77
4217-4222
2011
Clostridium botulinum (C7BEA8), Clostridium botulinum
Manually annotated by BRENDA team
Zhang, Y.; Buchko, G.W.; Qin, L.; Robinson, H.; Varnum, S.M.
Crystal structure of the receptor binding domain of the botulinum C-D mosaic neurotoxin reveals potential roles of lysines 1118 and 1136 in membrane interactions
Biochem. Biophys. Res. Commun.
404
407-412
2011
Clostridium botulinum (Q5DW55), Clostridium botulinum
Manually annotated by BRENDA team
Pellett, S.; Tepp, W.H.; Stanker, L.H.; Band, P.A.; Johnson, E.A.; Ichtchenko, K.
Neuronal targeting, internalization, and biological activity of a recombinant atoxic derivative of botulinum neurotoxin A
Biochem. Biophys. Res. Commun.
405
673-677
2011
Clostridium botulinum
Manually annotated by BRENDA team
Chen, S.; Wan, H.Y.
Molecular mechanisms of substrate recognition and specificity of botulinum neurotoxin serotype F
Biochem. J.
433
277-284
2011
Clostridium botulinum
Manually annotated by BRENDA team
Capkova, K.; Hixon, M.; Pellett, S.; Barbieri, J.; Johnson, E.; Janda, K.
Benzylidene cyclopentenediones: First irreversible inhibitors against botulinum neurotoxin As zinc endopeptidase
Bioorg. Med. Chem. Lett.
20
206-208
2010
Clostridium botulinum
Manually annotated by BRENDA team
Li, B.; Cardinale, S.C.; Butler, M.M.; Pai, R.; Nuss, J.E.; Peet, N.P.; Bavari, S.; Bowlin, T.L.
Time-dependent botulinum neurotoxin serotype A metalloprotease inhibitors
Bioorg. Med. Chem.
19
7338-7348
2011
Clostridium botulinum
Manually annotated by BRENDA team
Kumar, G.; Agarwal, R.; Swaminathan, S.
Discovery of a fluorene class of compounds as inhibitors of botulinum neurotoxin serotype E by virtual screening
Chem. Commun. (Camb. )
48
2412-2414
2012
Clostridium botulinum
Manually annotated by BRENDA team
Hale, M.; Oyler, G.; Swaminathan, S.; Ahmed, S.A.
Basic tetrapeptides as potent intracellular inhibitors of type A botulinum neurotoxin protease activity
J. Biol. Chem.
286
1802-1811
2011
Clostridium botulinum
Manually annotated by BRENDA team
Benson, M.A.; Fu, Z.; Kim, J.J.; Baldwin, M.R.
Unique ganglioside recognition strategies for clostridial neurotoxins
J. Biol. Chem.
286
34015-34022
2011
Clostridium botulinum (Q57236)
Manually annotated by BRENDA team
Gul, N.; Smith, L.; Ahmed, S.
Light chain separated from the rest of the type a botulinum neurotoxin molecule is the most catalytically active form
PLoS ONE
5
e12872
2010
Clostridium botulinum
Manually annotated by BRENDA team
Atassi, M.Z.; Dolimbek, B.Z.; Steward, L.E.; Aoki, K.R.
Inhibition of botulinum neurotoxin a toxic action in vivo by synthetic synaptosome- and blocking antibody-binding regions
Protein J.
29
320-327
2010
Clostridium botulinum
Manually annotated by BRENDA team
Bagramyan, K.; Kaplan, B.; Cheng, L.; Strotmeier, J.; Rummel, A.; Kalkum, M.
Substrates and controls for the quantitative detection of active botulinum neurotoxin in protease-containing samples
Anal. Chem.
85
5569-5576
2013
Clostridium botulinum
Manually annotated by BRENDA team
Tepp, W.; Lin, G.; Johnson, E.
Purification and characterization of a novel subtype A3 botulinum neurotoxin
Appl. Environ. Microbiol.
78
3108-3113
2012
Clostridium botulinum (B1L2G4), Clostridium botulinum, Clostridium botulinum A3 (B1L2G4)
Manually annotated by BRENDA team
Dunning, F.; Ruge, D.; Piazza, T.; Stanker, L.; Zeytin, F.; Tucker, W.
Detection of botulinum neurotoxin serotype A, B, and F proteolytic activity in complex matrices with picomolar to femtomolar sensitivity
Appl. Environ. Microbiol.
