Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 3.4.24.26 - pseudolysin and Organism(s) Pseudomonas aeruginosa and UniProt Accession P14756

for references in articles please use BRENDA:EC3.4.24.26
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
     3 Hydrolases
         3.4 Acting on peptide bonds (peptidases)
             3.4.24 Metalloendopeptidases
                3.4.24.26 pseudolysin
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Pseudomonas aeruginosa
UNIPROT: P14756 not found.
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Pseudomonas aeruginosa
The enzyme appears in selected viruses and cellular organisms
Reaction Schemes
Hydrolysis of proteins including elastin, collagen types III and IV, fibronectin and immunoglobulin A, generally with bulky hydrophobic group at P1'. Insulin B chain cleavage pattern identical to that of thermolysin, but specificity differs in other respects
Synonyms
pseudomonas aeruginosa elastase, pseudolysin, neutral metalloproteinase, pseudomonas elastase, elastase b, pseudomonas protease, aeruginolysin, elastolytic metalloproteinase, lasb protease, a2 elastase, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
A2 elastase
-
-
aeruginolysin
-
-
elastase
elastolytic metalloproteinase
-
-
LasB protease
Neutral metalloproteinase
-
-
-
-
Pseudomonas aeruginosa elastase
-
-
Pseudomonas aeruginosa neutral metalloproteinase
-
-
-
-
Pseudomonas aeruginosa small protease
-
Pseudomonas elastase
Pseudomonas protease
-
-
additional information
PAE is a metalloprotease of the M4 peptidase family
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
hydrolysis of peptide bond
-
-
-
-
CAS REGISTRY NUMBER
COMMENTARY hide
171715-23-4
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
2-aminobenzoyl-Ala-Gly-Leu-Ala-4-nitrobenzylamide + H2O
?
show the reaction diagram
25°C, pH 7.4
-
-
?
3-(2-furyl)acryloyl-glycyl-L-phenylalanyl-L-phenylalanine + H2O
L-phenylalanyl-L-phenylalanine + 3-(2-furyl)acryloyl-glycine
show the reaction diagram
at 37°C, pH 7.3
-
-
?
Ala-Ala-Ala-Phe-Ala + H2O
?
show the reaction diagram
30°C, pH 8.6
-
-
?
Ala-Ala-Phe-Ala-NH2 + H2O
?
show the reaction diagram
30°C, pH 8.6
-
-
?
alpha1-proteinase inhibitor + H2O
?
show the reaction diagram
25°C, pH 7.4, cleavage occurs at the Pro357-Met358 bond (wild-type and recombinant Met358 inhibitor) and at the Pro357-Leu358 bond (recombinant mutant M358L inhibitor)
-
-
?
azocasein + H2O
?
show the reaction diagram
BODIPY-casein + H2O
?
show the reaction diagram
-
-
-
?
carbobenzooxydialanine-leucylalaninamide + H2O
?
show the reaction diagram
30°C, pH 8.6
-
-
?
carbobenzooxydialanine-phenylalanylalaninamide + H2O
?
show the reaction diagram
30°C, pH 8.6
-
-
?
carbobenzooxydialanine-tyrosylalaninamide + H2O
?
show the reaction diagram
30°C, pH 8.6
-
-
?
carbobenzoxy-Gly-Leu-NH2 + H2O
?
show the reaction diagram
-
-
-
?
carbobenzoxy-Gly-Phe-NH2 + H2O
?
show the reaction diagram
-
-
-
?
carbobenzoxy-Gly-Tyr-NH2 + H2O
?
show the reaction diagram
-
-
-
?
cartilage + H2O
?
show the reaction diagram
major components proteoglycans and collagen
-
-
?
casein + H2O
?
show the reaction diagram
Collagen IV + H2O
?
show the reaction diagram
37°C
-
-
?
Elastin + H2O
?
show the reaction diagram
elastin Congo red + H2O
?
show the reaction diagram
elastin-agarose + H2O
?
show the reaction diagram
-
-
-
?
elastin-Congo red
?
show the reaction diagram
-
-
-
?
elastin-fluorescein
?
show the reaction diagram
37°C
-
-
?
Fe2-transferrin + H2O
?
show the reaction diagram
25°C, pH 7.4
-
-
?
Fibrin + H2O
?
show the reaction diagram
-
-
-
?
furylacryloyl-Ala-Leu-Ala + H2O
?
show the reaction diagram
pH 8.0, 30°C
-
-
?
furylacryloyl-Ala-Leu-Gly + H2O
?
show the reaction diagram
pH 8.0, 30°C
-
-
?
furylacryloyl-Gly-Leu-Ala + H2O
?
show the reaction diagram
pH 8.0, 30°C
-
-
?
furylacryloyl-Gly-Leu-Gly + H2O
?
show the reaction diagram
pH 8.0, 30°C
-
-
?
furylacryloyl-Gly-Leu-NH2 + H2O
?
show the reaction diagram
-
-
-
?
furylacryloyl-Gly-Leu-NH2 + H2O
furylacryloyl-Gly + Leu-NH2
show the reaction diagram
pH 7.5, 23-25°C
-
-
?
furylacryloyl-glycyl-L-leucyl-L-alanine + H2O
furylacryloyl-glycine + L-leucyl-L-alanine
show the reaction diagram
hog gastric mucin + H2O
?
show the reaction diagram
-
-
-
?
human alpha-1 proteinase inhibitor + H2O
?
show the reaction diagram
-
-
-
?
human collagen + H2O
?
show the reaction diagram
-
-
-
?
human fibronectin + H2O
?
show the reaction diagram
-
-
-
?
human gamma-interferon + H2O
fragments of human gamma-interferon
show the reaction diagram
-
-
-
?
human lactoferrin + H2O
?
show the reaction diagram
-
-
-
?
human plasma alpha1-proteinase inhibitor + H2O
?
show the reaction diagram
-
-
-
?
human thrombin + H2O
?
show the reaction diagram
human type III collagen + H2O
?
show the reaction diagram
25°C
-
-
?
human type IV collagen + H2O
?
show the reaction diagram
25°C
-
-
?
immunoglobulin A + H2O
?
show the reaction diagram
-
-
-
?
immunoglobulin G + H2O
?
show the reaction diagram
-
-
-
?
Laminin + H2O
?
show the reaction diagram
-
-
-
?
monocyte-derived alpha1-antitrypsin + H2O
?
show the reaction diagram
37°C
51-kD polypeptide
-
?
N-chlorosuccinimide-oxidized inhibitor + H2O
?
show the reaction diagram
25°C, pH 7.4, cleavage occurs between Glu354 and Ala355
-
-
?
ovomucin + H2O
?
show the reaction diagram
-
-
-
?
pentaalanine + H2O
?
show the reaction diagram
30°C, pH 8.6
-
-
?
pentaalanine + H2O
Ala-Ala + Ala-Ala-Ala
show the reaction diagram
-
-
-
?
proteinase-activated receptor 2 + H2O
?
show the reaction diagram
the enzyme cleaves proteinase-activated receptor 2 to remove the extracellular Flag epitope
-
-
?
secretory immunoglobulin A + H2O
?
show the reaction diagram
-
-
-
?
skim milk
?
show the reaction diagram
-
-
-
?
surfactant protein A + H2O
?
show the reaction diagram
37°C
-
-
?
surfactant protein D + H2O
?
show the reaction diagram
37°C
-
-
?
tetraalanine + H2O
?
show the reaction diagram
30°C, pH 8.6
-
-
?
tetraalanine + H2O
Ala-Ala + Ala-Ala
show the reaction diagram
-
-
-
?
transferrin
?
show the reaction diagram
25°C, pH 7.4
-
-
?
unnicked heat-labile enterotoxin + H2O
?
show the reaction diagram
-
-
-
?
