Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 3.4.23.25 - saccharopepsin and Organism(s) Saccharomyces cerevisiae and UniProt Accession P07267

for references in articles please use BRENDA:EC3.4.23.25
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
     3 Hydrolases
         3.4 Acting on peptide bonds (peptidases)
             3.4.23 Aspartic endopeptidases
                3.4.23.25 saccharopepsin
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Saccharomyces cerevisiae
UNIPROT: P07267 not found.
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Saccharomyces cerevisiae
The enzyme appears in selected viruses and cellular organisms
Reaction Schemes
Hydrolysis of proteins with broad specificity for peptide bonds. Cleaves -Leu-Leu-/-Val-Tyr bond in a synthetic substrate. Does not act on esters of Tyr or Arg
Synonyms
proteinase ysca, pep4p, propra, saccharopepsin, yeast proteinase a, vacuolar aspartic proteinase, yeast proteinase, yeast aspartic proteinase a, proteinase a precursor, proteinase-a, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
Aspartic proteinase
-
pepsin-like aspartic proteinase
-
preproPrA
inactive non-glycosylated precursor
proPrA
inactive glycosylated precursor
proteinase A precursor
inactive, maturation into active enzyme required proteinase B activity, 405 residues long precursor and 329 residues for the mature protein (77-405)
pseudo-proteinase A
active form of the enzyme resulting from autoactivation
yeast aspartic proteinase A
-
Aspartate protease
-
-
-
-
Aspartic proteinase
-
-
Aspartic proteinase yscA
-
-
-
-
PEP4 gene product
Pep4p vacuolar proteinase
-
-
Proteinase A
Proteinase yscA
-
-
-
-
Proteinase, yeast A
-
-
-
-
proteinase-A
-
-
Saccharomyces aspartic proteinase
-
-
-
-
Saccharomyces cerevisiae aspartic proteinase A
-
-
-
-
vacuolar aspartic proteinase
-
-
Yeast endopeptidase A
-
-
-
-
yeast proteinase
-
-
Yeast proteinase A
REACTION
REACTION DIAGRAM
COMMENTARY hide
ORGANISM
UNIPROT
LITERATURE
Hydrolysis of proteins with broad specificity for peptide bonds. Cleaves -Leu-Leu-/-Val-Tyr bond in a synthetic substrate. Does not act on esters of Tyr or Arg
show the reaction diagram
description of mechanism, two catalytically active aspartic acid residues, Asp32 and Asp215
Hydrolysis of proteins with broad specificity for peptide bonds. Cleaves -Leu-Leu-/-Val-Tyr bond in a synthetic substrate. Does not act on esters of Tyr or Arg
show the reaction diagram
Asp-32 and Tyr-75 residues involved in catalysis
-
CAS REGISTRY NUMBER
COMMENTARY hide
37228-80-1
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
A-L-S-A-F-(4NO2)F-R-L + H2O
?
show the reaction diagram
very effective substrate
-
-
?
A-P-A-K-F-(4NO2)F-R-L + H2O
?
show the reaction diagram
very effective substrate
-
-
?
K-L-A-K-F-(4NO2)F-R-L + H2O
?
show the reaction diagram
-
-
-
?
K-P-A-A-F-(4NO2)F-R-L + H2O
?
show the reaction diagram
-
-
-
?
K-P-A-K-F-(4NO2)F-R-L + H2O
?
show the reaction diagram
-
-
-
?
K-P-S-K-F-(4NO2)F-R-L + H2O
?
show the reaction diagram
-
-
-
?
proproteinase A + H2O
pseudo-proteinaseA + peptide
show the reaction diagram
autoactivation of the enzyme yields a functional protein cleaved after Ser68, autoactivation can occur in rare situations when PrB is unable to activate PrA
Ser68 is the N-terminal amino acid
-
?