78
7687-7697
2012
Clostridium botulinum
Manually annotated by BRENDA team
Bradshaw, M.; Tepp, W.; Whitemarsh, R.; Pellett, S.; Johnson, E.
Holotoxin activity of botulinum neurotoxin subtype A4 originating from a nontoxigenic Clostridium botulinum expression system
Appl. Environ. Microbiol.
80
7415-7422
2014
Clostridium botulinum, Clostridium botulinum 657Ba
Manually annotated by BRENDA team
Inui, K.; Sagane, Y.; Miyata, K.; Miyashita, S.; Suzuki, T.; Shikamori, Y.; Ohyama, T.; Niwa, K.; Watanabe, T.
Toxic and nontoxic components of botulinum neurotoxin complex are evolved from a common ancestral zinc protein
Biochem. Biophys. Res. Commun.
419
500-504
2012
Clostridium botulinum (A5HZZ9), Clostridium botulinum (A7GBG3), Clostridium botulinum (B1INP5), Clostridium botulinum (P18640)
Manually annotated by BRENDA team
Lee, K.; Lam, K.; Kruel, A.; Perry, K.; Rummel, A.; Jin, R.
High-resolution crystal structure of HA33 of botulinum neurotoxin type B progenitor toxin complex
Biochem. Biophys. Res. Commun.
446
568-573
2014
Clostridium botulinum, Clostridium botulinum Okra
Manually annotated by BRENDA team
Itakura, M.; Kohda, T.; Kubo, T.; Semi, Y.; Azuma, Y.; Nakajima, H.; Kozaki, S.; Takeuchi, T.
Botulinum neurotoxin A subtype 2 reduces pathological behaviors more effectively than subtype 1 in a rat Parkinsons disease model
Biochem. Biophys. Res. Commun.
447
311-314
2014
Clostridium botulinum (P10845), Clostridium botulinum (Q58GH1), Clostridium botulinum Chiba-H (Q58GH1), Clostridium botulinum 62A (P10845)
Manually annotated by BRENDA team
Sun, S.; Tepp, W.; Johnson, E.; Chapman, E.
Botulinum neurotoxins B and E translocate at different rates and exhibit divergent responses to GT1b and low pH
Biochemistry
51
5655-5662
2012
Clostridium botulinum (P10844), Clostridium botulinum (Q00496)
Manually annotated by BRENDA team
Wang, D.; Krilich, J.; Pellett, S.; Baudys, J.; Tepp, W.; Barr, J.; Johnson, E.; Kalb, S.
Comparison of the catalytic properties of the botulinum neurotoxin subtypes A1 and A5
Biochim. Biophys. Acta
1834
2722-2728
2013
Clostridium botulinum (C7BEA8), Clostridium botulinum (Q7B8V4), Clostridium botulinum, Clostridium botulinum Hall A hyper (Q7B8V4), Clostridium botulinum A661222 (C7BEA8)
Manually annotated by BRENDA team
Kumar, R.; Kukreja, R.; Cai, S.; Singh, B.
Differential role of molten globule and protein folding in distinguishing unique features of botulinum neurotoxin
Biochim. Biophys. Acta
1844
1145-1152
2014
Clostridium botulinum (P10844), Clostridium botulinum (Q00496), Clostridium botulinum (Q7B8V4)
Manually annotated by BRENDA team
Chellappan, G.; Kumar, R.; Santos, E.; Goyal, D.; Cai, S.; Singh, B.
Structural and functional analysis of botulinum neurotoxin subunits for pH-dependent membrane channel formation and translocation
Biochim. Biophys. Acta
1854
1510-1516
2015
Clostridium botulinum (Q7B8V4), Clostridium botulinum Hall (Q7B8V4)
Manually annotated by BRENDA team
Kumar, R.; Cai, S.; Ojadi, E.; Singh, B.
Resolution of sub-nanosecond motions in botulinum neurotoxin endopeptidase: An evidence of internal flexibility
Biochim. Biophys. Acta
1854
321-326
2015
Clostridium botulinum (Q7B8V4)
Manually annotated by BRENDA team
Zhang, Y.; Gardberg, A.; Edwards, T.; Sankaran, B.; Robinson, H.; Varnum, S.; Buchko, G.
Structural insights into the functional role of the Hcn sub-domain of the receptor-binding domain of the botulinum neurotoxin mosaic serotype C/D
Biochimie
95
1379-1385
2013
Clostridium botulinum (Q5DW55), Clostridium botulinum
Manually annotated by BRENDA team
Seki, H.; Pellett, S.; Silhar, P.; Stowe, G.; Blanco, B.; Lardy, M.; Johnson, E.; Janda, K.
