Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 3.4.24.17 - stromelysin 1 and Organism(s) Homo sapiens and UniProt Accession P45452

for references in articles please use BRENDA:EC3.4.24.17
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
     3 Hydrolases
         3.4 Acting on peptide bonds (peptidases)
             3.4.24 Metalloendopeptidases
                3.4.24.17 stromelysin 1
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Homo sapiens
UNIPROT: P45452 not found.
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Homo sapiens
The expected taxonomic range for this enzyme is: Eukaryota, Bacteria
Reaction Schemes
preferential cleavage where P1', P2' and P3' are hydrophobic residues
Synonyms
mmp-3, stromelysin, matrix metalloproteinase-3, stromelysin-1, matrix metalloproteinase 3, transin, stromelysin 1, proteoglycanase, matrixin, matrix metalloprotease-3, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
stromelysin-1
-
Collagen-activating protein
-
-
-
-
Collagenase activating protein
-
-
-
-
matrix metalloprotease-3
-
Matrix metalloproteinase 3
matrix metalloproteinase-3
matrixin
-
-
MMP-3
Neutral proteoglycanase
-
-
-
-
Procollagenase activator
-
-
-
-
Proteoglycanase
PTR1 protein
-
-
-
-
Stromelysin
-
-
-
-
stromelysin-1
Transin
-
-
-
-
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
hydrolysis of peptide bond
-
-
-
-
CAS REGISTRY NUMBER
COMMENTARY hide
79955-99-0
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
NFF2 + H2O
?
show the reaction diagram
quenched fluorescence substrate
-
?
(7-Methoxycoumarin-4-yl)acetyl-Arg-Pro-Lys-Pro-Tyr-Ala-norvaline-Trp-Met-Lys(2,4-dinitrophenyl)-NH2 + H2O
?
show the reaction diagram
-
hydrolyzed 60 times more rapidly by metalloproteinase-3 than metalloproteinase-1, little discrimination between metalloproteinase-3 and metalloproteinase-2
-
-
?
(7-Methoxycoumarin-4-yl)acetyl-Arg-Pro-Lys-Pro-Val-Glu-norvaline-Trp-Arg-Lys(2,4-dinitrophenyl)-NH2 + H2O
(7-Methoxycoumarin-4-yl)acetyl-Arg-Pro-Lys-Pro-Val-Glu + norvaline-Trp-Arg-Lys(2,4-dinitrophenyl)-NH2
show the reaction diagram
-
-
-
?
(7-Methoxycoumarin-4-yl)acetyl-Arg-Pro-Lys-Pro-Val-Glu-norvaline-Trp-Arg-Lys(2,4-dinitrophenyl)-NH2 + H2O
?
show the reaction diagram
-
a fluorogenic substrate selectively hydrolyzed by stromelysin 1
-
-
?
(7-methoxycoumarin-4-yl)acetyl-P-L-G-L-(L)-2,3-diaminopropionylamide-A-R + H2O
?
show the reaction diagram
-
-
-
?
(7-methoxycoumarin-4-yl)acetyl-Pro-Leu-Gly-Leu-N-3-(2,4-dinitrophenyl)-L-2,3-diaminopropionyl-Ala-Arg-NH2 + H2O
(7-methoxycoumarin-4-yl)acetyl-Pro-Leu-Gly + Leu-N-3-(2,4-dinitrophenyl)-L-2,3-diaminopropionyl-Ala-Arg-NH2
show the reaction diagram
-
-
-
?
(7-Methoxycoumarin-4-yl)acetyl-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Lys-(2,4-dinitrophenyl)-Gly + H2O
?
show the reaction diagram
-
hydrolyzed equally well by metalloproteinase-3 and metalloproteinase-2, metalloproteinase-1 shows 25% of the activity compared to metalloproteinase-3
-
-
?
2,4-Dinitrophenyl-Arg-Pro-Lys-Pro-Leu-Ala-norvaline-Trp-NH2 + H2O
2,4-Dinitrophenyl-Arg-Pro-Lys-Pro-Leu-Ala + norvaline-Trp-NH2
show the reaction diagram
-
-
-
?
2,4-Dinitrophenyl-Pro-Leu-Gly-Leu-Trp-Ala-D-Arg-NH2 + H2O
2,4-Dinitrophenyl-Pro-Leu-Gly + Leu-Trp-Ala-D-Arg-NH2
show the reaction diagram
-
-
-
?
2,4-Dinitrophenyl-Pro-Tyr-Ala-Tyr-Trp-Met-Arg-NH2 + H2O
2,4-Dinitrophenyl-Pro-Tyr-Ala + Tyr-Trp-Met-Arg-NH2
show the reaction diagram
6-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]hexanoy-L-Arg-L-Pro-L-Lys-L-Pro-L-Leu-L-Ala-L-Nva-L-Trp-L-Lys(7-dimethylaminocoumarin-4-yl)-NH2 + H2O
?
show the reaction diagram
-
-
-
-
?
Acetyl-Pro-Leu-Gly-thioester-Leu-Leu-Gly ethyl ester + H2O
?
show the reaction diagram
-
-
-
-
?
Aggrecan core protein + H2O
?
show the reaction diagram
-
-
-
-
?
alpha-Proteinase inhibitor + H2O
2,4-Dinitrophenyl-Pro-Leu-Gly + Ile-Ala-Gly-Arg-NH2
show the reaction diagram
-
alpha1-proteinase inhibitor, cleavage within the reactive site loop
-
-
?
alpha1-Antichymotrypsin + H2O
?
show the reaction diagram
-
cleaves at the P1'-P2' bond
-
-
?
alpha1-antitrypsin + H2O
?
show the reaction diagram
-
-
-
?
Antithrombin III + H2O
?
show the reaction diagram
-
cleavage of the P1-P1' bond in the reactive center
-
-
?
Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Nle-NH2 + H2O
?
show the reaction diagram
-
-
-
-
?
Azocoll + H2O
?
show the reaction diagram
-
-
-
-
?
beta-casein + H2O
?
show the reaction diagram
Carboxymethyltransferrin + H2O
?
show the reaction diagram
-
-
-
-
?
casein + H2O
?
show the reaction diagram
cytosolic protein Apaf-1 + H2O
?
show the reaction diagram
decorin + H2O
transforming growth factor-beta + ?
show the reaction diagram
-
-
-
?
DQ-collagen I + H2O
?
show the reaction diagram
-
-
-
-
?
DQ-collagen IV + H2O
?
show the reaction diagram
-
-
-
-
?
Elastin + H2O
?
show the reaction diagram
elastin fELN-125 + H2O
?
show the reaction diagram
-
-
-
-
?
fibrin + H2O
fibrin fragments + ?
show the reaction diagram
-
-
-
?
Fibronectin + H2O
?
show the reaction diagram
Fibronectin + H2O
Intact fibronectin subunit MW 22000 + a disulfide-bonded COOH-terminal MW 20000 polypeptide
show the reaction diagram
FS-6 + H2O
?
show the reaction diagram
-
-
-
-
?
Gelatin + H2O
?
show the reaction diagram
Laminin + H2O
?
show the reaction diagram
Mca-Arg-Pro-Lys-Pro-Val-Glu-Nva-Trp-Arg-Lys(Dnp)-NH2 + H2O
?
show the reaction diagram
-
fluorogenic substrate
-
-
?
osteopontin + H2O
?
show the reaction diagram
-
-
-
?
pro-caspase-9 + H2O
active caspase-9 + caspase-9 propeptide
show the reaction diagram
Procollagen + H2O
?
show the reaction diagram
triple helical peptide alpha1(V) + H2O
?
show the reaction diagram
-
collagen V fibrils
-
-
?
Collagen type IV + H2O
additional information
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
cytosolic protein Apaf-1 + H2O
?
show the reaction diagram
-
-
-
?
pro-caspase-9 + H2O
active caspase-9 + caspase-9 propeptide
show the reaction diagram
activation
-
-
?
additional information
?