(7-methoxycoumarin-4-yl)acetyl-Ala-Pro-Ala-Ala-Lys-Phe-Phe-Arg-Leu-Lys(2,4-dinitrophenyl)-NH2 + H2O
?
show the reaction diagram
-
-
-
?
(7-methoxycoumarin-4-yl)acetyl-APAKFFRLK(2,4-dinitrophenyl)-NH2 + H2O
?
show the reaction diagram
-
-
-
-
?
(7-methoxycoumarin-4-yl)acetyl-APAKFFRLK-(2,4-dinitrophenyl)-NH2 + H2O
?
show the reaction diagram
-
-
-
-
?
Acid-denatured hemoglobin + H2O
?
show the reaction diagram
-
-
tyrosine-containing acid soluble peptides detected to measure enzyme activity
-
?
Ala-Leu-Ser-Ala-Phe-4-(NO2)Phe-Arg-Leu + H2O
?
show the reaction diagram
-
-
-
?
Ala-Pro-Ala-Lys-Phe-(NO2)-Phe-Arg-Leu + H2O
?
show the reaction diagram
-
-
-
?
Ala-Pro-Ala-Lys-Phe-4-(NO2)Phe-Arg-Leu + H2O
?
show the reaction diagram
-
-
-
?
Ala-Ser-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu + H2O
Ala-Ser-Ala-Asp-Phe + 4-(NO2)Phe-Arg-Leu
show the reaction diagram
-
-
-
-
?
Arg-Pro-Ala-Lys-Phe-4-(NO2)Phe-Arg-Leu + H2O
?
show the reaction diagram
-
-
-
?
Arg-Ser-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu + H2O
Arg-Ser-Ala-Asp-Phe + 4-(NO2)Phe-Arg-Leu
show the reaction diagram
-
-
-
-
?
Asp-Pro-Ala-Lys-Phe-4-(NO2)Phe-Arg-Leu + H2O
?
show the reaction diagram
-
-
-
?
Asp-Ser-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu + H2O
Asp-Ser-Ala-Asp-Phe + 4-(NO2)Phe-Arg-Leu
show the reaction diagram
-
-
-
-
?
azocasein + H2O
?
show the reaction diagram
-
-
-
-
?
casein + H2O
?
show the reaction diagram
-
-
-
-
?
Cathepsin + H2O
?
show the reaction diagram
-
-
-
-
?
Dimethylcasein + H2O
?
show the reaction diagram
-
-
-
-
?
Gly-Ala-Phe-4-(NO2)Phe-Arg-Leu + H2O
?
show the reaction diagram
-
-
-
?
haemoglobin + H2O
?
show the reaction diagram
-
-
-
?
Hemoglobin + H2O
?
show the reaction diagram
-
-
-
-
?
hemoglobin + H2O
tyrosin-containing peptides + hemoglobin fragments
show the reaction diagram
-
-
-
-
?
Leu-Pro-Ala-Lys-Phe-4-(NO2)Phe-Arg-Leu + H2O
?
show the reaction diagram
-
-
-
?
Leu-Ser-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu + H2O
Leu-Ser-Ala-Asp-Phe + 4-(NO2)Phe-Arg-Leu
show the reaction diagram
-
-
-
-
?
lipid transfer protein 1 + H2O
?
show the reaction diagram
-
-
-
-
?
Lys-Ala-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu + H2O
Lys-Ala-Ala-Asp-Phe + 4-(NO2)Phe-Arg-Leu
show the reaction diagram
-
-
-
-
?
Lys-Ala-Ala-Lys-Phe-4-(NO2)Phe-Arg-Leu + H2O
?
show the reaction diagram
-
-
-
?
Lys-Arg-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu + H2O
Lys-Arg-Ala-Asp-Phe + 4-(NO2)Phe-Arg-Leu
show the reaction diagram
-
-
-
-
?
Lys-Arg-Ala-Lys-Phe-4-(NO2)Phe-Arg-Leu + H2O
?
show the reaction diagram
-
-
-
?