2-Aminobenzoyl-Ala-Gly-Leu-Ala 4-nitrobenzylamide + H2O
2-Aminobenzoyl-Ala-Gly + Leu-Ala 4-nitrobenzylamide
show the reaction diagram
3-(2-furylacryloyl)glycyl-L-leucine amide + H2O
?
show the reaction diagram
-
-
-
-
?
AAF-7-amido-4-methylcoumarin + H2O
AAF + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
Ac-DEVD-7-amido-4-methylcoumarin + H2O
Ac-DEVD + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
acetyl-L-alanyl-L-alanyl-L-alanine-methyl ester + H2O
?
show the reaction diagram
-
-
-
-
?
azocasein + H2O
?
show the reaction diagram
benzyloxycarbonyl-Ala-Leu-Ala + H2O
?
show the reaction diagram
-
-
-
-
?
Benzyloxycarbonyl-Gly-Leu-Ala + H2O
?
show the reaction diagram
-
-
-
-
?
Benzyloxycarbonyl-Gly-Leu-Gly + H2O
?
show the reaction diagram
-
-
-
-
?
Benzyloxycarbonyl-Gly-Leu-Leu + H2O
?
show the reaction diagram
-
-
-
-
?
Benzyloxycarbonyl-Gly-Leu-NH2 + H2O
?
show the reaction diagram
-
-
-
-
?
Benzyloxycarbonyl-Gly-Leu-Phe + H2O
?
show the reaction diagram
-
-
-
-
?
Benzyloxycarbonyl-Gly-Phe-NH2 + H2O
?
show the reaction diagram
-
-
-
-
?
benzyloxycarbonyl-Phe-Leu-Ala + H2O
?
show the reaction diagram
-
-
-
-
?
Boc-GKR-7-amido-4-methylcoumarin + H2O
Boc-GKR + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
Boc-QAR-7-amido-4-methylcoumarin + H2O
Boc-QAR + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
Boc-VLK-7-amido-4-methylcoumarin + H2O
Boc-VLK + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
Boc-VPR-7-amido-4-methylcoumarin + H2O
Boc-VPR + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
Bovine serum albumin + H2O
?
show the reaction diagram
-
-
-
-
?
carbobenzoxy-Gly-Tyr-NH2 + H2O
?
show the reaction diagram
-
-
-
-
?
casein + H2O
?
show the reaction diagram
Collagen + H2O
?
show the reaction diagram
-
-
-
-
?
colostral S-IgA + H2O
?
show the reaction diagram
-
37°C
-
-
?
dabsyl-Ala-Ala-Phe-Ala-EDANS + H2O
?
show the reaction diagram
-
-
-
-
?
Denatured casein + H2O
?
show the reaction diagram
-
-
-
-
?
Denatured fibrin + H2O
?
show the reaction diagram
-
-
-
-
?
Denatured hemoglobin + H2O
?
show the reaction diagram
-
-
-
-
?
Denatured ovalbumin + H2O
?
show the reaction diagram
-
-
-
-
?
eggshell membrane + H2O
Val-Leu-Pro-Pro + (X)-Val-Pro-Pro + Trp + ?
show the reaction diagram
-
-
-
-
?
elastase propeptide + H2O
elastase + ?
show the reaction diagram
-
autocatalytically cleaved
-
?
Elastin + H2O
?
show the reaction diagram
elastin Congo red + H2O
?
show the reaction diagram
elastin-orcin + H2O
?
show the reaction diagram
-
-
-
-
?
Fibronectin + H2O
?
show the reaction diagram
-
-
-
-
?
flagellin + H2O
?
show the reaction diagram
the enzyme is capable of degrading exogenous flagellin under calcium-replete conditions and prevents flagellin-mediated immune recognition
-
-
?
furylacryloyl-Gly-Leu-NH2 + H2O
furylacryloyl-Gly + Leu-NH2
show the reaction diagram
-
poor substrate
-
?
Gelatin + H2O
?
show the reaction diagram
-
-
-
-
?
hide powder azure + H2O
?
show the reaction diagram
-
pH 7.0
-
-
?
IgG + H2O
?
show the reaction diagram
-
-
-
-
?
interleukin-6 + H2O
?
show the reaction diagram
-
complete digestion
-
-
?
interleukin-8 + H2O
?
show the reaction diagram
-
rapid processing to a 72 amino acid form, further degradation is slow
-
-
?
methyl-O-Suc-AAPV-7-amido-4-methylcoumarin + H2O
methyl-O-Suc-AAPV + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
myeloma IgA1-kappa + H2O
?
show the reaction diagram
myeloma IgA2-lamda of A2m(2) allotype + H2O
?
show the reaction diagram
-
predominantly polymeric, 37°C
-
-
?
N-succinyl-Ala-Ala-Ala-4-nitroanilide + H2O
N-succinyl-Ala-Ala-Ala + 4-nitroaniline
show the reaction diagram
-
-
-
-
?
N-succinyl-L-(Ala)3-p-nitroanilide + H2O
?
show the reaction diagram
-
36°C, pH 7.5
-
-
?
nucleoside diphosphate kinase + H2O
?
show the reaction diagram
-
-
-
-
?
orcein-elastin + H2O
?
show the reaction diagram
-
-
-
-
?
ovalbumin + H2O
?
show the reaction diagram
-
-
-
-
?
PAR-1 peptide + H2O
?
show the reaction diagram
-
cleavage at the R41-S42 site
-
-
?
PAR-2 peptide + H2O
?
show the reaction diagram
-
cleavage at the R36-S37 site
-
-
?
PAR-4 peptide + H2O
?
show the reaction diagram
-
cleavage at the R47-G48 site
-
-
?
PAR2 + H2O
?
show the reaction diagram
-
i.e. proteinase-activated receptor 2, enzyme cleaves the N-terminal domain of PAR2 from the cell surface without triggering receptor endocytosis as trypsin does. Cleavage does not activate PAR2, but disarms the recptor for subsequent activation by trypsin
-
?
PFR-7-amido-4-methylcoumarin + H2O
PFR + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
Suc-AAF-7-amido-4-methylcoumarin + H2O
Suc-AAF + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
Suc-AFK-7-amido-4-methylcoumarin + H2O
Suc-AFK + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
Suc-GPLGP-7-amido-4-methylcoumarin + H2O
Suc-GPLGP + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
Suc-IIW-7-amido-4-methylcoumarin + H2O
Suc-IIW + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
Suc-LLVY-7-amido-4-methylcoumarin + H2O
Suc-LLVY + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
Vitronectin + H2O
?
show the reaction diagram
-
-
-
-
?
Z-AAN-7-amido-4-methylcoumarin + H2O
Z-AAN + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
Z-GAH-7-amido-4-methylcoumarin + H2O
Z-GAH + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
Z-GAM-7-amido-4-methylcoumarin + H2O
Z-GAM + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
Z-GGL-7-amido-4-methylcoumarin + H2O
Z-GGL + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
Z-GGR-7-amido-4-methylcoumarin + H2O
Z-GGR + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
Z-LLE-7-amido-4-methylcoumarin + H2O
Z-LLE + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
Z-RLRGG-7-amido-4-methylcoumarin + H2O
Z-RLRGG + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
Elastin + H2O
?
show the reaction diagram
human tropoelastin
-
-
?
human thrombin + H2O
?
show the reaction diagram
digestion of thrombin by Pseudomonas aeruginosa elastase leads to the release of the C-terminal thrombin-derived peptide FYT21, which inhibits pro-inflammatory responses to several pathogen-associated molecular patterns in vitro and in vivo by preventing toll-like receptor dimerization and subsequent activation of down-stream signalling pathways the enzyme cleaves a C-terminal peptide from human thrombin that inhibits host inflammatory responses
-
-
?
Elastin + H2O
?
show the reaction diagram
-
-
-
-
?
Fibronectin + H2O
?
show the reaction diagram
-
-
-
-
?
flagellin + H2O
?
show the reaction diagram
the enzyme is capable of degrading exogenous flagellin under calcium-replete conditions and prevents flagellin-mediated immune recognition
-
-
?