-
METALS and IONS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
Mn2+
-
addition of 5 mM Mn2+ in the presence of Ca2+ restores activity of the apoenzyme, not by Mn2+ alone
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
CGS 27023
-
(1R,2S)-2-((R)-sec-butyl)-N-hydroxy-3-((4-methoxyphenyl)sulfonyl)cyclopropanecarboxamide
-
-
(1R,3S)-N-hydroxy-2-((4-methoxyphenyl)sulfonyl)-3-((pyridin-3-yloxy)methyl)cyclopropanecarboxamide
-
-
(1R,3S)-N-hydroxy-2-((4-methoxyphenyl)sulfonyl)-3-(5-phenylpentyl)cyclopropanecarboxamide
-
-
(2S)-3-(4-fluorophenyl)-N-methyl-2-(([(5-thioxo-4,5-dihydro-1,3,4-thiadiazol-2-yl)amino]carbonyl)amino)propanamide
-
-
(2S)-3-(benzyloxy)-N-methyl-2-(([(5-thioxo-4,5-dihydro-1,3,4-thiadiazol-2-yl)amino]carbonyl)amino)propanamide
-
-
(2S)-3-phenyl-2-(([(5-thioxo-4,5-dihydro-1,3,4-thiadiazol-2-yl)amino]carbonyl)amino)propanamide
(2S)-N-methyl-3-(4-nitrophenyl)-2-(([(5-thioxo-4,5-dihydro-1,3,4-thiadiazol-2-yl)amino]carbonyl)amino)propanamide
-
-
(2S)-N-methyl-3-(pentafluorophenyl)-2-(([(5-thioxo-4,5-dihydro-1,3,4-thiadiazol-2-yl)amino]carbonyl)amino)propanamide
(2S)-N-methyl-3-phenyl-2-(([(5-thioxo-4,5-dihydro-1,3,4-thiadiazol-2-yl)amino]carbonyl)amino)propanamide
1,10-phenanthroline
-
-
1-([[4-(3,4-dimethylphenoxy)phenyl]sulfonyl]methyl)-N-hydroxy-4-(prop-2-yn-1-yl)cyclohexanecarboxamide
-
-
1-acetyl-N-hydroxy-4-[[4-(phenylsulfanyl)phenyl]sulfonyl]piperidine-4-carboxamide
-
-
1-cyclopropyl-N-hydroxy-4-[(4-phenoxyphenyl)sulfonyl]piperidine-4-carboxamide
-
-
1-cyclopropyl-N-hydroxy-4-[[4-(phenylsulfanyl)phenyl]sulfonyl]piperidine-4-carboxamide
-
-
1-[(1S)-1-(4-fluorobenzyl)-2-oxo-2-(4-pyridin-2-ylpiperazin-1-yl)ethyl]-3-(5-thioxo-4,5-dihydro-1,3,4-thiadiazol-2-yl)urea
-
-
1-[(1S)-2-oxo-1-(pentafluorobenzyl)-2-(4-pyridin-2-ylpiperazin-1-yl)ethyl]-3-(5-thioxo-4,5-dihydro-1,3,4-thiadiazol-2-yl)urea
-
-
2-([4-[3'-(2-aminoethoxy)-2-methylbiphenyl-4-yl]piperidin-1-yl]sulfonyl)-N-hydroxy-2-methylpropanamide
-
-
2-[(2-biphenyl-4-ylethyl)(methyl)sulfamoyl]-N-hydroxyacetamide
-
-
2-[(3-biphenyl-4-ylazetidin-1-yl)sulfonyl]-N-hydroxyacetamide
-
-
2-[(3-biphenyl-4-ylpropyl)(methyl)sulfamoyl]-N-hydroxyacetamide
-
-
2-[(4-biphenyl-4-yl-3,6-dihydropyridin-1(2H)-yl)sulfonyl]-N-hydroxyacetamide
-
-
2-[(4-biphenyl-4-ylpiperidin-1-yl)sulfonyl]-N-hydroxyacetamide
-
-
2-[(4-[3'-[2-(dimethylamino)ethoxy]-2-methylbiphenyl-4-yl]piperidin-1-yl)sulfonyl]-N-hydroxy-2-methylpropanamide
-
-
2-[(biphenyl-4-ylmethyl)(methyl)sulfamoyl]-N-hydroxyacetamide
-
-
2-[(biphenyl-4-ylsulfonyl)[2-(hydroxyamino)-2-oxoethyl]amino]-N-[2-(4-sulfamoylphenyl)ethyl]acetamide
-
-
2-[[2-(hydroxyamino)-2-oxoethyl][(4-methoxyphenyl)sulfonyl]amino]-N-[2-(4-sulfamoylphenyl)ethyl]acetamide
-
-
2-[[2-(hydroxyamino)-2-oxoethyl][(4-phenoxyphenyl)sulfonyl]amino]-N-[2-(4-sulfamoylphenyl)ethyl]acetamide
-
-
2-[[3-(biphenyl-4-yloxy)azetidin-1-yl]sulfonyl]-N-hydroxyacetamide
-
-
2-[[4-(2,3'-dimethylbiphenyl-4-yl)-3,6-dihydropyridin-1(2H)-yl]sulfonyl]-N-hydroxyacetamide
-
-
2-[[4-(2-chlorobiphenyl-4-yl)-3,6-dihydropyridin-1(2H)-yl]sulfonyl]-N-hydroxyacetamide
-
-
2-[[4-(2-ethylbiphenyl-4-yl)-3,6-dihydropyridin-1(2H)-yl]sulfonyl]-N-hydroxyacetamide
-
-
2-[[4-(2-fluorobiphenyl-4-yl)-3,6-dihydropyridin-1(2H)-yl]sulfonyl]-N-hydroxyacetamide
-
-
2-[[4-(3'-ethoxy-2-methylbiphenyl-4-yl)-3,6-dihydropyridin-1(2H)-yl]sulfonyl]-N-hydroxyacetamide
-
-
2-[[4-(3'-ethoxy-2-methylbiphenyl-4-yl)piperidin-1-yl]sulfonyl]-N-hydroxy-2-methylpropanamide
-
-
2-[[4-(3'-ethyl-2-methylbiphenyl-4-yl)-3,6-dihydropyridin-1(2H)-yl]sulfonyl]-N-hydroxyacetamide
-
-
3-(4'-cyanobiphenyl-4-yloxy)-N-hydroxypropionamide
-
-
3-(hydroxycarbamoyl)-1-[(4-phenoxybenzoyl)amino]pentyl 2,2-dimethylpropanoate
-
-
3-ethyl-N-hydroxy-1-[(4-methoxyphenyl)sulfonyl]-4,4-dimethylprolinamide
-
-
3-[(4'-cyanobiphenyl-4-yl)oxy]-N-hydroxypropanamide
-
-
3-[(benzyloxy)methyl]-N-hydroxy-1-[(4-methoxyphenyl)sulfonyl]-4,4-dimethylprolinamide
-
-
3-[(benzylsulfanyl)methyl]-N-hydroxy-1-[(4-methoxyphenyl)sulfonyl]-4,4-dimethylprolinamide
-
-
4-(1-benzofuran-2-yl)-N-[(2S)-1-hydroxy-5-(hydroxyamino)-5-oxopentan-2-yl]benzamide
-
-
4-(1-benzofuran-2-yl)-N-[(2S)-2-hydroxy-4-(hydroxyamino)-4-oxobutyl]benzamide
-
-
4-(1-benzofuran-2-yl)-N-[(2S)-4-(hydroxyamino)-2-(methoxymethoxy)-4-oxobutyl]benzamide
-
-
4-(1-benzofuran-2-yl)-N-[(2S)-5-(hydroxyamino)-1-(methoxymethoxy)-5-oxopentan-2-yl]benzamide
-
-
4-(1-benzofuran-2-yl)-N-[(3R)-3-[(benzyloxy)methyl]-4-(hydroxyamino)-4-oxobutyl]benzamide
-
-
4-(1-benzofuran-2-yl)-N-[(3S)-3-hydroxy-4-(hydroxyamino)-4-oxobutyl]benzamide
-
-
4-(1-benzofuran-2-yl)-N-[3-(hydroxycarbamoyl)-6-phenylhexyl]benzamide
-
-
4-(1-benzofuran-2-yl)-N-[3-benzyl-4-(hydroxyamino)-4-oxobutyl]benzamide
-
-
4-(1-benzofuran-2-yl)-N-[4-(hydroxyamino)-4-oxobutyl]benzamide
-
-
4-(hydroxyamino)-3-methyl-4-oxo-1-[(4-phenoxybenzoyl)amino]butyl 2,2-dimethylpropanoate
-
-
4-([[4-(4-chlorophenoxy)phenyl]sulfonyl]methyl)-N-hydroxytetrahydro-2H-pyran-4-carboxamide
-
-
4-([[4-(biphenyl-4-yloxy)phenyl]sulfonyl]methyl)-N-hydroxy-1-(2-phenylethyl)piperidine-4-carboxamide
-
-
4-([[4-(biphenyl-4-yloxy)phenyl]sulfonyl]methyl)-N-hydroxypiperidine-4-carboxamide
-
-
4-Aminobenzoyl-Gly-Pro-D-Leu-D-Ala-NHOH
-
-
4-[(E)-2-(4-chlorophenyl)ethenyl]-N-[4-(hydroxyamino)-4-oxobutyl]benzamide
-
-
4-[[4-(4-chlorophenoxy)phenyl]sulfonyl]-N-hydroxytetrahydro-2H-pyran-4-carboxamide
-
-
5-methyl-5-(4-phenoxy-phenyl)-pyrimidine-2,4,6-trione
MPPT, enzyme binding structure analysis
alendronate
-
-
Alpha-macroglobulin
-
-
-
alpha-[[[(4,5-dihydro-5-thioxo-1,3,4-thiadiazol-2-yl)amino]-carbonyl]amino]-3-hydroxy-N-methyl-(S)-propanamide
alpha-[[[(4,5-dihydro-5-thioxo-1,3,4-thiadiazol-2-yl)amino]carbonyl]amino]-N,N-dimethyl-(S)-benzenepropanamide
amide substituted piperazine-based MMP inhibitor
-
-
-
batimastat
-
-
benzyl [3-[(biphenyl-4-ylsulfonyl)(propan-2-yloxy)amino]-4-(hydroxyamino)-4-oxobutyl]carbamate
-
-
bisphosphonate
-
-
butanolic extract of propolis sample
-
-
-
carboxylic acid diphenylpiperidine inhibitor
-
-
-
chicoric acid
-
-
clodronate
-
-
curcumin
i.e. 1,7-bis (4-hydroxy-3-methoxyphenol)-1,6-heptadiene-3,5-dione, molecular docking and prediction of binding interactions of curcumin with active site residues
cysteine
-
-
daidzein
-
-
dexamethasone
-
inhibits active MMP-3, significantly decreases the ratio of active MMP-3 to total MMP-3 activity
dichloro[[(methylsulfinyl-kappaS)methyl]phosphonate-kappaO'']platinum
-
-
EGTA
-
-
galardin
-
Glycomed GM-6001, clinically advanced MMP inhibitor, effective in treatment of corneal ulcers
genistein
-
-
genistin
-
-
HONH-CO-CH2-CH(n-pentyl)-CO-Leu-Phe-NH2
-
-
Hydroxamate-containing peptide inhibitor
-
-
-
hydroxamic acid diphenylpiperidine inhibitor
-
-
-
hydroxamic acid inhibitor CGS 27023
-
-
hydroxamic acid substrate mimetic inhibitor
-
U24522
-
interleukin-1 receptor antagonist