Synthesis/biological evaluation of hydroxamic acids and their prodrugs as inhibitors for botulinum neurotoxin A light chain
Bioorg. Med. Chem.
22
1208-1217
2014
Clostridium botulinum (A5HZZ9), Clostridium botulinum Hall (A5HZZ9)
Manually annotated by BRENDA team
Bremer, P.; Hixon, M.; Janda, K.
Benzoquinones as inhibitors of botulinum neurotoxin serotype A
Bioorg. Med. Chem.
22
3971-3981
2014
Clostridium botulinum (A5HZZ9)
Manually annotated by BRENDA team
Seki, H.; Xue, S.; Hixon, M.; Pellett, S.; Reme, M.; Johnson, E.; Janda, K.
Toward the discovery of dual inhibitors for botulinum neurotoxin A: Concomitant targeting of endocytosis and light chain protease activity
Chem. Commun. (Camb. )
51
6226-6229
2015
Clostridium botulinum (A5HZZ9)
Manually annotated by BRENDA team
Pirazzini, M.; Henke, T.; Rossetto, O.; Mahrhold, S.; Krez, N.; Rummel, A.; Montecucco, C.; Binz, T.
Neutralisation of specific surface carboxylates speeds up translocation of botulinum neurotoxin type B enzymatic domain
FEBS Lett.
587
3831-3836
2013
Clostridium botulinum (P10844), Clostridium botulinum Okra (P10844)
Manually annotated by BRENDA team
Vijayalakshmi Ayyar, B.; Roger Aoki, K.; Zouhair Atassi, M.
The C-terminal heavy-chain domain of botulinum neurotoxin A is not the only site that binds neurons, as the N-terminal heavy-chain domain also plays a very active role in toxin-cell binding and interactions
Infect. Immun.
83
1465-1476
2015
Clostridium botulinum, Clostridium botulinum Okra
Manually annotated by BRENDA team
Mizanur, R.; Frasca, V.; Swaminathan, S.; Bavari, S.; Webb, R.; Smith, L.; Ahmed, S.
The C terminus of the catalytic domain of type A botulinum neurotoxin may facilitate product release from the active site
J. Biol. Chem.
288
24223-24233
2013
Clostridium botulinum
Manually annotated by BRENDA team
Guo, J.; Chen, S.
Unique substrate recognition mechanism of the botulinum neurotoxin D light chain
J. Biol. Chem.
288
27881-27887
2013
Clostridium botulinum (P19321)
Manually annotated by BRENDA team
Kumar, R.; Kukreja, R.; Li, L.; Zhmurov, A.; Kononova, O.; Cai, S.; Ahmed, S.; Barsegov, V.; Singh, B.
Botulinum neurotoxin: Unique folding of enzyme domain of the most-poisonous poison
J. Biomol. Struct. Dyn.
32
804-815
2014
Clostridium botulinum (P10845)
Manually annotated by BRENDA team
Dadgar, S.; Ramjan, Z.; Floriano, W.
Paclitaxel is an inhibitor and its boron dipyrromethene derivative is a fluorescent recognition agent for botulinum neurotoxin subtype A
J. Med. Chem.
56
2791-2803
2013
Clostridium botulinum (P10845)
Manually annotated by BRENDA team
Opsenica, I.; Tot, M.; Gomba, L.; Nuss, J.; Sciotti, R.; Bavari, S.; Burnett, J.; Solaja, B.
4-amino-7-chloroquinolines: Probing ligand efficiency provides botulinum neurotoxin serotype a light chain inhibitors with significant antiprotozoal activity
J. Med. Chem.
56
5860-5871
2013
Clostridium botulinum (P10845)
Manually annotated by BRENDA team
Matsui, T.; Gu, S.; Lam, K.; Carter, L.; Rummel, A.; Mathews, I.; Jin, R.
Structural basis of the pH-dependent assembly of a botulinum neurotoxin complex
J. Mol. Biol.
426
3773-3782
2014
Clostridium botulinum (P10845)
Manually annotated by BRENDA team
Berntsson, R.; Peng, L.; Dong, M.; Stenmark, P.
Structure of dual receptor binding to botulinum neurotoxin B
Nat. Commun.