PAR2 + H2O
?
show the reaction diagram
-
i.e. proteinase-activated receptor 2, enzyme cleaves the N-terminal domain of PAR2 from the cell surface without triggering receptor endocytosis as trypsin does. Cleavage does not activate PAR2, but disarms the recptor for subsequent activation by trypsin
-
?
Vitronectin + H2O
?
show the reaction diagram
-
-
-
-
?
additional information
?
-
-
probably responsible for the tissue destruction observed during pulmonary and corneal infections by the pathogen organism Pseudomonas aeruginosa
-
-
?
METALS and IONS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
Ca2+
-
a calcium ion is also required for enzyme activity, and stabilizes its tertiary structure. Contact with the calcium ion is made by the carboxyl groups of Asp136, Glu172, Glu175, and Asp183, the carbonyl group of Leu185, and one water molecule
Mn2+
-
inhibits activity at 10 mM
Ni2+
-
inhibits activity at 10 mM
additional information
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
1,10-phenanthroline
non-specific
2-mercaptoacetyl-L-phenylalanyl-L-leucine
prevents corneal perforation completely
2-mercaptoacetyl-Leu-Dphe
-
2-mercaptoacetyl-Leu-Phe
-
2-mercaptoacetyl-Phe-Leu
at 0.1 mM 96% inhibition with azocasein as substrate, 97% inhibition with elastin as substrate and 97% inhibition with cartilage as substrate, at 0.01 mM 77% inhibition with azocasein as substrate, 33% inhibition with elastin as substrate and 66% inhibition with cartilage as substrate
2-mercaptoacetylphenylalanylleucine
specific
3-(2-furyl)acryloyl-glycine
-
3-(2-furyl)acryloyl-glycyl-L-phenylalanyl-L-phenylalanine
-
ammonium chloride
extracellular elastase activity decreases if cells are cultured in the presence of ammonium chloride
anti elastase monoclonal antibody
reduces PE activity significantly
-
benzyloxycarbonyl-Gly-NHOH
at 14 mM 98% inhibition with azocasein as substrate, 95% inhibition with elastin as substrate and 95% inhibition with cartilage as substrate, at 1.4 mM 77% inhibition with azocasein as substrate, 84% inhibition with elastin as substrate and 67% inhibition with cartilage as substrate
benzyloxycarbonyl-L-leucine
-
benzyloxycarbonyl-L-leucyl-hydroxamate
-
benzyloxycarbonyl-L-phenylalanine
-
benzyloxycarbonyl-Leu-NHOH
at 5.0 mM 98% inhibition with azocasein as substrate, 100% inhibition with elastin as substrate and 94% inhibition with cartilage as substrate, at 0.5 mM 76% inhibition with azocasein as substrate, 93% inhibition with elastin as substrate and 57% inhibition with cartilage as substrate
benzyloxycarbonyl-Phe-NHOH
-
ClCH2CO-HOLeu-Ala-Gly-NH2
non-competitive
D-glucose
extracellular elastase activity decreases if cells are cultured in the presence of glucose
elastase propeptide
-
-
HSCH2(DL)CH[CH2CH(CH3)2]CO-Phe-Ala-NH2
2 isomeric forms
L-phenylalanyl-L-phenylalanine
-
N-(1-carboxy-3-phenylpropyl)-phenylalanyl-alpha-asparagine
enzyme binding structure analysis, PDB ID 1U4G. The inhibitor is bound in the S1-S1’ sub-sites of pseudolysin by hydrogen bonding and hydrophobic and weak van der Waal's interactions
o-phenanthroline
-
phosphoramidon
phosphoryl-L-leucyl-L-phenylalanine
S-homoPhe [N-alpha-alpha]Phe-IsoAsn
L-155542, competitive
specific polyclonal rabbit antielastase antiserum
-
-
Zincov
zinc chelator
1,10-phenanthroline
1,4-dithiothreitol
-
5 mM, 0% residual activity
1-(biphenyl-4-ylmethyl)-3-hydroxy-2-methylpyridine-4(1H)-thione
-
-
2,2'-bipyridine
-
slight inhibition
2-mercaptoacetyl-L-phenyalanyl-L-leucine
-
-
2-mercaptoethanol
-
18.8% inhibition at 5 mM
5-fluorouracil
-
-
Aprotinin
-
markedly decreases enzymatic activity
Ba2+
-
5 mM, slightly decreases activity
Cd2+
-
5 mM, decreases activity
cetyltrimethylammonium bromide
-
0.1%, 53% residual activity
ClCH2CO-N-hydroxyleucine-Ala-Gly-NH2
-
-
dehydroleucodine
-
-
Elastatinal
-
markedly decreases enzymatic activity
eriodictyol
-
-
HS-CH2-CO-Phe-Tyr-NH2
-
at 0.2 mM and 0.025 mM inhibits the degradation of the pseudolysin natural substrates nucleoside diphosphate kinase and IgG, respectively
HSAc-Leu-Phe
-
0.1 mM, inhibits 97% of the degradation of azocasein and elastin substrates by pseudolysin
HSAc-Phe-Leu
-
0.1 mM, inhibits 97% of the degradation of azocasein and elastin substrates by pseudolysin
L-cysteine
-
complete inhibition at 1.25 mM
N-aryl mercaptoacetamide
-
-
N-mercaptoacetyl-Phe-Tyr-amide
-
-
Na2 EDTA
-
complete inhibition at 10 mM
o-phenanthroline
-
1 mM, 16% residual activity
peptides
-
containing the hydroxamic acid, N-hydroxypeptide and thiol functional groups
phosphoramidon
PMSF
-
markedly decreases enzymatic activity
sodium dodecylsulfate
-
0.1%, 61% residual activity
Soybean trypsin inhibitor
-
markedly decreases enzymatic activity
-
Streptomyces metalloproteinase inhibitor
-
i.e. SMPI, molecular dynamics study of enzyme-inhibitor complex. Inhibitor interacts with pseudolysin via the rigid active side loop and several contact sites outside this loop
-
TLCK
-
markedly decreases enzymatic activity
additional information
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
additional information
-
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
1.4
3-(2-furyl)acryloyl-glycyl-L-phenylalanyl-L-phenylalanine
-
0.09
carbobenzooxydialanine-leucylalaninamide
-
0.12
carbobenzooxydialanine-phenylalanylalaninamide
-
0.38
carbobenzooxydialanine-tyrosylalaninamide
-
1.08
dialanine-phenylalanylalaninamide
-
0.16
furylacryloyl-Ala-Leu-Ala
-
0.18
furylacryloyl-Ala-Leu-Gly
-
0.21
furylacryloyl-Gly-Leu-Ala
-
0.23
furylacryloyl-Gly-Leu-Gly
-
0.94 - 4.4
pentaalanine
4.4 - 10.6
tetraalanine
0.37
trialanine-phenylalanylalanine
-
0.11
2-Aminobenzoyl-Ala-Gly-Leu-Ala 4-nitrobenzylamide
-
-
1.8
Benzyloxycarbonyl-Gly-Leu-Ala
-
benzyloxycarbonyl-Gly-Leu-Leu, benzyloxycarbonyl-Phe-Leu-Ala
2.8
Benzyloxycarbonyl-Gly-Leu-Gly
-
-
6.4
Benzyloxycarbonyl-Gly-Leu-NH2
-
-
1
benzyloxycarbonyl-Gly-Leu-Phe
-
-
2.1
Benzyloxycarbonyl-Gly-Phe-NH2
-
-
2
Benzyloxycarbonyl-Gly-Tyr-NH2
-
-
0.065
dabsyl-Ala-Ala-Phe-Ala-EDANS
-
-
additional information
azocasein
-
TURNOVER NUMBER [1/s]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
240
3-(2-furyl)acryloyl-glycyl-L-phenylalanyl-L-phenylalanine
-
190 - 406.8
carbobenzooxydialanine-leucylalaninamide
1032
carbobenzooxydialanine-phenylalanylalaninamide
-
338.2
carbobenzooxydialanine-tyrosylalaninamide
-
540
dialanine-phenylalanylalaninamide
-
144
furylacryloyl-Ala-Leu-Ala
-
34
furylacryloyl-Ala-Leu-Gly
-
95
furylacryloyl-Gly-Leu-Ala
-
7
furylacryloyl-Gly-Leu-Gly
-
224.4 - 420
pentaalanine
106 - 250
tetraalanine
769.6
trialanine-phenylalanylalanine
-
100
2-Aminobenzoyl-Ala-Gly-Leu-Ala 4-nitrobenzylamide
-
-
1.27
azocasein
-
pH 7.5, 40°C
-
1100
benzyloxycarbonyl-Ala-Leu-Ala
-
-
945
Benzyloxycarbonyl-Gly-Leu-Ala
-
-
46.2
Benzyloxycarbonyl-Gly-Leu-Gly
-
-
890