-
inhibits active MMP-3
-
kaempferol
-
-
N-(4,5-dihydro-5-thioxo-1,3,4-thiadiazol-2-yl)-N'-(2-phenethyl)urea
-
-
N-(biphenyl-4-ylsulfonyl)-N-[(2R)-1-(hydroxyamino)-3-methyl-1-oxobutan-2-yl]glycine
-
-
N-(Carboxyalkyl)dipeptide
-
Ala[N]homophenylalanine-Leu-anilide
-
N-alkyl-and heterocycle-substitited piperazine-based MMP inhibitor
-
-
-
N-hydroxy-1-(2-methoxyethyl)-4-[(4-phenoxyphenyl)sulfonyl]piperidine-4-carboxamide
-
-
N-hydroxy-1-(2-methoxyethyl)-4-[[4-(phenylsulfanyl)phenyl]sulfonyl]piperidine-4-carboxamide
-
-
N-hydroxy-1-methyl-4-[[4-(phenylsulfanyl)phenyl]sulfonyl]piperidine-4-carboxamide
-
-
N-hydroxy-1-[(4-methoxyphenyl)sulfonyl]-4,4-dimethyl-3-[[(2-phenylethyl)sulfanyl]methyl]prolinamide
-
-
N-hydroxy-1-[(methylsulfonyl)oxy]-4-[[4-(phenylsulfanyl)phenyl]sulfonyl]piperidine-4-carboxamide
-
-
N-hydroxy-1-[[(4-phenoxyphenyl)sulfonyl]methyl]-4-(prop-2-yn-1-yl)cyclohexanecarboxamide
-
-
N-hydroxy-2-([4-[2-(trifluoromethyl)biphenyl-4-yl]-3,6-dihydropyridin-1(2H)-yl]sulfonyl)acetamide
-
-
N-hydroxy-2-([4-[2-methyl-3'-(trifluoromethoxy)biphenyl-4-yl]-3,6-dihydropyridin-1(2H)-yl]sulfonyl)acetamide
-
-
N-hydroxy-2-([4-[3'-(2-hydroxyethoxy)-2-methylbiphenyl-4-yl]piperidin-1-yl]sulfonyl)-2-methylpropanamide
-
-
N-hydroxy-2-([4-[3'-(2-methoxyethoxy)-2-methylbiphenyl-4-yl]piperidin-1-yl]sulfonyl)-2-methylpropanamide
-
-
N-hydroxy-2-([4-[3'-(methoxymethyl)-2-methylbiphenyl-4-yl]-3,6-dihydropyridin-1(2H)-yl]sulfonyl)acetamide
-
-
N-hydroxy-2-methyl-2-[(4-[2-methyl-3'-[2-(methylamino)ethoxy]biphenyl-4-yl]piperidin-1-yl)sulfonyl]propanamide
-
-
N-hydroxy-2-[(4-[4-[6-(2-hydroxyethoxy)pyridin-2-yl]-3-methylphenyl]piperidin-1-yl)sulfonyl]-2-methylpropanamide
-
-
N-hydroxy-2-[N-(2-hydroxyethyl)biphenyl-4-sulfonamide] hydroxamic acid
-
-
N-hydroxy-2-[[4-(2-methylbiphenyl-4-yl)-3,6-dihydropyridin-1(2H)-yl]sulfonyl]acetamide
-
-
N-hydroxy-2-[[4-(3'-methoxy-2-methylbiphenyl-4-yl)-3,6-dihydropyridin-1(2H)-yl]sulfonyl]acetamide
-
-
N-hydroxy-2-[[4-(4-phenoxyphenyl)piperidin-1-yl]sulfonyl]acetamide
-
-
N-hydroxy-3-(hydroxymethyl)-1-[(4-methoxyphenyl)sulfonyl]-4,4-dimethylprolinamide
-
-
N-hydroxy-3-[(1R)-1-hydroxy-2-(phenylsulfanyl)ethyl]-1-[(4-methoxyphenyl)sulfonyl]-4,4-dimethylprolinamide
-
-
N-hydroxy-3-[(1S)-1-hydroxy-2-(phenylsulfanyl)ethyl]-1-[(4-methoxyphenyl)sulfonyl]-4,4-dimethylprolinamide
-
-
N-hydroxy-3-[[(4-methoxybenzyl)sulfanyl]methyl]-1-[(4-methoxyphenyl)sulfonyl]-4,4-dimethylprolinamide
-
-
N-hydroxy-4-[(4-phenoxyphenyl)sulfonyl]-1-(prop-2-yn-1-yl)piperidine-4-carboxamide
-
-
N-hydroxy-4-[(4-phenoxyphenyl)sulfonyl]piperidine-4-carboxamide
-
-
N-hydroxy-4-[[(4-phenoxyphenyl)sulfonyl]methyl]-1-(2-phenylethyl)piperidine-4-carboxamide
-
-
N-hydroxy-4-[[4-(phenylsulfanyl)phenyl]sulfonyl]-1-(prop-2-en-1-yl)piperidine-4-carboxamide
-
-
N-hydroxy-N2-[(4-methoxyphenyl)sulfonyl]-N2-(2-methylpropyl)phenyl-D-methioninamide
-
-
N-isobutyl-N-(4-methoxyphenylsulfonyl)glycyl hydroxamic acid
-
-
N-methyl-2-(([(5-thioxo-4,5-dihydro-1,3,4-thiadiazol-2-yl)amino]carbonyl)amino)acetamide
N-[(2R)-1-(hydroxyamino)-3-methyl-1-oxobutan-2-yl]-N-[(4-methoxyphenyl)sulfonyl]glycine
-
-
N-[(2R)-1-(hydroxyamino)-3-methyl-1-oxobutan-2-yl]-N-[(4-phenoxyphenyl)sulfonyl]glycine
-
-
N-[1-(ethoxymethoxy)-3-(hydroxycarbamoyl)pentyl]-4-phenoxybenzamide
-
-
N-[1-(ethoxymethoxy)-4-(hydroxyamino)-3-methyl-4-oxobutyl]-4-phenoxybenzamide
-
-
N-[1-hydroxy-4-(hydroxyamino)-3-methyl-4-oxobutyl]-4-phenoxybenzamide
-
-
N-[3-(hydroxycarbamoyl)-1-[(2-methoxyethoxy)methoxy]pentyl]-4-phenoxybenzamide
-
-
N-[4-(hydroxyamino)-1-[(2-methoxyethoxy)methoxy]-3-methyl-4-oxobutyl]-4-phenoxybenzamide
-
-
N-[4-(hydroxyamino)-3-methyl-4-oxobutyl]-4-phenoxybenzamide
-
-
N-[4-(hydroxyamino)-4-oxobutyl]-4-phenoxybenzamide
-
-
N-[4-(hydroxyamino)-4-oxobutyl]-4-[(E)-2-(4-hydroxyphenyl)ethenyl]benzamide
-
-
N-[4-(hydroxyamino)-4-oxobutyl]-4-[(E)-2-(4-methoxyphenyl)ethenyl]benzamide
-
-
N-[4-(hydroxycarbamoyl)-1-(methoxymethoxy)-5,5-dimethylhexan-2-yl]-4-phenoxybenzamide
-
-
N-[4-(hydroxycarbamoyl)-1-(methoxymethoxy)-7,7-dimethyl-6-oxooctan-2-yl]-4-phenoxybenzamide
-
-
N-[4-(hydroxycarbamoyl)-1-(methoxymethoxy)hept-6-en-2-yl]-4-phenoxybenzamide
-
-
N-[4-(hydroxycarbamoyl)-1-(methoxymethoxy)heptan-2-yl]-4-phenoxybenzamide
-
-
N-[4-(hydroxycarbamoyl)-1-(methoxymethoxy)hexan-2-yl]-4-phenoxybenzamide
-
-
N-[4-(hydroxycarbamoyl)-1-(methoxymethoxy)octan-2-yl]-4-phenoxybenzamide
-
-
N-[4-hydroxy-5-(hydroxyamino)-1-(methoxymethoxy)-5-oxopentan-2-yl]-4-phenoxybenzamide
-
-
N-[5-(hydroxyamino)-1-(methoxymethoxy)-4-(naphthalen-1-ylmethyl)-5-oxopentan-2-yl]-4-phenoxybenzamide
-
-
N-[5-(hydroxyamino)-1-(methoxymethoxy)-4-methyl-5-oxopentan-2-yl]-4-phenoxybenzamide
-
-
N-[5-(hydroxyamino)-1-(methoxymethoxy)-5-oxo-4-(1l4-thiopyran-1-yl)pentan-2-yl]-4-phenoxybenzamide
-
-
N-[5-(hydroxyamino)-1-(methoxymethoxy)-5-oxo-4-(pyridin-2-ylmethyl)pentan-2-yl]-4-phenoxybenzamide
-
-
N-[5-(hydroxyamino)-1-(methoxymethoxy)-5-oxo-4-(pyridin-3-ylmethyl)pentan-2-yl]-4-phenoxybenzamide
-
-
N-[5-(hydroxyamino)-1-(methoxymethoxy)-5-oxo-4-(pyridin-4-ylmethyl)pentan-2-yl]-4-phenoxybenzamide
-
-
N-[5-(hydroxyamino)-1-(methoxymethoxy)-5-oxopentan-2-yl]-4-phenoxybenzamide
-
-
N-[[(4,5-dihydro-5-thioxo-1,3,4-thiadiazol-2-yl)amino]carbonyl]-L-phenylalanine methyl ester
-
-
N2-(biphenyl-4-ylsulfonyl)-N-hydroxy-N2-(propan-2-yloxy)glycinamide
-
-
N2-(biphenyl-4-ylsulfonyl)-N-hydroxy-N2-(propan-2-yloxy)valinamide
-
-
Ovostatin
-
-
-
pamidronate
-
-
PD166793
-
-
PD180557
-
-
Peptides based on the N-terminal domain of tissue inhibitor of metalloproteinase-1
-
-
-
Phthaloyl-N-(CH2)4-P(O2-)-Ile-(2-naphthyl)-Ala-NH-CH3
-
-
quercetin
-
-
SM-25453
-
-
sulfonamide-and carbamide substituted piperazine-based MMP inhibitor
-
-
-
TIMP
-
-
-
TIMP-1
-
TIMP-2
-
TIMP-3
-
is induced by enamel matrix derivative
-
Tissue inhibitor of metalloproteinases
-
TIMP-1 and TIMP-2
-
tissue inhibitor of metalloproteinases 1
TIMP-1, enzyme binding structure analysis and mechanism of inhibition, detailed overview and comparison to stromelysin-2, EC 3.4.24.22
-
tissue inhibitor of metalloproteinases 2
TIMP-2
-
TNF
-
inhibits active MMP-3
-
U24522
-
synthetic inhibitor known to inhibit proteoglycan-degrading metalloproteinases
UK-370106
-
-
urea substituted piperazine-based MMP inhibitor
-
-
-
Z-L-tryptophan
inhibits full length stromelysin_1-477 and truncated stromelysin_100-264, enzyme binding structure and kinetics, chemical shift of the carboxylate carbon upon enzyme binding, overview. The tryptophan side chain can bind in the S1 specificity site of stromelysin with the tryptophan alpha carboxylate group coordinated to the active site zinc atom
zoledronate
-
-
[4-(4-phenyl-piperidin-1-yl)-benzenesulfonylamino]-acetic acid
PBSA, enzyme binding structure analysis
[dimethylpropanedioato(2-)-kappa2O1,O3][[(methylsulfinyl-kappaS)methyl]phosphonate-kappaO''']platinum