Lys-Asp-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu + H2O
Lys-Asp-Ala-Asp-Phe + 4-(NO2)Phe-Arg-Leu
show the reaction diagram
-
-
-
-
?
Lys-Asp-Ala-Lys-Phe-4-(NO2)Phe-Arg-Leu + H2O
?
show the reaction diagram
-
-
-
?
Lys-Leu-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu + H2O
Lys-Leu-Ala-Asp-Phe + 4-(NO2)Phe-Arg-Leu
show the reaction diagram
-
-
-
-
?
Lys-Leu-Ala-Lys-Phe-4-(NO2)Phe-Arg-Leu + H2O
?
show the reaction diagram
-
-
-
?
Lys-Pro-Ala-Ala -Phe-4-(NO2)Phe-Arg-Leu + H2O
?
show the reaction diagram
-
-
-
?
Lys-Pro-Ala-Arg-Phe-4-(NO2)Phe-Arg-Leu + H2O
?
show the reaction diagram
-
-
-
?
Lys-Pro-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu + H2O
?
show the reaction diagram
-
-
-
?
Lys-Pro-Ala-Leu-Phe-4-(NO2)Phe-Arg-Leu + H2O
?
show the reaction diagram
-
-
-
?
Lys-Pro-Ala-Lys-Phe-4-(NO2)Phe-Ala-Leu + H2O
?
show the reaction diagram
-
-
-
?
Lys-Pro-Ala-Lys-Phe-4-(NO2)Phe-Arg-Ala + H2O
?
show the reaction diagram
-
-
-
?
Lys-Pro-Ala-Lys-Phe-4-(NO2)Phe-Arg-Arg + H2O
?
show the reaction diagram
-
-
-
?
Lys-Pro-Ala-Lys-Phe-4-(NO2)Phe-Arg-Asp + H2O
?
show the reaction diagram
-
-
-
?
Lys-Pro-Ala-Lys-Phe-4-(NO2)Phe-Arg-Leu + H2O
?
show the reaction diagram
-
-
-
?
Lys-Pro-Ala-Lys-Phe-4-(NO2)Phe-Arg-Ser + H2O
?
show the reaction diagram
-
-
-
?
Lys-Pro-Ala-Lys-Phe-4-(NO2)Phe-Asp-Leu + H2O
?
show the reaction diagram
-
-
-
?
Lys-Pro-Ala-Lys-Phe-4-(NO2)Phe-Leu-Leu + H2O
?
show the reaction diagram
-
-
-
?
Lys-Pro-Ala-Lys-Phe-4-(NO2)Phe-Ser-Leu + H2O
?
show the reaction diagram
-
-
-
?
Lys-Pro-Ala-Ser-Phe-4-(NO2)Phe-Arg-Leu + H2O
?
show the reaction diagram
-
-
-
?
Lys-Pro-Arg-Asp-Phe-4-(NO2)Phe-Arg-Leu + H2O
Lys-Pro-Arg-Asp-Phe + 4-(NO2)Phe-Arg-Leu
show the reaction diagram
-
-
-
-
?
Lys-Pro-Arg-Lys-Phe-4-(NO2)Phe-Arg-Leu + H2O
?
show the reaction diagram
-
-
-
?
Lys-Pro-Asp-Asp-Phe-4-(NO2)Phe-Arg-Leu + H2O
Lys-Pro-Asp-Asp-Phe + 4-(NO2)Phe-Arg-Leu
show the reaction diagram
-
-
-
-
?
Lys-Pro-Asp-Lys-Phe-4-(NO2)Phe-Arg-Leu + H2O
?
show the reaction diagram
-
-
-
?