Benzyloxycarbonyl-Gly-Leu-Leu
-
-
23
Benzyloxycarbonyl-Gly-Leu-NH2
-
-
640
benzyloxycarbonyl-Gly-Leu-Phe
-
-
47.6
Benzyloxycarbonyl-Gly-Phe-NH2
-
-
17.4
Benzyloxycarbonyl-Gly-Tyr-NH2
-
-
247
Benzyloxycarbonyl-Phe-Leu-Ala
-
-
618
dabsyl-Ala-Ala-Phe-Ala-EDANS
-
-
Ki VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.034
2-mercaptoacetyl-Leu-Dphe
at pH 7.5 and 25°C, with furylacryloyl-glycyl-L-leucyl-L-alanine as substrate
0.0015
2-mercaptoacetyl-Leu-Phe
at pH 7.5 and 25°C, with furylacryloyl-glycyl-L-leucyl-L-alanine as substrate
0.0002
2-mercaptoacetyl-Phe-Leu
at pH 7.5 and 25°C, with furylacryloyl-glycyl-L-leucyl-L-alanine as substrate
4
3-(2-furyl)acryloyl-glycine
-
5
3-(2-furyl)acryloyl-glycyl-L-phenylalanyl-L-phenylalanine
-
0.028
benzyloxycarbonyl-Gly-NHOH
at pH 7.5 and 25°C, with furylacryloyl-glycyl-L-leucyl-L-alanine as substrate
6.2
benzyloxycarbonyl-L-leucine
at pH 7.5 and 25°C, with furylacryloyl-glycyl-L-leucyl-L-alanine as substrate
5
benzyloxycarbonyl-L-phenylalanine
at pH 7.5 and 25°C, with furylacryloyl-glycyl-L-leucyl-L-alanine as substrate
0.011
benzyloxycarbonyl-Leu-NHOH
at pH 7.5 and 25°C, with furylacryloyl-glycyl-L-leucyl-L-alanine as substrate
0.021
benzyloxycarbonyl-Phe-NHOH
at pH 7.5 and 25°C, with furylacryloyl-glycyl-L-leucyl-L-alanine as substrate
1.5
L-phenylalanyl-L-phenylalanine
-
1.1
Leu-Phe
at pH 7.5 and 25°C, with furylacryloyl-glycyl-L-leucyl-L-alanine as substrate
0.4
Phe-Leu
at pH 7.5 and 25°C, with furylacryloyl-glycyl-L-leucyl-L-alanine as substrate
0.0002
phosphoryl-L-leucyl-L-phenylalanine
at pH 7.5 and 25°C, with furylacryloyl-glycyl-L-leucyl-L-alanine as substrate
0.0004
rapidly eluting isomer of HSCH2(DL)CH[CH2CH(CH3)2]CO-Phe-Ala-NH2
-
-
0.00003
S-homoPhe [N-alpha-alpha]Phe-IsoAsn
-
0.0003
slowly eluting isomer of HSCH2(DL)CH[CH2CH(CH3)2]CO-Phe-Ala-NH2
-
-
0.000041
N-mercaptoacetyl-Phe-Tyr-amide
-
pH and temperature not specified in the publication
IC50 VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.00273
1-(biphenyl-4-ylmethyl)-3-hydroxy-2-methylpyridine-4(1H)-thione
Pseudomonas aeruginosa
-
pH and temperature not specified in the publication
0.0000059
N-aryl mercaptoacetamide
Pseudomonas aeruginosa
-
pH and temperature not specified in the publication
SPECIFIC ACTIVITY [µmol/min/mg]
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
2389
-
recombinant glycosylated enzyme, pH 7.5, 60°C, substrate casein
2401
-
recombinant nonglycosylated enzyme, pH 7.5, 60°C, substrate casein
3.2
-
purified recombinant enzyme from Escherichia coli expression, pH 8.0, 25°C, substrate N-succinyl-Ala-Ala-Ala-4-nitroanilide
6.4
-
pH 8.0, 30°C
81100
-
purified enzyme, pH 8.0, 37°C
99610
-
60°C, pH 8.0
additional information
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
5.8
with 2-aminobenzoyl-Ala-Gly-Leu-Ala-4-nitrobenzylamide as substrate
6
with the native alpha1-proteinase inhibitor as substrate
6.5
with the recombinant mutant M358L inhibitor as substrate
7
with N-chlorosuccinimide-oxidized inhibitor as substrate
7 - 8
-
casein, elastin
additional information
pH RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
5 - 10
-
activity range, profile overview
TEMPERATURE RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
32
the enzyme is less active at temperatures above 32°C
30 - 50
-
30°C: about 75% of maximal activity, 50°C: about 85% of maximal activity
30 - 80
-
activity range, profile overview
pI VALUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
5.88
-
sequence calculation
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
synthesis of the precursor preproelastase
Manually annotated by BRENDA team
mutants E141D, E141Q, E141G, H223G, H223E, and H223L
Manually annotated by BRENDA team
additional information
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
evolution
pseudolysin is a Zn2+ metalloprotease of the thermolysin family
physiological function
evolution
malfunction
-
the exosecretome of the LasB-deficient pseudomonal strain PAO1lasBDELTA has limited impact on human vascular cell adherence and viability
physiological function
additional information
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
33000
33500
proelastase II, SDS-PAGE
35000
x * 35000, SDS-PAGE
36000
50000
proelastase I, SDS-PAGE
51000
52000
x * 52000, SDS-PAGE, pro-elastase, enzymatically inactive
53000
SDS-PAGE, preproenzyme
53600
100000
-
x * 100000, SDS-PAGE
18530
mass spectrometry
25000
subunit, SDS-PAGE
32926
-
x * 32926, calculated from amino acid sequence
33000
33030
-
x * 34000, SDS-PAGE, x * 53610, pro-enzyme, sequence calculation, x * 33030, mature enzyme, sequence calculation
34000
-
x * 34000, SDS-PAGE, x * 53610, pro-enzyme, sequence calculation, x * 33030, mature enzyme, sequence calculation
34160
-
x * 34160, sequence calculation
35000
-
x * 35000, SDS-PAGE
48000
-
SDS-PAGE
53600
-
Pseudomonas aeruginosa, deduced from nucleotide sequence
53610
-
x * 34000, SDS-PAGE, x * 53610, pro-enzyme, sequence calculation, x * 33030, mature enzyme, sequence calculation
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
additional information
POSTTRANSLATIONAL MODIFICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
glycoprotein
-
the recombinant elastase contains three potential N-glycosylation sites N43, N212, and N280 (Asn-Xaa-Ser/Thr consensus sequences), potential role of N-glycosylation in the activity and stability. Non- and glycosylated isoforms of rPAE display similar kinetic parameters for hydrolyzing casein in aqueous medium, and when catalyzing bipeptide synthesis in 50% v/v DMSO, they exhibit identical substrate specificity and activity, and produce similar yields. The N-linked oligosaccharides of Pichia pastoris-secreted glycoproteins are a high-mannose type (Man8GlcNAc2 or Man9GlcNAc2) with molecular weights close to 2 kDa
proteolytic modification
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
in the presence of inhibitors S-homoPhe [N-alpha-alpha]Phe-IsoAsn, phosphoramidon, and ClCH2CO-HOLeu-Ala-Gly-NH2
resolved to 1.5 A resolution
capillary seeding crystallization method
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
H223D
no proteolytic or elastolytic activity
H223Y
no proteolytic or elastolytic activity
D168A
-
site-directed mutagenesis, inactive mutant
D189A
-
site-directed mutagenesis, the mutant shows decreased thermal stabilities and increased activities compared to the wild-type enzyme
D201A
-
site-directed mutagenesis, the mutant shows slightly increased thermal stability and slightly decreased activity compared to the wild-type enzyme
E249A
-
site-directed mutagenesis, the mutant shows both decreased thermal stability and decreased activity compared to the wild-type enzyme
N212Q
-
site-directed mutagenesis, the mutant enzyme shows similar activity and slightly decreased thermostability compared to the wild-type enzyme