-
-
additional information
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
beta-hematin
-
induces differential autocatalysis of the propeptide
cytosolic protein Apaf-1
-
-
hemin
-
induces differential autocatalysis of the propeptide
p-aminophenylmercuric acetate
-
i.e. APMA, initiates an MMP-3 autocatalytic mechanism by disturbing the interaction of zinc with a critical cysteine residue
plasmin
-
-
-
Trypsin
-
-
-
additional information
-
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.066
(7-Methoxycoumarin-4-yl)acetyl-Arg-Pro-Lys-Pro-Tyr-Ala-norvaline-Trp-Met-Lys(2,4-dinitrophenyl)-NH2
-
-
0.025
(7-Methoxycoumarin-4-yl)acetyl-Arg-Pro-Lys-Pro-Val-Glu-norvaline-Trp-Arg-Lys(2,4-dinitrophenyl)-NH2
-
-
0.05
(7-Methoxycoumarin-4-yl)acetyl-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Lys-(2,4-dinitrophenyl)-Gly
-
-
0.1
2,4-Dinitrophenyl-Pro-Tyr-Ala-Tyr-Trp-Met-Arg-NH2
-
-
0.27
acetyl-Pro-Leu-Gly-thioester-Leu-Leu-Gly-ethylester
-
-
0.9 - 1.4
Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-norleucine-NH2
additional information
additional information
thermodynamic additivity analysis using stromelysin-1 and a series of biphenyl hydroxamate ligands identified through fragment additivity, thermodynamics determined by isothermal titration calorimetry, corrected for proton transfer events, overview. Additivity arises from enthalpic effects, while interaction entropies are unfavorable, the thermodynamic behavior is masked by proton transfer
-
TURNOVER NUMBER [1/s]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
3.95
(7-Methoxycoumarin-4-yl)acetyl-Arg-Pro-Lys-Pro-Tyr-Ala-norvaline-Trp-Met-Lys(2,4-dinitrophenyl)-NH2
-
-
5.4
(7-Methoxycoumarin-4-yl)acetyl-Arg-Pro-Lys-Pro-Val-Glu-norvaline-Trp-Arg-Lys(2,4-dinitrophenyl)-NH2
-
-
0.53
(7-Methoxycoumarin-4-yl)acetyl-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Lys-(2,4-dinitrophenyl)-Gly
-
-
0.24
2,4-Dinitrophenyl-Pro-Tyr-Ala-Tyr-Trp-Met-Arg-NH2
-
-
2.12
Acetyl-Pro-Leu-Gly-thioester-Leu-Leu-Gly ethyl ester
-
-
0.9 - 1.35
Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Nle-NH2
0.085 - 0.088
beta-casein
-
kcat/KM VALUE [1/mMs-1]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
14.04
DQ-collagen I
-
pH 7.5, 25°C
-
0.11
DQ-collagen IV
-
pH 7.5, 25°C
-
0.83
elastin fELN-125
-
pH 7.5, 25°C
-
20.63
FS-6
-
pH 7.5, 25°C
-
0.048
triple helical peptide alpha1(V)
-
pH 7.5, 25°C, value below
-
Ki VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.0001
(2S)-3-(4-fluorophenyl)-N-methyl-2-(([(5-thioxo-4,5-dihydro-1,3,4-thiadiazol-2-yl)amino]carbonyl)amino)propanamide
-
pH 7.6, 25°C
0.002
(2S)-3-(benzyloxy)-N-methyl-2-(([(5-thioxo-4,5-dihydro-1,3,4-thiadiazol-2-yl)amino]carbonyl)amino)propanamide
-
pH 7.6, 25°C
0.0033
(2S)-3-phenyl-2-(([(5-thioxo-4,5-dihydro-1,3,4-thiadiazol-2-yl)amino]carbonyl)amino)propanamide
-
pH 7.6, 25°C
0.00033
(2S)-N-methyl-3-(4-nitrophenyl)-2-(([(5-thioxo-4,5-dihydro-1,3,4-thiadiazol-2-yl)amino]carbonyl)amino)propanamide
-
pH 7.6, 25°C
0.000018
(2S)-N-methyl-3-(pentafluorophenyl)-2-(([(5-thioxo-4,5-dihydro-1,3,4-thiadiazol-2-yl)amino]carbonyl)amino)propanamide
-
pH 7.6, 25°C
0.00071
(2S)-N-methyl-3-phenyl-2-(([(5-thioxo-4,5-dihydro-1,3,4-thiadiazol-2-yl)amino]carbonyl)amino)propanamide
-
pH 7.6, 25°C
0.00027
1-[(1S)-1-(4-fluorobenzyl)-2-oxo-2-(4-pyridin-2-ylpiperazin-1-yl)ethyl]-3-(5-thioxo-4,5-dihydro-1,3,4-thiadiazol-2-yl)urea
-
pH 7.6, 25°C
0.000014
1-[(1S)-2-oxo-1-(pentafluorobenzyl)-2-(4-pyridin-2-ylpiperazin-1-yl)ethyl]-3-(5-thioxo-4,5-dihydro-1,3,4-thiadiazol-2-yl)urea
-
pH 7.6, 25°C
0.00025
3-(4'-cyanobiphenyl-4-yloxy)-N-hydroxypropionamide
-
-
0.00005
5-methyl-5-(4-phenoxy-phenyl)-pyrimidine-2,4,6-trione
pH and temperature not specified in the publication
0.031
alpha-[[[(4,5-dihydro-5-thioxo-1,3,4-thiadiazol-2-yl)amino]-carbonyl]amino]-3-hydroxy-N-methyl-(S)-propanamide
-
pH 7.6, 25°C
0.0023
alpha-[[[(4,5-dihydro-5-thioxo-1,3,4-thiadiazol-2-yl)amino]carbonyl]amino]-N,N-dimethyl-(S)-benzenepropanamide
-
pH 7.6, 25°C
0.000036
curcumin
pH and temperature not specified in the publication
0.000013
hydroxamic acid inhibitor CGS 27023
-
pH 6.8, 37°C
0.007
N-(4,5-dihydro-5-thioxo-1,3,4-thiadiazol-2-yl)-N'-(2-phenethyl)urea
-
pH 7.6, 25°C
0.00018
N-hydroxy-2-[N-(2-hydroxyethyl)biphenyl-4-sulfonamide] hydroxamic acid
-
-
0.0013
N-isobutyl-N-(4-methoxyphenylsulfonyl)glycyl hydroxamic acid
-
-
0.166
N-methyl-2-(([(5-thioxo-4,5-dihydro-1,3,4-thiadiazol-2-yl)amino]carbonyl)amino)acetamide
-
pH 7.6, 25°C
0.00029
N-[[(4,5-dihydro-5-thioxo-1,3,4-thiadiazol-2-yl)amino]carbonyl]-L-phenylalanine methyl ester
-
pH 7.6, 25°C
0.00000013
tissue inhibitor of metalloproteinases 1
catalytic enzyme domain, pH 7.0, 37°C
-
0.00000055
tissue inhibitor of metalloproteinases 2
catalytic enzyme domain, pH 7.0, 37°C
-
0.0063 - 0.052
Z-L-tryptophan
0.000098
[4-(4-phenyl-piperidin-1-yl)-benzenesulfonylamino]-acetic acid
pH and temperature not specified in the publication
IC50 VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.0000004
2-([4-[3'-(2-aminoethoxy)-2-methylbiphenyl-4-yl]piperidin-1-yl]sulfonyl)-N-hydroxy-2-methylpropanamide
Homo sapiens
-
-
0.000164
2-[(2-biphenyl-4-ylethyl)(methyl)sulfamoyl]-N-hydroxyacetamide
Homo sapiens
-
-
0.000161
2-[(3-biphenyl-4-ylazetidin-1-yl)sulfonyl]-N-hydroxyacetamide
Homo sapiens
-
-
0.000174
2-[(3-biphenyl-4-ylpropyl)(methyl)sulfamoyl]-N-hydroxyacetamide
Homo sapiens
-
-
0.000006
2-[(4-biphenyl-4-yl-3,6-dihydropyridin-1(2H)-yl)sulfonyl]-N-hydroxyacetamide
Homo sapiens
-
-
0.000026
2-[(4-biphenyl-4-ylpiperidin-1-yl)sulfonyl]-N-hydroxyacetamide
Homo sapiens
-
-
0.000001
2-[(4-[3'-[2-(dimethylamino)ethoxy]-2-methylbiphenyl-4-yl]piperidin-1-yl)sulfonyl]-N-hydroxy-2-methylpropanamide
Homo sapiens
-
-
0.000378
2-[(biphenyl-4-ylmethyl)(methyl)sulfamoyl]-N-hydroxyacetamide
Homo sapiens
-
-
0.00043
2-[(biphenyl-4-ylsulfonyl)[2-(hydroxyamino)-2-oxoethyl]amino]-N-[2-(4-sulfamoylphenyl)ethyl]acetamide
Homo sapiens
-
pH 7.5, 25°C
0.00014
2-[[2-(hydroxyamino)-2-oxoethyl][(4-methoxyphenyl)sulfonyl]amino]-N-[2-(4-sulfamoylphenyl)ethyl]acetamide
Homo sapiens
-
pH 7.5, 25°C
0.0000061
2-[[2-(hydroxyamino)-2-oxoethyl][(4-phenoxyphenyl)sulfonyl]amino]-N-[2-(4-sulfamoylphenyl)ethyl]acetamide
Homo sapiens
-
pH 7.5, 25°C
0.000084
2-[[3-(biphenyl-4-yloxy)azetidin-1-yl]sulfonyl]-N-hydroxyacetamide
Homo sapiens
-
-
0.000004
2-[[4-(2,3'-dimethylbiphenyl-4-yl)-3,6-dihydropyridin-1(2H)-yl]sulfonyl]-N-hydroxyacetamide
Homo sapiens
-
-
0.000055
2-[[4-(2-chlorobiphenyl-4-yl)-3,6-dihydropyridin-1(2H)-yl]sulfonyl]-N-hydroxyacetamide
Homo sapiens
-
-
0.000402
2-[[4-(2-ethylbiphenyl-4-yl)-3,6-dihydropyridin-1(2H)-yl]sulfonyl]-N-hydroxyacetamide
Homo sapiens
-
-
0.000003
2-[[4-(2-fluorobiphenyl-4-yl)-3,6-dihydropyridin-1(2H)-yl]sulfonyl]-N-hydroxyacetamide
Homo sapiens
-
-
0.000004