4
2058
2013
Clostridium botulinum (Q33CP3)
Manually annotated by BRENDA team
Benoit, R.; Frey, D.; Hilbert, M.; Kevenaar, J.; Wieser, M.; Stirnimann, C.; McMillan, D.; Ceska, T.; Lebon, F.; Jaussi, R.; Steinmetz, M.; Schertler, G.; Hoogenraad, C.; Capitani, G.; Kammerer, R.
Structural basis for recognition of synaptic vesicle protein 2C by botulinum neurotoxin A
Nature
505
108-111
2014
Clostridium botulinum (P10845)
Manually annotated by BRENDA team
Ben David, A.; Torgeman, A.; Barnea, A.; Zichel, R.
Expression, purification and characterization of the receptor-binding domain of botulinum neurotoxin serotype B as a vaccine candidate
Protein Expr. Purif.
110
122-129
2015
Clostridium botulinum (P10844), Clostridium botulinum B (P10844)
Manually annotated by BRENDA team
Guo, J.; Chen, S.
Expression and biochemical characterization of light chains of Botulinum neurotoxin subtypes F5 and F7
Protein Expr. Purif.
111
87-90
2015
Clostridium botulinum, Clostridium botulinum (D2KHS9)
Manually annotated by BRENDA team
Singh, A.; Sachdeva, A.; Degrasse, J.; Croley, T.; Stanker, L.; Hodge, D.; Sharma, S.
Purification and characterization of neurotoxin complex from a dual toxin gene containing Clostridium botulinum strain PS-5
Protein J.
32
288-296
2013
Clostridium botulinum (P10844), Clostridium botulinum (P10845), Clostridium botulinum PS-5 (P10844), Clostridium botulinum PS-5 (P10845)
Manually annotated by BRENDA team
Guo, J.; Wang, J.; Chan, E.; Chen, S.
Exploration of endogenous substrate cleavage by various forms of botulinum neurotoxins
Toxicon
100
42-45
2015
Clostridium botulinum
Manually annotated by BRENDA team
Pellett, S.; Tepp, W.; Scherf, J.; Pier, C.; Johnson, E.
Activity of botulinum neurotoxin type D (strain 1873) in human neurons
Toxicon
101
63-69
2015
Clostridium botulinum, Clostridium botulinum 1873
Manually annotated by BRENDA team
Montgomery, V.; Ahmed, S.; Olson, M.; Mizanur, R.; Stafford, R.; Roxas-Duncan, V.; Smith, L.
Ex vivo inhibition of Clostridium botulinum neurotoxin types B, C, E, and F by small molecular weight inhibitors
Toxicon
98
12-19
2015
Clostridium botulinum
Manually annotated by BRENDA team
Kalb, S.R.; Baudys, J.; Raphael, B.H.; Dykes, J.K.; Luquez, C.; Maslanka, S.E.; Barr, J.R.
Functional characterization of botulinum neurotoxin serotype H as a hybrid of known serotypes F and A (BoNT F/A)
Anal. Chem.
87
3911-3917
2015
Clostridium botulinum, Clostridium botulinum IBCA10-7060
Manually annotated by BRENDA team
Minnow, Y.V.; Goldberg, R.; Tummalapalli, S.R.; Rotella, D.P.; Goodey, N.M.
Mechanism of inhibition of botulinum neurotoxin type A light chain by two quinolinol compounds
Arch. Biochem. Biophys.
618
15-22
2017
Clostridium botulinum
Manually annotated by BRENDA team
Kumar, G.; Agarwal, R.; Swaminathan, S.
Small molecule non-peptide inhibitors of botulinum neurotoxin serotype E Structure-activity relationship and a pharmacophore model
Bioorg. Med. Chem.
24
3978-3985
2016
Clostridium botulinum
Manually annotated by BRENDA team
Harrell, W.A.; Vieira, R.C.; Ensel, S.M.; Montgomery, V.; Guernieri, R.; Eccard, V.S.; Campbell, Y.; Roxas-Duncan, V.; Cardellina, J.H.; Webb, R.P.; Smith, L.A.
A matrix-focused structure-activity and binding site flexibility study of quinolinol inhibitors of botulinum neurotoxin serotype A
Bioorg. Med. Chem. Lett.
27
675-678
2017
Clostridium botulinum
Manually annotated by BRENDA team
Kerscher, M.; Wanitphakdeedecha, R.; Trindade de Almeida, A.; Maas, C.; Frevert, J.