N212Q/N280Q
-
site-directed mutagenesis, 90.6% decreased activity compared to the wild-type enzyme
N280Q
-
site-directed mutagenesis, the mutant enzyme shows similar activity and slightly decreased thermostability compared to the wild-type enzyme
N43Q
-
site-directed mutagenesis, the mutant enzyme shows similar activity and slightly decreased thermostability compared to the wild-type enzyme
N43Q/N212Q
-
site-directed mutagenesis, 68.7% decreased activity compared to the wild-type enzyme
N43Q/N212Q/N280Q
-
site-directed mutagenesis, 90.6% decreased activity compared to the wild-type enzyme
N43Q/N280Q
-
site-directed mutagenesis, 73.6% decreased activity compared to the wild-type enzyme
R179A
-
site-directed mutagenesis, the mutant shows decreased thermal stabilities and increased activities compared to the wild-type enzyme
R198A
-
site-directed mutagenesis, inactive mutant
R205A
-
site-directed mutagenesis, the mutant shows slightly increased thermal stability and slightly decreased activity compared to the wild-type enzyme
R245A
-
site-directed mutagenesis
R253A
-
site-directed mutagenesis, inactive mutant
R279A
-
site-directed mutagenesis, inactive mutant
additional information
-
mutation of any potential N-glycosylation site was detrimental to its expression in Pichia pastoris with 23.9% decrease in expression of the N43Q mutant, 63.6% of the N212Q mutant, and 63.7% of the N280Q mutant compared with the wild type
pH STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
5 - 11
-
purified enzyme, 60 min, loss of 30% activity at pH 5.0 and of 50% at pH 11.0, completely stable at pH 6.0-10.0, profile overview
717673
6 - 10
-
4°C, 16 h, in presence of Ca2+ stable
31116
6 - 9
6 - 9.5
TEMPERATURE STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
30 - 60
50
-
half-life time: 297.7 min
61.3
-
midpoint temperature
65
-
10 min, 33% loss of activity
80
-
half-life time: 0 min
GENERAL STABILITY
ORGANISM
UNIPROT
LITERATURE
persistanence in the presence of Ca2+ and Mg2+
the first and second disulfide bonds are essential for the stability and activity of the enzyme, respectively
-
ORGANIC SOLVENT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
2-propanol
-
25% v/v, 36% residual activity
Acetone
-
25% v/v, 31% residual activity
benzene
-
25% v/v, 30°C, stable for at least 72 h
chloroform
-
pH 7.0, 30°C, 4 days, 95.6% activity remaining for the nonglycosylated recombinant enzyme, 91.5% for the glycosylated recombinant enzyme
cyclohexane
-
25% v/v, 30°C, stable for at least 72 h
dimethyl sulfoxide
-
25% v/v, 11% residual activity
DMSO
-
pH 7.0, 30°C, 4 days, 95.1% activity remaining for the nonglycosylated recombinant enzyme, 83.2% for the glycosylated recombinant enzyme
Ethanol
hexane
-
25% v/v, 30°C, stable for at least 72 h
isopropanol
-
pH 7.0, 30°C, 4 days, 39.2% activity remaining for the nonglycosylated recombinant enzyme, 17.5% for the glycosylated recombinant enzyme
Methanol
-
pH 7.0, 30°C, 4 days, 102% activity remaining for the nonglycosylated recombinant enzyme, 96.5% for the glycosylated recombinant enzyme
n-Butanol
-
pH 7.0, 30°C, 4 days, 89.5% activity remaining for the nonglycosylated recombinant enzyme, 78.5% for the glycosylated recombinant enzyme
toluene
-
25% v/v, 30°C, stable for at least 72 h
additional information
-
the enzyme is stable in the presence of organic solvents mainly diethyl ether and DMSO
STORAGE STABILITY
ORGANISM
UNIPROT
LITERATURE
-20°C, 0.02 M Tris-hydrochloride, 0.5 mM CaCl2 (pH 7.5), 1 year, less than 10% loss of activity
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
the propeptide-elastase complex
native enzyme 2.23fold to homogeneity by ultrafiltration, gel filtration, and anion exchange chromatography
-
native extracellular enzyme from cell culture medium by ammonium sulfate fractionation, dialysis, anion exchange chromatography, and cation exchange chromatography
-
recombinant wild-type and mutant enzymes from Escherichia coli strain BL21 (DE3) by ammonium sulfate fractionation, anion exchange chromatography
-
solubilized recombinant His-tagged enzyme from Escherichia coli cells by metal affinity chromatography, or the enzyme is simultaneously further purified, refolded and buffer-exchanged on a preparative Superdex 200 column by a modified urea reverse-gradient gel filtration
-
to homogeneity
-
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
expression in Escherichia coli
expression in Pseudomonas putida, no activity
expression of mutants E141D, E141Q, E141G, H223G, H223E, and H223L in Escherichia coli JM109
expression in Escherichia coli
gene lasB, DNA and amino acid sequence determination and analysis
-
gene lasB, recombinant expression in Escherichia coli and in Pichia pastoris and secretion of the enzyme, large-scale expression of His-tagged enzyme under the control of the T7 promoter in Escherichia coli strain BL21(DE3) in inclusion bodies
-
recombinant enzyme expression in Pichia pastoris with heterogeneous N-glycosylation, expression of enzyme glycosylation site mutants
-
recombinant expression of wild-type and mutant enzymes in Escherichia coli strain BL21 (DE3)
-
EXPRESSION
ORGANISM
UNIPROT
LITERATURE
it is possible that the induction of LasB production is increased by the combined regulatory activities of the Las and Rhl systems in a manner not applicable to AprA
RENATURED/Commentary
ORGANISM
UNIPROT
LITERATURE
the recombinant protein is denatured with guanidine-HCl
solubilization of recombinant His-tagged enzyme from strain BL21(DE3) in inclusion bodies by 8 M urea
-
the recombinant protein is denatured with guanidine-HCl
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
medicine
biotechnology
-
A2 protease is usable for shrimp waste deproteinization in the process of chitin preparation, percent of protein removal after 3 h hydrolysis at 40°C with an enzyme/substrate ratio of 5 U/mg protein is about 75%. A2 proteolytic preparation also demonstrates powerful depilating capabilities of hair removal from bovine skin
diagnostics
-
specific protease activity of the enzyme as indicator for the degree of Pseudomonas aeruginosa infection in chronic infected wounds
industry
medicine
pharmacology
-
branched antimicrobial peptide M33 pegylation at the C-terminus of the three lysine-branching core with a Peg4 molecule and the resulting increase in stability to Pseudomonas aeruginosa elastase, peptide resistance to this protease is an important feature for M33-Peg activity against Pseudomonas aeruginosa
synthesis
-
the Pseudomonas aeruginosa elastase, produced by Pichia pastoris, is a promising biocatalyst for peptide synthesis in organic solvents
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Nishino, N.; Powers, J.C.