2-[[4-(3'-ethoxy-2-methylbiphenyl-4-yl)-3,6-dihydropyridin-1(2H)-yl]sulfonyl]-N-hydroxyacetamide
Homo sapiens
-
-
0.000002
2-[[4-(3'-ethoxy-2-methylbiphenyl-4-yl)piperidin-1-yl]sulfonyl]-N-hydroxy-2-methylpropanamide
Homo sapiens
-
-
0.000031
2-[[4-(3'-ethyl-2-methylbiphenyl-4-yl)-3,6-dihydropyridin-1(2H)-yl]sulfonyl]-N-hydroxyacetamide
Homo sapiens
-
-
0.00063
chicoric acid
Homo sapiens
-
pH and temperature not specified in the publication
0.3
clodronate
Homo sapiens
-
-
0.0053
dichloro[[(methylsulfinyl-kappaS)methyl]phosphonate-kappaO'']platinum
Homo sapiens
-
-
0.000127
N-(biphenyl-4-ylsulfonyl)-N-[(2R)-1-(hydroxyamino)-3-methyl-1-oxobutan-2-yl]glycine
Homo sapiens
-
pH 7.5, 25°C
0.00096
N-hydroxy-2-([4-[2-(trifluoromethyl)biphenyl-4-yl]-3,6-dihydropyridin-1(2H)-yl]sulfonyl)acetamide
Homo sapiens
-
-
0.000051
N-hydroxy-2-([4-[2-methyl-3'-(trifluoromethoxy)biphenyl-4-yl]-3,6-dihydropyridin-1(2H)-yl]sulfonyl)acetamide
Homo sapiens
-
-
0.000001
N-hydroxy-2-([4-[3'-(2-hydroxyethoxy)-2-methylbiphenyl-4-yl]piperidin-1-yl]sulfonyl)-2-methylpropanamide
Homo sapiens
-
-
0.000003
N-hydroxy-2-([4-[3'-(2-methoxyethoxy)-2-methylbiphenyl-4-yl]piperidin-1-yl]sulfonyl)-2-methylpropanamide
Homo sapiens
-
-
0.000003
N-hydroxy-2-([4-[3'-(methoxymethyl)-2-methylbiphenyl-4-yl]-3,6-dihydropyridin-1(2H)-yl]sulfonyl)acetamide
Homo sapiens
-
-
0.0000003
N-hydroxy-2-methyl-2-[(4-[2-methyl-3'-[2-(methylamino)ethoxy]biphenyl-4-yl]piperidin-1-yl)sulfonyl]propanamide
Homo sapiens
-
-
0.000001
N-hydroxy-2-[(4-[4-[6-(2-hydroxyethoxy)pyridin-2-yl]-3-methylphenyl]piperidin-1-yl)sulfonyl]-2-methylpropanamide
Homo sapiens
-
-
0.000016
N-hydroxy-2-[[4-(2-methylbiphenyl-4-yl)-3,6-dihydropyridin-1(2H)-yl]sulfonyl]acetamide
Homo sapiens
-
-
0.000005
N-hydroxy-2-[[4-(3'-methoxy-2-methylbiphenyl-4-yl)-3,6-dihydropyridin-1(2H)-yl]sulfonyl]acetamide
Homo sapiens
-
-
0.000205
N-hydroxy-2-[[4-(4-phenoxyphenyl)piperidin-1-yl]sulfonyl]acetamide
Homo sapiens
-
-
0.000163
N-hydroxy-3-(hydroxymethyl)-1-[(4-methoxyphenyl)sulfonyl]-4,4-dimethylprolinamide
Homo sapiens
-
pH 7.5, 25°C
0.000182
N-[(2R)-1-(hydroxyamino)-3-methyl-1-oxobutan-2-yl]-N-[(4-methoxyphenyl)sulfonyl]glycine
Homo sapiens
-
pH 7.5, 25°C
0.0000067
N-[(2R)-1-(hydroxyamino)-3-methyl-1-oxobutan-2-yl]-N-[(4-phenoxyphenyl)sulfonyl]glycine
Homo sapiens
-
pH 7.5, 25°C
0.00002
N-[4-(hydroxycarbamoyl)-1-(methoxymethoxy)-7,7-dimethyl-6-oxooctan-2-yl]-4-phenoxybenzamide
Homo sapiens
-
pH 7.5, 25°C
0.0000372
N-[5-(hydroxyamino)-1-(methoxymethoxy)-4-methyl-5-oxopentan-2-yl]-4-phenoxybenzamide
Homo sapiens
-
pH 7.5, 25°C
0.0000012
N-[5-(hydroxyamino)-1-(methoxymethoxy)-5-oxo-4-(pyridin-2-ylmethyl)pentan-2-yl]-4-phenoxybenzamide
Homo sapiens
-
pH 7.5, 25°C
0.00138
N-[5-(hydroxyamino)-1-(methoxymethoxy)-5-oxopentan-2-yl]-4-phenoxybenzamide
Homo sapiens
-
pH 7.5, 25°C
0.000023
UK-370106
Homo sapiens
-
-
0.0044
[dimethylpropanedioato(2-)-kappa2O1,O3][[(methylsulfinyl-kappaS)methyl]phosphonate-kappaO''']platinum
Homo sapiens
-
-
SPECIFIC ACTIVITY [µmol/min/mg]
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
0.000498
-
-
18.6
-
-
additional information
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
5.3 - 5.5
-
digestion of aggrecan core protein
5.5
-
optimum for proteoglycan monomer, digestion of fibronectin and gelatin is more extensive at pH 5.5 than at pH 7.5
6.2
-
azocoll
7.2
assay at
7.4
-
assay at
7.5
-
assay at
7.5 - 7.8
-
-
7.6
-
assay at
pH RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
5 - 7.5
-
pH 5.0: about 20% of activity maximum, pH 7.5: about 25% of activity maximum
6 - 8.5
-
about 50% of activity maximum at pH 6.0 and 8.5
TEMPERATURE OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
human
SwissProt
Manually annotated by BRENDA team
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
from Alzheimer disease patients and controls
Manually annotated by BRENDA team
-
recombinant enzyme
Manually annotated by BRENDA team
MMP-3 has been identified in predentin and in dentin, where it localizes within the intertubular dentin, along the collagen fibrils
Manually annotated by BRENDA team
-
clinical phenotypes with Helicobacter pylori infection are strongly related to inflammatory cytokines, MMP-3, and pepsinogen secretion
Manually annotated by BRENDA team
-
connective tissue
Manually annotated by BRENDA team
-
a human invasive breast carcinoma cell line
Manually annotated by BRENDA team
transcriptional profiling, overview
Manually annotated by BRENDA team
the enzyme expression is associated with expression of Rac1b, a tumorigenic splice isoform of Rac1, in all stages of pancreatic cancer, analysis of 140 specimen, overview
Manually annotated by BRENDA team
-
distribution and activity of MMP-3 in placenta, overview
Manually annotated by BRENDA team
-
no differences in MMP-3 in the plasma of hypertensive versus normotensive subjects
Manually annotated by BRENDA team
-
trophoblatsic cell line
Manually annotated by BRENDA team
-
a human chondrosarcoma cell line
Manually annotated by BRENDA team
-
rheumatoid
Manually annotated by BRENDA team
-
fibroblast-like, from rheumatoid arthritis patients
Manually annotated by BRENDA team
-
pro- and active form of MMP-3 are predominantly expressed in purified first trimester villous trophoblasts, in invasive cytotrophoblasts of differentiating explant cultures and in trophoblastic SGHPL-4 cells. Reduced MMP-3 expression in invasive trophoblasts of patients with severe preeclampsia
Manually annotated by BRENDA team
-
astroglioma cells
Manually annotated by BRENDA team
additional information
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
the enzyme moves from cytoplasm to cell nucleus upon Dengue virus infection and colocalizes with NFkappaB P65 in the nucleus
Manually annotated by BRENDA team
the enzyme moves from cytoplasm to cell nucleus upon Dengue virus infection and colocalizes with NFkappaB P65 in the nucleus
Manually annotated by BRENDA team
additional information
-
invasive trophoblast cell models secrete bioactive MMP-3
-
Manually annotated by BRENDA team
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
evolution
despite their similar substrate specificities, the stromelysins show differential patterns of transcriptional regulation and tissue distribution that hint at distinct physiological functions in processes such as skeletal development, wound healing, and vascular remodeling
malfunction
metabolism
-
NF-kappaB and AP-1 are important transcription factors for MMP-3 gene expression. Glycitein, a bacterial metabolite of the isoflavone glycitin, inhibits glioma cell invasion through downregulation of MMP-3 and MMP-9 gene expression, overview
physiological function
additional information
UNIPROT
ENTRY NAME
ORGANISM
NO. OF AA
NO. OF TRANSM. HELICES
MOLECULAR WEIGHT[Da]
SOURCE
SEQUENCE
LOCALIZATION PREDICTION?