Lys-Pro-Ile-Glu-Phe-(NO2)Phe-Arg-Leu + H2O
Lys-Pro-Ile-Glu-Phe + (NO2)Phe-Arg-Leu
show the reaction diagram
Lys-Pro-Ile-Glu-Phe-L-nitrophenylalanine-Arg-Leu + H2O
Lys-Pro-Ile-Glu-Phe + L-nitrophenylalanine-Arg-Leu
show the reaction diagram
-
-
-
-
?
Lys-Pro-Leu-Asp-Phe-4-(NO2)Phe-Arg-Leu + H2O
Lys-Pro-Leu-Asp-Phe + 4-(NO2)Phe-Arg-Leu
show the reaction diagram
-
-
-
-
?
Lys-Pro-Leu-Lys-Phe-4-(NO2)Phe-Arg-Leu + H2O
?
show the reaction diagram
-
-
-
?
Lys-Pro-Ser-Lys-Phe-4-(NO2)Phe-Arg-Leu + H2O
?
show the reaction diagram
-
-
-
?
Lys-Ser-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu + H2O
Lys-Ser-Ala-Asp-Phe + 4-(NO2)Phe-Arg-Leu
show the reaction diagram
-
-
-
-
?
Lys-Ser-Ala-Lys-Phe-4-(NO2)Phe-Arg-Leu + H2O
?
show the reaction diagram
-
-
-
?
MOCAc-Ala-Pro-Ala-Lys-Phe-Phe-Arg-Leu-Lys(Dnp)-NH2 + H2O
?
show the reaction diagram
-
-
-
-
?
Myoglobin + H2O
?
show the reaction diagram
-
initially cleaved in 3 positions: Leu29-Ile30, Leu32-Phe33 and Leu137-Phe138 and subsequently also in positions Leu9-Val10, Leu11-His12, Leu69-Thr70, Leu89-Ala90, Phe106-Ile107 and Ile111-Ile112
-
-
?
Oxidized B-chain of insulin + H2O
?
show the reaction diagram
-
at pH 3.0 or at pH 4.7 in the presence of 4 M urea, the enzyme preferentially cleaves peptide bonds of the X-Tyr and X-Phe types, the peptide bonds Leu15-Tyr16, Phe24-Phe25 and Phe25-Tyr26 are hydrolyzed simultaneously
-
-
?
Pro-Thr-Glu-Phe-(4-nitro)Phe-Arg-Leu + H2O
?
show the reaction diagram
-
-
-
-
?
procarboxypeptidase Y + H2O
propeptide of carboxypeptidase Y + carboxypeptidase Y
show the reaction diagram
-
maturation and activation of procarboxypeptidase Y
-
-
?
proproteinase A + H2O
propeptide of proteinase A + proteinase A
show the reaction diagram
-
autocatalytic activation of proproteinase A
-
-
?
proproteinase B + H2O
propeptide of proteinase B + proteinase B
show the reaction diagram
-
maturation and activation of proproteinase B
-
-
?
Ser-Pro-Ala-Lys-Phe-4-(NO2)Phe-Arg-Leu + H2O
?
show the reaction diagram
-
-
-
?
Ser-Ser-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu + H2O
Ser-Ser-Ala-Asp-Phe + 4-(NO2)Phe-Arg-Leu
show the reaction diagram
-
-
-
-
?
Spt7p + H2O
?
show the reaction diagram
-
the enzyme is required for cleavage of Spt7p subunit within SAGA in vitro into SLIK-related Spt7p
-
-
?
Suc-APAKFFRL-4-methylcoumarin 7-amide + H2O
?
show the reaction diagram
-
-
-
?
Suc-RPFHLLVY-4-methylcoumarin 7-amide + H2O
?
show the reaction diagram
-
-
-
?