Pseudomonas aeruginosa elastase. Development of a new substrate, inhibitors, and an affinity ligand
J. Biol. Chem.
255
3482-3486
1980
Pseudomonas aeruginosa
Manually annotated by BRENDA team
Morihara, K.; Tsuzuki, H.
Pseudomonas aeruginosa elastase. Affinity chromatography and some properties as a metalloneutral proteinase
Agric. Biol. Chem.
39
1123-1128
1975
Pseudomonas aeruginosa
-
Manually annotated by BRENDA team
Morihara, K.
Pseudolysin and other pathogen endopeptidases of thermolysin family
Methods Enzymol.
248
242-253
1995
Pseudomonas aeruginosa, Vibrio cholerae serotype O1
Manually annotated by BRENDA team
Bever, R.A.; Iglewski, B.H.
Molecular characterization and nucleotide sequence of the Pseudomonas aeruginosa elastase structural gene
J. Bacteriol.
170
4309-4314
1988
Pseudomonas aeruginosa
Manually annotated by BRENDA team
Kessler, E.; Safrin, M.; Gustin, J.K.; Ohman, D.E.
Elastase and the LasA protease of Pseudomonas aeruginosa are secreted with their propeptides
J. Biol. Chem.
273
30225-30231
1998
Pseudomonas aeruginosa
Manually annotated by BRENDA team
Mariencheck, W.I.; Alcorn, J.F.; Palmer, S.M.; Wright, J.R.
Pseudomonas aeruginosa elastase degrades surfactant proteins A and D
Am. J. Respir. Cell Mol. Biol.
28
528-537
2003
Pseudomonas aeruginosa (P14756), Pseudomonas aeruginosa
Manually annotated by BRENDA team
Dulon, S.; Leduc, D.; Cottrell, G.S.; D'Alayer, J.; Hansen, K.K.; Bunnett, N.W.; Hollenberg, M.D.; Pidard, D.; Chignard, M.
Pseudomonas aeruginosa elastase disables proteinase-activated receptor 2 in respiratory epithelial cells
Am. J. Respir. Cell Mol. Biol.
32
411-419
2005
Pseudomonas aeruginosa, Pseudomonas aeruginosa (P14756)
Manually annotated by BRENDA team
Besson, C.; Saulnier, J.; Wallach, J.M.
Synthetic peptide substrates for a conductimetric assay of Pseudomonas aeruginosa elastase
Anal. Biochem.
237
216-223
1996
Pseudomonas aeruginosa (P14756), Pseudomonas aeruginosa
Manually annotated by BRENDA team
Burns, F.R.; Paterson, C.A.; Gray, R.D.; Wells, J.T.
Inhibition of Pseudomonas aeruginosa elastase and Pseudomonas keratitis using a thiol-based peptide
Antimicrob. Agents Chemother.
34
2065-2069
1990
Pseudomonas aeruginosa (P14756), Pseudomonas aeruginosa
Manually annotated by BRENDA team
Poncz, L.
Substrate inhibition of Pseudomonas aeruginosa elastase by 3-(2-furyl)acryloyl-glycyl-L-phenylalanyl-L-phenylalanine
Arch. Biochem. Biophys.
266
508-515
1988
Pseudomonas aeruginosa (P14756), Pseudomonas aeruginosa
Manually annotated by BRENDA team
Padrines, M.; Bieth, J.G.
Oxidized and Met358-->Leu mutated alpha 1-proteinase inhibitor as substrates of Pseudomonas aeruginosa elastase
Biochim. Biophys. Acta
1163
61-66
1993
Pseudomonas aeruginosa (P14756), Pseudomonas aeruginosa
Manually annotated by BRENDA team
Saulnier, J.M.; Curtil, F.M.; Duclos, M.C.; Wallach, J.M.
Elastolytic activity of Pseudomonas aeruginosa elastase
Biochim. Biophys. Acta
995
285-290
1989
Pseudomonas aeruginosa (P14756), Pseudomonas aeruginosa
Manually annotated by BRENDA team
Kocabiyik, S.; Ergin, E.; Turkoglu, S.
Effects of metals on elastase from Pseudomonas aeruginosa SES-938-1
Biol. Trace Elem. Res.
50
25-31
1995
Pseudomonas aeruginosa, Pseudomonas aeruginosa SES-938-1
Manually annotated by BRENDA team
Kessler, E.; Spierer, A.
Inhibition by phosphoramidon of Pseudomonas aeruginosa elastase injected intracorneally in rabbit eyes
Curr. Eye Res.
3
1075-1078
1984
Pseudomonas aeruginosa
Manually annotated by BRENDA team
Spierer, A.; Kessler, E.
The effect of 2-mercaptoacetyl-L-phenylalanyl-L-leucine, a specific inhibitor of Pseudomonas aeruginosa elastase, on experimental Pseudomonas keratitis in rabbit eyes
Curr. Eye Res.
3
645-650
1984
Pseudomonas aeruginosa
Manually annotated by BRENDA team
Jones, A.; Elphick, H.; Pettitt, E.; Everard, M.L.; Evans, G.S.
Colistin stimulates the activity of neutrophil elastase and Pseudomonas aeruginosa elastase
Eur. Respir. J.
19
1136-1141
2002
Pseudomonas aeruginosa (P14756), Pseudomonas aeruginosa
Manually annotated by BRENDA team
Morihara, K.; Tsuzuki, H.; Oda, K.
Protease and elastase of Pseudomonas aeruginosa: inactivation of human plasma alpha 1-proteinase inhibitor
Infect. Immun.
24
188-193
1979
Pseudomonas aeruginosa (P14756)
Manually annotated by BRENDA team
Kessler, E.; Israel, M.; Landshman, N.; Chechick, A.; Blumberg, S.
In vitro inhibition of Pseudomonas aeruginosa elastase by metal-chelating peptide derivatives
Infect. Immun.
38
716-723
1982
Pseudomonas aeruginosa (P14756), Pseudomonas aeruginosa
Manually annotated by BRENDA team
Heck, L.W.; Morihara, K.; McRae, W.B.; Miller, E.J.
Specific cleavage of human type III and IV collagens by Pseudomonas aeruginosa elastase
Infect. Immun.
51
115-118
1986
Pseudomonas aeruginosa (P14756), Pseudomonas aeruginosa
Manually annotated by BRENDA team
Poncz, L.; Jentoft, N.; Ho, M.C.; Dearborn, D.G.
Kinetics of proteolysis of hog gastric mucin by human neutrophil elastase and by Pseudomonas aeruginosa elastase
Infect. Immun.
56
703-704
1988
Pseudomonas aeruginosa (P14756), Pseudomonas aeruginosa
Manually annotated by BRENDA team
Bejarano, P.A.; Langeveld, J.P.; Hudson, B.G.; Noelken, M.E.
Degradation of basement membranes by Pseudomonas aeruginosa elastase
Infect. Immun.
57
3783-3787
1989
Pseudomonas aeruginosa (P14756), Pseudomonas aeruginosa
Manually annotated by BRENDA team
Hse, C.C.; Finkelstein, R.A.
Comparison of the Vibrio cholerae hemagglutinin/protease and the Pseudomonas aeruginosa elastase
Infect. Immun.
58
4011-4015
1990
Pseudomonas aeruginosa (P14756), Pseudomonas aeruginosa
Manually annotated by BRENDA team
Kawamoto, S.; Shibano, Y.; Fukushima, J.; Ishii, N.; Morihara, K.; Okuda, K.
Site-directed mutagenesis of Glu-141 and His-223 in Pseudomonas aeruginosa elastase: catalytic activity, processing, and protective activity of the elastase against Pseudomonas infection
Infect. Immun.