MMP13_HUMAN
471
0
53820
Swiss-Prot
-
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
28000
-
x * 28000, human, form LMW, SDS-PAGE
45000
57000
additional information
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
monomer
-
-
POSTTRANSLATIONAL MODIFICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
proteolytic modification
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
crystal structure analysis of the isolated catalytic enzyme domain in complex with inhibitor TIMP1, PDB ID 1UEA
in complex with inhibitor
-
in complex with inhibitor SM-25453, comparison with structure of EC 3.4.24.B4 with inhibitor
-
selenomethionine-substituted C-terminally truncated proMMP-3(DELTAC), sitting drop vapour-diffusion technique, crystals belong to tetragonal space group P4(3), cell axes a = b = 80.62 A, c = 157.62 A
-
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
E219A
additional information
pH STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
10
-
about 50% loss of activity after 15 h
31017
10.5
-
more than 80% loss of activity after 15 h
31017
4.5
-
more than 80% loss of activity after 15 h
31017
5
-
about 50% loss of activity after 15 h
31017
5.5 - 9.5
-
stable in this range
31017
6 - 9
-
37°C, stable
31012
TEMPERATURE STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
100
-
15 min, 65% loss of activity of enzyme form HMW, 25% loss of activity of enzyme form LMW
GENERAL STABILITY
ORGANISM
UNIPROT
LITERATURE
Ca2+ is required to maintain the active conformation, full activity is detected at 1 mM Ca2+, at pH 7.5 and is retained at even higher concentrations of Ca2+, at lower concentrations the enzyme is autolyzed
-
Ca2+ stabilizes
-
catalytic domain of MMP-12 exhibits higher activity, more rigidity of its backbone, and lower folding stability than its counterpart of theMMP-3 catalytic domain that has more internal motions throughout
-
STORAGE STABILITY
ORGANISM
UNIPROT
LITERATURE
-20°C, 0°C or 4°C, 50 mM Tris-HCl, pH 7.5, 0.4 M NaCl, 10 mM Ca2+, 0.05% Brij 35, 0.02% NaN3, less than 19% loss of activity after 10 weeks
-
-20°C, 50 mM Tris-HCl, pH 7.5, 0.15 M NaCl, 10 mM CaCl2, 0.02% w/v NaN3, 0.05% w/v Brij 35, stable for at least 1 year, prostromelysin 1
-
4°C, 50 mM Tris-HCl, pH 7.5, 0.15 M NaCl, 10 mM CaCl2, 0.02% w/v NaN3, 0.05% w/v Brij 35, stable for at least 4 months, prostromelysin 1
-
4°C, 50 mM Tris-HCl, pH 7.6, 10 mM CaCl2, stable
-
4°C, latent and active form, stable for 6 months
-
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
2 active forms: HMW, LMW
-
C-terminally truncated protein
-
catalytic domain lacking both propeptide and C-terminal fragment
-
expression in Escherichia coli
-
prostromelysin (treatment with (aminophenyl)mercuric acetate results in activation)
-
prostromelysin expressed in a mouse fibroblast cell line C127 (self activation by incubation at 55°C to a 45000 MW and a 28000 MW form)
-
recombinant enzyme
-
recombinant SCD
-
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
catalytic domain expressed in Escherichia coli
-
gene encoding ST1 expressed in lepidopteran Sf9 cells infected with recombinant baculovirus
-
gene MMP3, quantitative RT-PCR enzyme expression analysis, co-expression with GFP-RelA in HEK-293T cells
NF-kappaB and AP-1 are important transcription factors for MMP-3 gene expression. Glycitein inhibits the promoter activitiy of MMP-3, overview
-
recombinant SCD expressed in Escherichia coli
-
selenomethionine-substituted C-terminally truncated proMMP-3(DELTAC) expressed in Escherichia coli B834(DE3)
-
EXPRESSION
ORGANISM
UNIPROT
LITERATURE
Curcumin dose dependently suppresses MMP-3 and -9 expression in Helicobacter pylori infected human gastric epithelial cells
-
dexamethasone suppression of MMP-3 gene expression
-
expression of MMP-3 in cartilages and synovial tissues is suppressed by the treatment of curcumin and indomethacin. Production of MMP-3 is inhibited by curcumin in tumor necrosis factor-alpha-stimulated rheumatoid arthritis fibroblast-like synoviocytes and chondrocytes in a dose-dependent manner putatively through the inhibition of PKCdelta and the JNK/c-Jun signaling pathway, overview
-
glycitein, i.e. 4',7-dihydroxy-6-methoxyisoflavone, a bacterial metabolite of the isoflavone glycitin, downregulates MMP-3 gene expression by inhibiting the promoter activity of MMP-3
-
interleukin-1Ra, dexamethasone, and TNF significantly decrease levels of all forms of MMP-3
-
MMP-3 expression is upregulated with age, overview
-
MMP-3 is induced by interleukin-1beta, which, despite its effects on MMP-3 expression, fails to significantly alter invasion of SGHPL-4 cells through Matrigel-coated transwells
-
MMP-3 is induced in gingival fibroblasts in response to inflammatory cytokines, such as TNF and interleukin-1
-
MMP-3 is upregulated after stroke in brain in the infarcted tissue compared to healthy control areas, overview
-
reduced MMP-3 expression in invasive trophoblasts of patients with severe preeclampsia
-
serum MMP-3 is significantly elevated in ankylosing spondylitis patients with active disease
-
the expression of the enzyme is upregulated in Dengue virus-infected RAW264.7 cells
TNF-alpha and IL-1beta stimulate production of MMPs through the activation of mitogen-activated protein kinases, NF-kappaB and AP-1
-
TNF-alpha and interleukin-1beta act synergistically to drive MMP-3 secretion. NF-kappaB and AP-1 c-Jun/FosB heterodimers regulate CoMTb-induced MMP-3 secretion. NF-kappaB p65 and AP-1 c-Jun subunits are upregulated in biopsy granulomas from patients with cerebral tuberculosis. CoMTb upregulates MMP-3 gene expression and secretion in microglia
-
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
medicine
overexpression of MMps is associated with a variety of diseases ranging from periodontal disease and arthritis to tumor invasion and metastasis
diagnostics
the enzyme, together with gelolin, is a potential biomarker for Alzheimer's disease
drug development
human enzyme MMP-3, i.e. stromelysin-1, is an anti-cancer drug target
medicine
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Okada, Y.; Nagase, H.; Harris, E.D.
A metalloproteinase from human rheumatoid synovial fibroblasts that digests connective tissue matrix components. Purification and characterization
J. Biol. Chem.
261
14245-14255
1986
Homo sapiens
Manually annotated by BRENDA team
Hanglow, A.C.; Lugo, A.; Walsky, R.; Visnick, M.; Coffey, J.W.; Fotouhi, N.
Inhibition of human stromelysin by peptides based on the N-terminal domain of tissue inhibitor of metalloproteinases-1
Biochem. Biophys. Res. Commun.
205
1156-1163
1994
Homo sapiens
Manually annotated by BRENDA team
Izquierdo-Martin, M.; Chapman, K.T.; Hagmann, W.K.; Stein, R.L.
Studies on the kinetic and chemical mechanism of inhibition of stromelysin by an N-(carboxyalkyl)dipeptide
Biochemistry
33
1356-1365
1994
Homo sapiens
Manually annotated by BRENDA team
Mast, A.E.; Enghild, J.J.; Nagase, H.; Suzuki, K.; Pizzo, S.V.; Salvesen, G.
Kinetics and physiologic relevance of the inactivation of alpha 1-proteinase inhibitor, alpha 1-antichymotrypsin, and antithrombin III by matrix metalloproteinases-1 (tissue collagenase), -2 (72-kDa gelatinase/type IV collagenase), and -3 (stromelysin)
J. Biol. Chem.
266
15810-15816
1991
Homo sapiens
Manually annotated by BRENDA team
Odake, S.; Morita, Y.; Morikawa, T.; Yoshida, N.; Hori, H.; Nagai, Y.
Inhibition of matrix metalloproteinases by peptidyl hydroxamic acids
Biochem. Biophys. Res. Commun.
199
1442-1446
1994
Homo sapiens
Manually annotated by BRENDA team
Marcy, A.I.; Eiberger, L.L.; Harrison, R.; Chan, K.; Hutchinson, N.I.; Hagmann, W.K.; Cameron, P.M.; Boulton, D.A.; Hermes, J.D.
Human fibroblast stromelysin catalytic domain: expression, purification, and characterization of a C-terminally truncated form
Biochemistry
30
6476-6483
1991
Homo sapiens
Manually annotated by BRENDA team
Salowe, S.P.; Marcy, A.I.; Cuca, G.C.; Smith, C.K.; Kopka, I.E.; Hagmann, W.K.; Hermes, J.D.
Characterization of zinc-binding sites in human stromelysin-1: stoichiometry of the catalytic domain and identification of a cysteine ligand in the proenzyme
Biochemistry
31
4535-4540
1992
Homo sapiens
Manually annotated by BRENDA team
Ye, Q.Z.; Jonson, L.L.; Hupe, D.J.; Baragi, V.
Purification and characterization of the human stromelysin catalytic domain expressed in Escherichia coli
Biochemistry
31
11231-11235
1992
Homo sapiens
Manually annotated by BRENDA team
Baricos, W.H.; Murphy, G.; Zhou, Y.; Nguyen, H.H.; Shah, S.V.
Degradation of glomerular basement membrane by purified mammalian metalloproteinases
Biochem. J.
254
609-612
1988
Homo sapiens
Manually annotated by BRENDA team
Koklitis, P.A.; Murphy, G.; Sutton, C.; Angal, S.
Purification of recombinant human prostromelysin. Studies on heat activation to give high-Mr and low-Mr active forms, and a comparison of recombinant with natural stromelysin activities
Biochem. J.
276
217-221
1991
Homo sapiens
Manually annotated by BRENDA team
Nagase, H.; Fields, C.G.; Fields, G.B.
Design and characterization of a fluorogenic substrate selectively hydrolyzed by stromelysin 1 (matrix metalloproteinase-3)
J. Biol. Chem.
269
20952-20957
1994
Homo sapiens
Manually annotated by BRENDA team
Becker, J.W.; Marcy, A.I.; Rokosz, L.L.; Axel, M.G.; Burbaum, J.J.; Fitzgerald, P.M.D.; Cameron, P.M.; Esser, C.K.; Hagmann, W.K.
Stromelysin-1: three-dimensional structure of the inhibited catalytic domain and of the C-truncated proenzyme
Protein Sci.
4
1966-1976
1995
Homo sapiens
Manually annotated by BRENDA team
Nagase, H.
Human stromelysins 1 and 2
Methods Enzymol.
248
449-470
1995
Bos taurus, Oryctolagus cuniculus, Homo sapiens, Rattus norvegicus
Manually annotated by BRENDA team
Bini, A.; Wu, D.; Schnuer, J.; Kudryk, B.J.
Characterization of stromelysin 1 (MMP-3), matrilysin (MMP-7), and membrane type 1 matrix metalloproteinase (MT1-MMP) derived fibrin(ogen) fragments D-dimer and D-like monomer: NH2-terminal sequences of late-stage digest fragments
Biochemistry
38
13928-13936
1999
Homo sapiens
Manually annotated by BRENDA team
Heikkilae, P.; Teronen, O.; Moilanen, M.; Konttinen, Y.T.; Hanemaaijer, R.; Laitinen, M.; Maisi, P.; van der Pluijm, G.; Bartlett, J.D.; Salo, T.; Sorsa, T.