IncobotulinumtoxinA A highly purified and precisely manufactured botulinum neurotoxin type A
J. Drugs Dermatol.
18
52-57
2019
Clostridium botulinum, Clostridium botulinum Hall
Manually annotated by BRENDA team
Sikorra, S.; Litschko, C.; Mueller, C.; Thiel, N.; Galli, T.; Eichner, T.; Binz, T.
Identification and characterization of botulinum neurotoxin A substrate binding pockets and their re-engineering for human SNAP-23
J. Mol. Biol.
428
372-384
2016
Clostridium botulinum
Manually annotated by BRENDA team
Davies, J.R.; Rees, J.; Liu, S.M.; Acharya, K.R.
High resolution crystal structures of Clostridium botulinum neurotoxin A3 and A4 binding domains
J. Struct. Biol.
202
113-117
2018
Clostridium botulinum (Q3LRX8), Clostridium botulinum (Q3LRX9), Clostridium botulinum
Manually annotated by BRENDA team
Kohda, T.; Nakamura, K.; Hosomi, K.; Torii, Y.; Kozaki, S.; Mukamoto, M.
Characterization of the functional activity of botulinum neurotoxin subtype B6
Microbiol. Immunol.
61
482-489
2017
Clostridium botulinum, Clostridium botulinum Osaka05
Manually annotated by BRENDA team
Moritz, M.S.; Tepp, W.H.; Bradshaw, M.; Johnson, E.A.; Pellett, S.
Isolation and characterization of the novel botulinum neurotoxin A subtype 6
mSphere
3
e00466-18
2018
Clostridium botulinum, Clostridium botulinum CDC41370
Manually annotated by BRENDA team
Zhang, S.; Masuyer, G.; Zhang, J.; Shen, Y.; Lundin, D.; Henriksson, L.; Miyashita, S.I.; Martinez-Carranza, M.; Dong, M.; Stenmark, P.
Identification and characterization of a novel botulinum neurotoxin
Nat. Commun.
8
14130
2017
Clostridium botulinum (P0DPK1)
Manually annotated by BRENDA team
Tao, L.; Peng, L.; Berntsson, R.P.; Liu, S.M.; Park, S.; Yu, F.; Boone, C.; Palan, S.; Beard, M.; Chabrier, P.E.; Stenmark, P.; Krupp, J.; Dong, M.
Engineered botulinum neurotoxin B with improved efficacy for targeting human receptors
Nat. Commun.
8
53
2017
Clostridium botulinum
Manually annotated by BRENDA team
Liu, Q.; Sinnen, B.L.; Boxer, E.E.; Schneider, M.W.; Grybko, M.J.; Buchta, W.C.; Gibson, E.S.; Wysoczynski, C.L.; Ford, C.P.; Gottschalk, A.; Aoto, J.; Tucker, C.L.; Kennedy, M.J.
A photoactivatable botulinum neurotoxin for inducible control of neurotransmission
Neuron
101
863-875.e6
2019
Clostridium botulinum (P10844)
Manually annotated by BRENDA team
Lam, K.H.; Sikorra, S.; Weisemann, J.; Maatsch, H.; Perry, K.; Rummel, A.; Binz, T.; Jin, R.
Structural and biochemical characterization of the protease domain of the mosaic botulinum neurotoxin type HA
Pathog. Dis.
76
fty044
2018
Clostridium botulinum, Clostridium botulinum BCA10-7060
Manually annotated by BRENDA team
Kull, S.; Schulz, K.M.; Weisemann, J.; Kirchner, S.; Schreiber, T.; Bollenbach, A.; Dabrowski, P.W.; Nitsche, A.; Kalb, S.R.; Dorner, M.B.; Barr, J.R.; Rummel, A.; Dorner, B.G.
Isolation and functional characterization of the novel Clostridium botulinum neurotoxin A8 subtype
PLoS ONE
10
e0116381
2015
Clostridium botulinum, Clostridium botulinum Chemnitz
Manually annotated by BRENDA team
Chauhan, R.; Chauhan, V.; Rao, M.K.; Chaudhary, D.; Bhagyawant, S.; Dhaked, R.K.
High level expression and immunochemical characterization of botulinum neurotoxin type F light chain
Protein Expr. Purif.
146
51-60
2018
Clostridium botulinum
Manually annotated by BRENDA team
Dhaliwal, H.K.; Thiruvanakarasu, N.; Kumar, R.; Patel, K.; Ambrin, G.; Cai, S.; Singh, B.R.