61
1400-1405
1993
Pseudomonas aeruginosa (P14756), Pseudomonas aeruginosa
Manually annotated by BRENDA team
Wolz, C.; Hohloch, K.; Ocaktan, A.; Poole, K.; Evans, R.W.; Rochel, N.; Albrecht-Gary, A.M.; Abdallah, M.A.; Doring, G.
Iron release from transferrin by pyoverdin and elastase from Pseudomonas aeruginosa
Infect. Immun.
62
4021-4027
1994
Pseudomonas aeruginosa (P14756)
Manually annotated by BRENDA team
Azghani, A.O.; Baker, J.W.; Shetty, S.; Miller, E.J.; Bhat, G.J.
Pseudomonas aeruginosa elastase stimulates ERK signaling pathway and enhances IL-8 production by alveolar epithelial cells in culture
Inflamm. Res.
51
506-510
2002
Pseudomonas aeruginosa (P14756), Pseudomonas aeruginosa
Manually annotated by BRENDA team
Kessler, E.; Kennah, H.E.; Brown, S.I.
Pseudomonas protease. Purification, partial characterization, and its effect on collagen, proteoglycan, and rabbit corneas
Invest. Ophthalmol. Vis. Sci.
16
488-497
1977
Pseudomonas aeruginosa
Manually annotated by BRENDA team
Kessler, E.; Spierer, A.; Blumberg, S.
Specific inhibition of Pseudomonas aeruginosa elastase injected intracorneally in rabbit eyes
Invest. Ophthalmol. Vis. Sci.
24
1093-1097
1983
Pseudomonas aeruginosa (P14756), Pseudomonas aeruginosa
Manually annotated by BRENDA team
Marquart, M.E.; Caballero, A.R.; Chomnawang, M.; Thibodeaux, B.A.; Twining, S.S.; O'Callaghan, R.J.
Identification of a novel secreted protease from Pseudomonas aeruginosa that causes corneal erosions
Invest. Ophthalmol. Vis. Sci.
46
3761-3768
2005
Pseudomonas aeruginosa (P14756), Pseudomonas aeruginosa (Q5XPI6), Pseudomonas aeruginosa, Pseudomonas aeruginosa PA103 (Q5XPI6)
Manually annotated by BRENDA team
Fukushima, J.; Yamamoto, S.; Morihara, K.; Atsumi, Y.; Takeuchi, H.; Kawamoto, S.; Okuda, K.
Structural gene and complete amino acid sequence of Pseudomonas aeruginosa IFO 3455 elastase
J. Bacteriol.
171
1698-1704
1989
Pseudomonas aeruginosa, Pseudomonas aeruginosa IFO3455
Manually annotated by BRENDA team
McIver, K.; Kessler, E.; Ohman, D.E.
Substitution of active-site His-223 in Pseudomonas aeruginosa elastase and expression of the mutated lasB alleles in Escherichia coli show evidence for autoproteolytic processing of proelastase
J. Bacteriol.
173
7781-7789
1991
Pseudomonas aeruginosa (P14756), Pseudomonas aeruginosa
Manually annotated by BRENDA team
McIver, K.S.; Olson, J.C.; Ohman, D.E.
Pseudomonas aeruginosa lasB1 mutants produce an elastase, substituted at active-site His-223, that is defective in activity, processing, and secretion
J. Bacteriol.
175
4008-4015
1993
Pseudomonas aeruginosa (P14756)
Manually annotated by BRENDA team
Thayer, M.M.; Flaherty, K.M.; McKay, D.B.
Three-dimensional structure of the elastase of Pseudomonas aeruginosa at 1.5-A resolution
J. Biol. Chem.
266
2864-2871
1991
Pseudomonas aeruginosa (P14756), Pseudomonas aeruginosa
Manually annotated by BRENDA team
Kessler, E.; Safrin, M.
The propeptide of Pseudomonas aeruginosa elastase acts an elastase inhibitor
J. Biol. Chem.
269
22726-22731
1994
Pseudomonas aeruginosa (P14756), Pseudomonas aeruginosa
Manually annotated by BRENDA team
Heck, L.W.; Alarcon, P.G.; Kulhavy, R.M.; Morihara, K.; Russell, M.W.; Mestecky, J.F.
Degradation of IgA proteins by Pseudomonas aeruginosa elastase
J. Immunol.
144
2253-2257
1990
Pseudomonas aeruginosa, Pseudomonas aeruginosa IFO 3455
Manually annotated by BRENDA team
Azghani, A.O.; Bedinghaus, T.; Klein, R.
Detection of elastase from Pseudomonas aeruginosa in sputum and its potential role in epithelial cell permeability
Lung
178
181-189
2000
Pseudomonas aeruginosa (P14756), Pseudomonas aeruginosa
Manually annotated by BRENDA team
McKay, D.B.; Thayer, M.M.; Flaherty, K.M.; Pley, H.; Benvegnu, D.
Crystallographic structures of the elastase of Pseudomonas aeruginosa
Matrix Suppl.
1
112-115
1992
Pseudomonas aeruginosa (P14756)
Manually annotated by BRENDA team
Braun, P.; Bitter, W.; Tommassen, J.
Activation of Pseudomonas aeruginosa elastase in Pseudomonas putida by triggering dissociation of the propeptide-enzyme complex
Microbiology
146
2565-2572
2000
Pseudomonas aeruginosa (P14756)
-
Manually annotated by BRENDA team
Braun, P.; Tommassen, J.; Filloux, A.
Role of the propeptide in folding and secretion of elastase of Pseudomonas aeruginosa
Mol. Microbiol.
19
297-306
1996
Pseudomonas aeruginosa (P14756)
Manually annotated by BRENDA team
Galloway, D.R.
Pseudomonas aeruginosa elastase and elastolysis revisited: recent developments
Mol. Microbiol.
5
2315-2321
1991
Pseudomonas aeruginosa (P14756), Pseudomonas aeruginosa, Pseudomonas aeruginosa PAO-E64 (P14756)
Manually annotated by BRENDA team
Barbey-Morel, C.; Perlmutter, D.H.
Effect of pseudomonas elastase on human mononuclear phagocyte alpha 1-antitrypsin expression
Pediatr. Res.
29
133-140
1991
Pseudomonas aeruginosa (P14756), Pseudomonas aeruginosa
Manually annotated by BRENDA team
Matheson, N.R.; Potempa, J.; Travis, J.
Interaction of a novel form of Pseudomonas aeruginosa alkaline protease (aeruginolysin) with interleukin-6 and interleukin-8
Biol. Chem.
387
911-915
2006
Pseudomonas aeruginosa
Manually annotated by BRENDA team
Gupta, A.; Roy, I.; Khare, S.K.; Gupta, M.N.
Purification and characterization of a solvent stable protease from Pseudomonas aeruginosa PseA
J. Chromatogr. A
1069
155-161
2005
Pseudomonas aeruginosa
Manually annotated by BRENDA team
Adekoya, O.A.; Willassen, N.P.; Sylte, I.
Molecular insight into pseudolysin inhibition using the MM-PBSA and LIE methods
J. Struct. Biol.
153
129-144
2006
Pseudomonas aeruginosa
Manually annotated by BRENDA team
Elston, C.; Wallach, J.; Saulnier, J.
New continuous and specific fluorometric assays for Pseudomonas aeruginosa elastase and LasA protease
Anal. Biochem.
368
87-94
2007
Pseudomonas aeruginosa
Manually annotated by BRENDA team
Lutfullah, G.; Amin, F.; Khan, Z.; Azhar, N.; Azim, M.K.; Noor, S.; Shoukat, K.
Homology modeling of hemagglutinin/protease [HA/P (vibriolysin)] from Vibrio cholerae: Sequence comparision, residue interactions and molecular mechanism
Protein J.