Bisphosphonates inhibit stromelysin-1 (MMP-3), matrix metalloelastase (MMP-12), collagenase-3 (MMP-13) and enamelysin (MMP-20), but not urokinase-type plasminogen activator, and diminish invasion and migration of human malignant and endothelial cell lines
Anticancer Drugs
13
245-254
2002
Homo sapiens
Manually annotated by BRENDA team
Li, Y.C.; Zhang, X.; Melton, R.; Ganu, V.; Gonnella, N.C.
Solution structure of the catalytic domain of human stromelysin-1 complexed to a potent, nonpeptidic inhibitor
Biochemistry
37
14048-14056
1998
Homo sapiens
Manually annotated by BRENDA team
Parker, M.H.; Lunney, E.A.; Ortwine, D.F.; Pavlovsky, A.G.; Humblet, C.; Brouillette, C.G.
Analysis of the binding of hydroxamic acid and carboxylic acid inhibitors to the stromelysin-1 (matrix metalloproteinase-3) catalytic domain by isothermal titration calorimetry
Biochemistry
38
13592-13601
1999
Homo sapiens
Manually annotated by BRENDA team
Windsor, L.J.; Steele, D.L.; LeBlanc, S.B.; Taylor, K.B.
Catalytic domain comparisons of human fibroblast-type collagenase, stromelysin-1, and matrilysin
Biochim. Biophys. Acta
1334
261-272
1997
Homo sapiens
Manually annotated by BRENDA team
Johnson, L.L.; Pavlovsky, A.G.; Johnson, A.R.; Janowicz, J.A.; Man, C.F.; Ortwine, D.F.; Purchase, C.F.2nd.; White, A.D.; Hupe, D.J.
A rationalization of the acidic pH dependence for stromelysin-1 (Matrix metalloproteinase-3) catalysis and inhibition
J. Biol. Chem.
275
11026-11033
2000
Homo sapiens
Manually annotated by BRENDA team
Agnihotri, R.; Crawford, H.C.; Haro, H.; Matrisian, L.M.; Havrda, M.C.; Liaw, L.
Osteopontin, a novel substrate for matrix metalloproteinase-3 (stromelysin-1) and matrix metalloproteinase-7 (matrilysin)
J. Biol. Chem.
276
28261-28267
2001
Homo sapiens
Manually annotated by BRENDA team
Ambrose Amin, E.; Welsh, W.J.
Three-dimensional quantitative structure-activity relationship (3D-QSAR) models for a novel class of piperazine-based stromelysin-1 (MMP-3) inhibitors: applying a "divide and conquer" strategy
J. Med. Chem.
44
3849-3855
2001
Homo sapiens
Manually annotated by BRENDA team
Zhang, X.; Gonnella, N.C.; Koehn, J.; Pathak, N.; Ganu, V.; Melton, R.; Parker, D.; Hu, S.I.; Nam, K.Y.
Solution structure of the catalytic domain of human collagenase-3 (MMP-13) complexed to a potent non-peptidic sulfonamide inhibitor: binding comparison with stromelysin-1 and collagenase-1
J. Mol. Biol.
301
513-524
2000
Homo sapiens (P45452), Homo sapiens
Manually annotated by BRENDA team
Gomis-Rueth, F.X.; Maskos, K.; Betz, M.; Bergner, A.; Huber, R.; Suzuki, K.; Yoshida, N.; Nagase, H.; Brew, K.; Bourenkov, G.P.; Bartunik, H.; Bode, W.
Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1
Nature
389
77-81
1997
Homo sapiens
Manually annotated by BRENDA team
del Mar Barbacid, M.; Fernandez-Resa, P.; Buesa, J.M.; Marquez, G.; Aracil, M.; Quesada, A.R.; Mira, E.
Expression and purification of human stromelysin 1 and 3 from baculovirus-infected insect cells
Protein Expr. Purif.
13
243-250
1998
Homo sapiens
Manually annotated by BRENDA team
Kohno, T.; Hochigai, H.; Yamashita, E.; Tsukihara, T.; Kanaoka, M.
Crystal structures of the catalytic domain of human stromelysin-1 (MMP-3) and collagenase-3 (MMP-13) with a hydroxamic acid inhibitor SM-25453
Biochem. Biophys. Res. Commun.
344
315-322
2006
Homo sapiens
Manually annotated by BRENDA team
Huet, E.; Cauchard, J.; Berton, A.; Robinet, A.; Decarme, M.; Hornebeck, W.; Bellon, G.
Inhibition of plasmin-mediated prostromelysin-1 activation by interaction of long chain unsaturated fatty acids with kringle 5. [Erratum to document cited in CA140:297422]
Biochem. Pharmacol.
67
1011
2004
Homo sapiens
-
Manually annotated by BRENDA team
Chen, D.Y.; Lan, J.L.; Lin, F.J.; Hsieh, T.Y.
Elevated levels of soluble Fas (APO-1, CD95), soluble Fas ligand, and matrix metalloproteinase-3 in sera from patients with active untreated adult onset Stills disease
Clin. Rheumatol.
26
393-400
2007
Homo sapiens
Manually annotated by BRENDA team
Park, C.H.; Lee, M.J.; Ahn, J.; Kim, S.; Kim, H.H.; Kim, K.H.; Eun, H.C.; Chung, J.H.
Heat shock-induced matrix metalloproteinase (MMP)-1 and MMP-3 are mediated through ERK and JNK activation and via an autocrine interleukin-6 loop
J. Invest. Dermatol.
123
1012-1019
2004
Homo sapiens
Manually annotated by BRENDA team
Jacobsen, E.J.; Mitchell, M.A.; Hendges, S.K.; Belonga, K.L.; Skaletzky, L.L.; Stelzer, L.S.; Lindberg, T.J.; Fritzen, E.L.; Schostarez, H.J.; OSullivan, T.J.; Maggiora, L.L.; Stuchly, C.W.; Laborde, A.L.; Kubicek, M.F.; Poorman, R.A.; Beck, J.M.; Miller, H.R.; Petzold, G.L.; Scott, P.S.; Truesdell, S.E.; Wallace, T.L.; Wilks, J.W.; Fisher, C.; Goodman, L.V.; Kaytes, P.S.; Ledbetter, S.R.; Powers, E.A.
Synthesis of a series of stromelysin-selective thiadiazole urea matrix metalloproteinase inhibitors
J. Med. Chem.
42
1525-1536
1999
Homo sapiens
Manually annotated by BRENDA team
Rizzo, R.C.; Toba, S.; Kuntz, I.D.
A molecular basis for the selectivity of thiadiazole urea inhibitors with stromelysin-1 and gelatinase-A from generalized born molecular dynamics simulations
J. Med. Chem.
47
3065-3074
2004
Homo sapiens
Manually annotated by BRENDA team
Tas, F.; Duranyildiz, D.; Oguz, H.; Disci, R.; Kurul, S.; Yasasever, V.; Topuz, E.
Serum matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-1 in patients with malignant melanoma
Med. Oncol.
22
39-44
2005
Homo sapiens
Manually annotated by BRENDA team
Uzan, C.; Cortez, A.; Dufournet, C.; Fauvet, R.; Siffroi, J.P.; Darai, E.
Eutopic endometrium and peritoneal, ovarian and bowel endometriotic tissues express a different profile of matrix metalloproteinases-2, -3 and -11, and of tissue inhibitor metalloproteinases-1 and -2
Virchows Arch.
445
603-609
2004
Homo sapiens
Manually annotated by BRENDA team
Geurts, N.; Martens, E.; Van Aelst, I.; Proost, P.; Opdenakker, G.; Van den Steen, P.E.
Beta-hematin interaction with the hemopexin domain of gelatinase B/MMP-9 provokes autocatalytic processing of the propeptide, thereby priming activation by MMP-3
Biochemistry
47
2689-2699
2008
Homo sapiens
Manually annotated by BRENDA team
Meijer, M.J.; Mieremet-Ooms, M.A.; van der Zon, A.M.; van Duijn, W.; van Hogezand, R.A.; Sier, C.F.; Hommes, D.W.; Lamers, C.B.; Verspaget, H.W.
Increased mucosal matrix metalloproteinase-1, -2, -3 and -9 activity in patients with inflammatory bowel disease and the relation with Crohns disease phenotype
Dig. Liver Dis.
39
733-739
2007
Homo sapiens
Manually annotated by BRENDA team
Fukuda, K.; Fujitsu, Y.; Kumagai, N.; Nishida, T.
Inhibition of matrix metalloproteinase-3 synthesis in human conjunctival fibroblasts by interleukin-4 or interleukin-13
Invest. Ophthalmol. Vis. Sci.
47
2857-2864
2006
Homo sapiens
Manually annotated by BRENDA team
Alcaraz, L.A.; Banci, L.; Bertini, I.; Cantini, F.; Donaire, A.; Gonnelli, L.
Matrix metalloproteinase-inhibitor interaction: the solution structure of the catalytic domain of human matrix metalloproteinase-3 with different inhibitors
J. Biol. Inorg. Chem.
12
1197-1206
2007
Homo sapiens
Manually annotated by BRENDA team
Sasanelli, R.; Boccarelli, A.; Giordano, D.; Laforgia, M.; Arnesano, F.; Natile, G.; Cardellicchio, C.; Capozzi, M.A.; Coluccia, M.
Platinum complexes can inhibit matrix metalloproteinase activity: platinum-diethyl[(methylsulfinyl)methyl]phosphonate complexes as inhibitors of matrix metalloproteinases 2, 3, 9, and 12
J. Med. Chem.
50
3434-3441
2007
Homo sapiens
Manually annotated by BRENDA team
Bhuvarahamurthy, V.; Kristiansen, G.O.; Johannsen, M.; Loening, S.A.; Schnorr, D.; Jung, K.; Staack, A.
In situ gene expression and localization of metalloproteinases MMP1, MMP2, MMP3, MMP9, and their inhibitors TIMP1 and TIMP2 in human renal cell carcinoma
Oncol. Rep.
15
1379-1384
2006
Homo sapiens
Manually annotated by BRENDA team
Chen, C.; Lin, K.; Yu, D.T.; Yang, C.; Huang, F.; Chen, H.; Liang, T.; Liao, H.; Tsai, C.; Wei, J.C.; Chou, C.
Serum matrix metalloproteinases and tissue inhibitors of metalloproteinases in ankylosing spondylitis: MMP-3 is a reproducibly sensitive and specific biomarker of disease activity
Rheumatology
45
414-420
2006
Homo sapiens
Manually annotated by BRENDA team
Whitlock, G.A.; Dack. K.N.; Dickinson, R.P.; Lewis M.L
A novel series of highly selective inhibitors of MMP-3
Bioorg. Med. Chem. Lett.