High yield preparation of functionally active catalytic-translocation domain module of botulinum neurotoxin type A that exhibits uniquely different enzyme kinetics
Protein J.
36
489-501
2017
Clostridium botulinum
Manually annotated by BRENDA team
Elliott, M.; Favre-Guilmard, C.; Liu, S.M.; Maignel, J.; Masuyer, G.; Beard, M.; Boone, C.; Carre, D.; Kalinichev, M.; Lezmi, S.; Mir, I.; Nicoleau, C.; Palan, S.; Perier, C.; Raban, E.; Zhang, S.; Dong, M.; Stenmark, P.; Krupp, J.
Engineered botulinum neurotoxin B with improved binding to human receptors has enhanced efficacy in preclinical models
Sci. Adv.
5
eaau7196
2019
Clostridium botulinum
Manually annotated by BRENDA team
Masuyer, G.; Davies, J.R.; Moore, K.; Chaddock, J.A.; Ravi Acharya, K.
Structural analysis of Clostridium botulinum neurotoxin type D as a platform for the development of targeted secretion inhibitors
Sci. Rep.
5
13397
2015
Clostridium botulinum (P19321), Clostridium botulinum
Manually annotated by BRENDA team
Guo, J.; Chan, E.W.; Chen, S.
Mechanism of substrate recognition by the novel botulinum neurotoxin subtype F5
Sci. Rep.
6
19875
2016
Clostridium botulinum
Manually annotated by BRENDA team
Masuyer, G.; Zhang, S.; Barkho, S.; Shen, Y.; Henriksson, L.; Ko?enina, S.; Dong, M.; Stenmark, P.
Structural characterisation of the catalytic domain of botulinum neurotoxin X - high activity and unique substrate specificity
Sci. Rep.
8
4518
2018
Clostridium botulinum (P0DPK1)
Manually annotated by BRENDA team
Feltrup, T.M.; Patel, K.; Kumar, R.; Cai, S.; Singh, B.R.
A novel role of C-terminus in introducing a functionally flexible structure critical for the biological activity of botulinum neurotoxin
Sci. Rep.
8
8884
2018
Clostridium botulinum
Manually annotated by BRENDA team
Ambrin, G.; Kumar, R.; Singh, B.R.
Differential endopeptidase activity of different forms of type A botulinum neurotoxin A unique relationship between the size of the substrate and activity of the enzyme
Toxicon
144
34-41
2018
Clostridium botulinum
Manually annotated by BRENDA team
Hackett, G.; Moore, K.; Burgin, D.; Hornby, F.; Gray, B.; Elliott, M.; Mir, I.; Beard, M.
Purification and characterization of recombinant botulinum neurotoxin serotype FA, also known as serotype H
Toxins
10
E195
2018
Clostridium botulinum, Clostridium botulinum IBCA 10-7060
Manually annotated by BRENDA team
Sikorra, S.; Skiba, M.; Dorner, M.B.; Weisemann, J.; Weil, M.; Valdezate, S.; Davletov, B.; Rummel, A.; Dorner, B.G.; Binz, T.
Botulinum neurotoxin F subtypes cleaving the VAMP-2 Q58-K59 peptide bond exhibit unique catalytic properties and substrate specificities
Toxins
10
E311
2018
Clostridium botulinum (A0A1P8YWK9), Clostridium botulinum (A7GBG3), Clostridium botulinum (D2KHS4), Clostridium baratii (A0A1P8YWP1), Clostridium baratii CNM1212/11 (A0A1P8YWP1), Clostridium botulinum NCTC 10281 (A7GBG3), Clostridium botulinum H078-01 (A0A1P8YWK9), Clostridium botulinum H078-01 (D2KHS4)
Manually annotated by BRENDA team
Joussain, C.; Le Coz, O.; Pichugin, A.; Marconi, P.; Lim, F.; Sicurella, M.; Salonia, A.; Montorsi, F.; Wandosell, F.; Foster, K.; Giuliano, F.; Epstein, A.L.; Aranda Munoz, A.
Botulinum neurotoxin light chains expressed by defective herpes simplex virus type-1 vectors cleave SNARE proteins and inhibit CGRP release in rat sensory neurons
Toxins
11
E123
2019
Clostridium botulinum (P0DPI1), Clostridium botulinum (P19321), Clostridium botulinum (P30996), Clostridium botulinum (Q00496), Clostridium phage c-st (P18640), Clostridium botulinum ATCC 3502 (P0DPI1)
Manually annotated by BRENDA team