27
105-114
2008
Pseudomonas aeruginosa (P14756), Pseudomonas aeruginosa
Manually annotated by BRENDA team
Kida, Y.; Higashimoto, Y.; Inoue, H.; Shimizu, T.; Kuwano, K.
A novel secreted protease from Pseudomonas aeruginosa activates NF-kappaB through protease-activated receptors
Cell. Microbiol.
10
1491-1504
2008
Pseudomonas aeruginosa
Manually annotated by BRENDA team
Cheng, M.; Takenaka, S.; Aoki, S.; Murakami, S.; Aoki, K.
Purification and characterization of an eggshell membrane decomposing protease from Pseudomonas aeruginosa strain ME-4
J. Biosci. Bioeng.
107
373-378
2009
Pseudomonas aeruginosa, Pseudomonas aeruginosa ME-4
Manually annotated by BRENDA team
Beaufort, N.; Corvazier, E.; Hervieu, A.; Choqueux, C.; Dussiot, M.; Louedec, L.; Cady, A.; de Bentzmann, S.; Michel, J.B.; Pidard, D.
The thermolysin-like metalloproteinase and virulence factor LasB from pathogenic Pseudomonas aeruginosa induces anoikis of human vascular cells
Cell. Microbiol.
13
1149-1167
2011
Pseudomonas aeruginosa
Manually annotated by BRENDA team
Ghorbel-Bellaaj, O.; Khaled, H.B.; Bayoudh, A.; Younes, I.; Hmidet, N.; Jellouli, K.; Nasri, M.
Pseudomonas aeruginosa A2 elastase: Purification, characterization and biotechnological applications
Int. J. Biol. Macromol.
50
679-686
2012
Pseudomonas aeruginosa, Pseudomonas aeruginosa A2
Manually annotated by BRENDA team
Andrejko, M.; Mizerska-Dudka, M.
Elastase B of Pseudomonas aeruginosa stimulates the humoral immune response in the greater wax moth, Galleria mellonella
J. Invertebr. Pathol.
107
16-26
2011
Pseudomonas aeruginosa
Manually annotated by BRENDA team
Falciani, C.; Lozzi, L.; Scali, S.; Brunetti, J.; Bracci, L.; Pini, A.
Site-specific pegylation of an antimicrobial peptide increases resistance to Pseudomonas aeruginosa elastase
Amino Acids
46
1403-1407
2014
Pseudomonas aeruginosa
Manually annotated by BRENDA team
Han, M.; Wang, X.; Ding, H.; Jin, M.; Yu, L.; Wang, J.; Yu, X.
The role of N-glycosylation sites in the activity, stability, and expression of the recombinant elastase expressed by Pichia pastoris
Enzyme Microb. Technol.
54
32-37
2014
Pseudomonas aeruginosa
Manually annotated by BRENDA team
Wildeboer, D.; Hill, K.E.; Jeganathan, F.; Williams, D.W.; Riddell, A.D.; Price, P.E.; Thomas, D.W.; Stephens, P.; Abuknesha, R.A.; Price, R.G.
Specific protease activity indicates the degree of Pseudomonas aeruginosa infection in chronic infected wounds
Eur. J. Clin. Microbiol. Infect. Dis.
31
2183-2189
2012
Pseudomonas aeruginosa
Manually annotated by BRENDA team
Bian, F.; Yue, S.; Peng, Z.; Zhang, X.; Chen, G.; Yu, J.; Xuan, N.; Bi, Y.
A comprehensive alanine-scanning mutagenesis study reveals roles for salt bridges in the structure and activity of Pseudomonas aeruginosa elastase
PLoS ONE
10
e121108
2015
Pseudomonas aeruginosa
Manually annotated by BRENDA team
Odunuga, O.; Adekoya, O.; Sylte, I.
High-level expression of pseudolysin, the extracellular elastase of Pseudomonas aeruginosa, in Escherichia coli and its purification
Protein Expr. Purif.
113
79-84
2015
Pseudomonas aeruginosa
Manually annotated by BRENDA team
Yang, J.; Zhao, H.; Ran, L.; Li, C.; Zhang, X.; Su, H.; Shi, M.; Zhou, B.; Chen, X.; Zhang, Y.
Mechanistic insights into elastin degradation by pseudolysin, the major virulence factor of the opportunistic pathogen Pseudomonas aeruginosa
Sci. Rep.
5
9936
2015
Pseudomonas aeruginosa (P14756), Pseudomonas aeruginosa
Manually annotated by BRENDA team
Galdino, A.C.M.; de Oliveira, M.P.; Ramalho, T.C.; de Castro, A.A.; Branquinha, M.H.; Santos, A.L.S.
Anti-virulence strategy against the multidrug-resistant bacterial pathogen Pseudomonas aeruginosa pseudolysin (elastase B) as a potential druggable target
Curr. Protein Pept. Sci.
20
471-487
2019
Pseudomonas aeruginosa
Manually annotated by BRENDA team
Jose, D.; Mohandas, A.; Bright Singh, I.
Bioprocess technology for LasB protease (elastase) production from Pseudomonas aeruginosa MCCB 123
Indian J. Biotechnol.
17
284-289
2018
Pseudomonas aeruginosa (G1EMI7), Pseudomonas aeruginosa MCCB 123 (G1EMI7)
-
Manually annotated by BRENDA team
Casilag, F.; Lorenz, A.; Krueger, J.; Klawonn, F.; Weiss, S.; Haeussler, S.
The LasB elastase of Pseudomonas aeruginosa acts in concert with alkaline protease AprA to prevent flagellin-mediated immune recognition
Infect. Immun.
84
162-171
2016
Pseudomonas aeruginosa (Q02RJ6), Pseudomonas aeruginosa UCBPP-PA14 (Q02RJ6)
Manually annotated by BRENDA team
Said, Z.S.A.M.; Arifi, F.A.M.; Salleh, A.B.; Rahman, R.N.Z.R.A.; Leow, A.T.C.; Latip, W.; Ali, M.S.M.
Unravelling protein -organic solvent interaction of organic solvent tolerant elastase from Pseudomonas aeruginosa strain K crystal structure
Int. J. Biol. Macromol.
127
575-584
2019
Pseudomonas aeruginosa (A7LI11)
Manually annotated by BRENDA team
Kotb, E.; El-Zawahry, Y.; Saleh, G.
Isolation of a putative virulence agent, cytotoxic serine-elastase, from a newly isolated Pseudomonas aeruginosa ZuhP13
J. Biosci.
44
7
2019
Pseudomonas aeruginosa, Pseudomonas aeruginosa ZuhP13
Manually annotated by BRENDA team
Smith, K.; Rajendran, R.; Kerr, S.; Lappin, D.F.; Mackay, W.G.; Williams, C.; Ramage, G.
Aspergillus fumigatus enhances elastase production in Pseudomonas aeruginosa co-cultures
Med. Mycol.
53
645-655
2015
Pseudomonas aeruginosa
Manually annotated by BRENDA team
Li, Y.; Bai, F.; Xia, H.; Zhuang, L.; Xu, H.; Jin, Y.; Zhang, X.; Bai, Y.; Qiao, M.
A novel regulator PA5022 (aefA) is involved in swimming motility, biofilm formation and elastase activity of Pseudomonas aeruginosa
Microbiol. Res.
176
14-20
2015
Pseudomonas aeruginosa, Pseudomonas aeruginosa PA68
Manually annotated by BRENDA team
van der Plas, M.J.; Bhongir, R.K.; Kjellstroem, S.; Siller, H.; Kasetty, G.; Moergelin, M.; Schmidtchen, A.
Pseudomonas aeruginosa elastase cleaves a C-terminal peptide from human thrombin that inhibits host inflammatory responses
Nat. Commun.
7
11567
2016
Pseudomonas aeruginosa (P14756), Pseudomonas aeruginosa
Manually annotated by BRENDA team