17
6750-6753
2007
Homo sapiens
Manually annotated by BRENDA team
Irace, C.; Cortese, C.; Migale, M.; Liberatoscioli, L.; Mannucci, L.; Federici, G.; Gnasso, A.
Stromelysin gene promoter polymorphism and common carotid geometry in diabetic subjects
Int. Angiol.
27
413-418
2008
Homo sapiens
Manually annotated by BRENDA team
Chang, Y.W.; Oh, H.C.; Jang, J.Y.; Hwangbo, Y.; Lee, J.W.; Lee, H.J.; Joo, K.R.; Dong, S.H.; Kim, S.S.; Kim, H.J.; Kim, B.H.; Chang, R.
IL-1beta and IL-8, matrix metalloproteinase 3, and pepsinogen secretion before and after H. pylori eradication in gastroduodenal phenotypes
Scand. J. Gastroenterol.
43
1184-1193
2008
Homo sapiens
Manually annotated by BRENDA team
Phromnoi, K.; Yodkeeree, S.; Anuchapreeda, S.; Limtrakul, P.
Inhibition of MMP-3 activity and invasion of the MDA-MB-231 human invasive breast carcinoma cell line by bioflavonoids
Acta Pharmacol. Sin.
30
1169-1176
2009
Homo sapiens
Manually annotated by BRENDA team
Genevay, S.; Finckh, A.; Mezin, F.; Tessitore, E.; Guerne, P.A.
Influence of cytokine inhibitors on concentration and activity of MMP-1 and MMP-3 in disc herniation
Arthritis Res. Ther.
11
R169
2009
Homo sapiens
Manually annotated by BRENDA team
Lee, E.J.; Kim, S.Y.; Hyun, J.W.; Min, S.W.; Kim, D.H.; Kim, H.S.
Glycitein inhibits glioma cell invasion through down-regulation of MMP-3 and MMP-9 gene expression
Chem. Biol. Interact.
185
18-24
2010
Homo sapiens
Manually annotated by BRENDA team
Friese, R.S.; Rao, F.; Khandrika, S.; Thomas, B.; Ziegler, M.G.; Schmid-Schoenbein, G.W.; OConnor, D.T.
Matrix metalloproteinases: discrete elevations in essential hypertension and hypertensive end-stage renal disease
Clin. Exp. Hypertens.
31
521-533
2009
Homo sapiens
Manually annotated by BRENDA team
Komosinska-Vassev, K.; Olczyk, P.; Winsz-Szczotka, K.; Kuznik-Trocha, K.; Klimek, K.; Olczyk, K.
Age- and gender-dependent changes in connective tissue remodeling: physiological differences in circulating MMP-3, MMP-10, TIMP-1 and TIMP-2 Level
Gerontology
57
44-52
2010
Homo sapiens
Manually annotated by BRENDA team
Tuccinardi, T.; Ortore, G.; Santos, M.A.; Marques, S.M.; Nuti, E.; Rossello, A.; Martinelli, A.
Multitemplate alignment method for the development of a reliable 3D-QSAR model for the analysis of MMP3 inhibitors
J. Chem. Inf. Model.
49
1715-1724
2009
Homo sapiens
Manually annotated by BRENDA team
Green, J.A.; Elkington, P.T.; Pennington, C.J.; Roncaroli, F.; Dholakia, S.; Moores, R.C.; Bullen, A.; Porter, J.C.; Agranoff, D.; Edwards, D.R.; Friedland, J.S.
Mycobacterium tuberculosis upregulates microglial matrix metalloproteinase-1 and -3 expression and secretion via NF-kappaB- and activator protein-1-dependent monocyte networks
J. Immunol.
184
6492-6503
2010
Homo sapiens
Manually annotated by BRENDA team
Zeldich, E.; Koren, R.; Dard, M.; Weinberg, E.; Weinreb, M.; Nemcovsky, C.E.
Enamel matrix derivative induces the expression of tissue inhibitor of matrix metalloproteinase-3 in human gingival fibroblasts via extracellular signal-regulated kinase
J. Periodontal Res.
45
200-206
2010
Homo sapiens
Manually annotated by BRENDA team
Mun, S.H.; Kim, H.S.; Kim, J.W.; Ko, N.Y.; Kim, D.K.; Lee, B.Y.; Kim, B.; Won, H.S.; Shin, H.S.; Han, J.W.; Lee, H.Y.; Kim, Y.M.; Choi, W.S.
Oral administration of curcumin suppresses production of matrix metalloproteinase (MMP)-1 and MMP-3 to ameliorate collagen-induced arthritis: inhibition of the PKCdelta/JNK/c-Jun pathway
J. Pharmacol. Sci.
111
13-21
2009
Homo sapiens, Mus musculus, Mus musculus DBA/1J
Manually annotated by BRENDA team
Cuadrado, E.; Rosell, A.; Penalba, A.; Slevin, M.; Alvarez-Sabin, J.; Ortega-Aznar, A.; Montaner, J.
Vascular MMP-9/TIMP-2 and neuronal MMP-10 up-regulation in human brain after stroke: a combined laser microdissection and protein array study
J. Proteome Res.
8
3191-3197
2009
Homo sapiens
Manually annotated by BRENDA team
Husslein, H.; Haider, S.; Meinhardt, G.; Prast, J.; Sonderegger, S.; Knoefler, M.
Expression, regulation and functional characterization of matrix metalloproteinase-3 of human trophoblast
Placenta
30
284-291
2009
Homo sapiens
Manually annotated by BRENDA team
Ceruso, M.; Howe, N.; Malthouse, J.P.
Mechanism of the binding of Z-L-tryptophan and Z-L-phenylalanine to thermolysin and stromelysin-1 in aqueous solutions
Biochim. Biophys. Acta
1824
303-310
2012
Homo sapiens (P08254)
Manually annotated by BRENDA team
Liang, X.; Arunima, A.; Zhao, Y.; Bhaskaran, R.; Shende, A.; Byrne, T.S.; Fleeks, J.; Palmier, M.O.; Van Doren, S.R.
Apparent tradeoff of higher activity in MMP-12 for enhanced stability and flexibility in MMP-3
Biophys. J.
99
273-283
2010
Homo sapiens
Manually annotated by BRENDA team
Segueni, N.; Magid, A.A.; Decarme, M.; Rhouati, S.; Lahouel, M.; Antonicelli, F.; Lavaud, C.; Hornebeck, W.
Inhibition of stromelysin-1 by caffeic acid derivatives from a propolis sample from Algeria
Planta Med.
77
999-1004
2011
Homo sapiens
Manually annotated by BRENDA team
Kundu, P.; De, R.; Pal, I.; Mukhopadhyay, A.; Saha, D.; Swarnakar, S.
Curcumin alleviates matrix metalloproteinase-3 and -9 activities during eradication of Helicobacter pylori infection in cultured cells and mice
PLoS ONE
6
e16306
2011
Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Soliman, E.; Labib, W.; El-Tantawi, G.; Hamimy, A.; Alhadidy, A.; Aldawoudy, A.
Role of matrix metalloproteinase-3 (MMP-3) and magnetic resonance imaging of sacroiliitis in assessing disease activity in ankylosing spondylitis
Rheumatol. Int.
32
1711-1720
2011
Homo sapiens
Manually annotated by BRENDA team
Kim, E.M.; Shin, E.J.; Lee, J.A.; Son, H.J.; Choi, D.H.; Han, J.M.; Hwang, O.
Caspase-9 activation and Apaf-1 cleavage by MMP-3
Biochem. Biophys. Res. Commun.
453
563-568
2014
Homo sapiens (P08254)
Manually annotated by BRENDA team
Wilfong, E.M.; Du, Y.; Toone, E.J.
An enthalpic basis of additivity in biphenyl hydroxamic acid ligands for stromelysin-1
Bioorg. Med. Chem. Lett.
22
6521-6524
2012
Homo sapiens (P08254)
Manually annotated by BRENDA team
Khaddam, M.; Salmon, B.; Le Denmat, D.; Tjaderhane, L.; Menashi, S.; Chaussain, C.; Rochefort, G.Y.; Boukpessi, T.
Grape seed extracts inhibit dentin matrix degradation by MMP-3
Front. Physiol.
5
425
2014
Homo sapiens (P08254)
Manually annotated by BRENDA team
Batra, J.; Robinson, J.; Soares, A.; Fields, A.; Radisky, D.; Radisky, E.
Matrix metalloproteinase-10 (MMP-10) interaction with tissue inhibitors of metalloproteinases TIMP-1 and TIMP-2: Binding studies and crystal structure
J. Biol. Chem.
287
15935-15946
2012
Homo sapiens (P08254), Homo sapiens
Manually annotated by BRENDA team
Mehner, C.; Miller, E.; Khauv, D.; Nassar, A.; Oberg, A.L.; Bamlet, W.R.; Zhang, L.; Waldmann, J.; Radisky, E.S.; Crawford, H.C.; Radisky, D.C.
Tumor cell-derived MMP3 orchestrates Rac1b and tissue alterations that promote pancreatic adenocarcinoma
Mol. Cancer Res.
12
1430-1439
2014
Homo sapiens (P08254)
Manually annotated by BRENDA team
Peng, M.; Jia, J.; Qin, W.
Plasma gelsolin and matrix metalloproteinase 3 as potential biomarkers for Alzheimer disease
Neurosci. Lett.
595
116-121
2015
Homo sapiens (P08254), Homo sapiens
Manually annotated by BRENDA team
Zuo, X.; Pan, W.; Feng, T.; Shi, X.; Dai, J.
Matrix metalloproteinase 3 promotes cellular anti-Dengue virus response via interaction with transcription factor NFkappaB in cell nucleus
PLoS ONE
9
e84748
2014
Homo sapiens (P08254), Homo sapiens
Manually annotated by BRENDA team
Jerah, A.; Hobani, Y.; Kumar, B.V.; Bidwai, A.
Curcumin binds in silico to anti-cancer drug target enzyme MMP-3 (human stromelysin-1) with affinity comparable to two known inhibitors of the enzyme
Bioinformation
11
387-392
2015
Homo sapiens (P08254)
Manually annotated by BRENDA team