Succinyl-Arg-Pro-Phe-His-Leu-Leu-Val-Tyr 4-methylcoumarin 7-amide + H2O
Succinyl-Arg-Pro-Phe-His-Leu-Leu + Val-Tyr 4-methylcoumarin 7-amide
show the reaction diagram
-
-
-
?
succinyl-LFAEVAYD-7-amido-4-methylcoumarin + H2O
?
show the reaction diagram
-
-
-
-
?
succinyl-LFAEVAYD-7-amido-4-methylcoumarin + H2O
succinyl-LFAEVAYD + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
succinyl-RFFHLLVY-7-amido-4-methylcoumarin + H2O
succinyl-RFFHLL + Val-Tyr-7-amido-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
succinyl-RFFHLLVY-7-amido-4-methylcoumarin + H2O
succinyl-RFFHLLVY + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
SucLFALEVAYD-4-methylcoumarin 7-amide + H2O
?
show the reaction diagram
-
-
-
?
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
proproteinase A + H2O
pseudo-proteinaseA + peptide
show the reaction diagram
autoactivation of the enzyme yields a functional protein cleaved after Ser68, autoactivation can occur in rare situations when PrB is unable to activate PrA
Ser68 is the N-terminal amino acid
-
?
lipid transfer protein 1 + H2O
?
show the reaction diagram
-
-
-
-
?
procarboxypeptidase Y + H2O
propeptide of carboxypeptidase Y + carboxypeptidase Y
show the reaction diagram
-
maturation and activation of procarboxypeptidase Y
-
-
?
proproteinase A + H2O
propeptide of proteinase A + proteinase A
show the reaction diagram
-
autocatalytic activation of proproteinase A
-
-
?
proproteinase B + H2O
propeptide of proteinase B + proteinase B
show the reaction diagram
-
maturation and activation of proproteinase B
-
-
?
Spt7p + H2O
?
show the reaction diagram
-
the enzyme is required for cleavage of Spt7p subunit within SAGA in vitro into SLIK-related Spt7p
-
-
?
additional information
?
-
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
1,2-epoxy-3-(p-nitrophenoxy) propane
-
Diazoacetyl-D,L-norleucine methyl ester
-
IA3
-
1,2-epoxy-3-(4-nitrophenoxy) propane
-
-
1,2-epoxy-3-(4-nitrophenoxy)propane
-
-
Diazoacetyl-DL-norleucine methyl ester
IA3
-
IA3 inhibitor
-
-
-
natural aspartic proteinase inhibitor IA3
-
-
-
natural aspartic proteinase inhibitor IA4
-
-
-
PD-129,541
-
cyclic peptide inhibitor
potato aspartic proteinase inhibitor
-
-
-
protein IA3
-
Saccharomyces cerevisiae protein
-
protein IA3 mutant 2-34
-
-
-
protein IA3 mutant M31-M32
-
-
-
Specific proteinase inhibitor from yeast
-
tomato aspartic proteinase inhibitor
-
-
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
Urea
-
stimulates
additional information
-
the enzyme is activated by itself under acidic conditions
-
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.00618
(7-methoxycoumarin-4-yl)acetyl-APAKFFRLK-(2,4-dinitrophenyl)-NH2
-
pH 4.5, 30°C
0.01
Ala-Leu-Ser-Ala-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
0.012
Ala-Pro-Ala-Lys-Phe-(NO2)-Phe-Arg-Leu
-
pH 4.5, 30°C
0.012
Ala-Ser-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
0.02
Arg-Ser-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
0.026
Asp-Ser-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
0.019
Gly-Ala-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
0.017
hemoglobin
-
-
-
0.014
Leu-Ser-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
0.037
Lys-Ala-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
0.094
Lys-Arg-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
0.033
Lys-Asp-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
0.031
Lys-Leu-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
0.02
Lys-Pro-Ala-Ala-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
0.097
Lys-Pro-Ala-Arg-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
0.017
Lys-Pro-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
0.017
Lys-Pro-Ala-Leu-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
0.042
Lys-Pro-Ala-Lys-Phe-4-(NO2)Phe-Ala -Leu
-
pH 4.5, 30°C
0.095
Lys-Pro-Ala-Lys-Phe-4-(NO2)Phe-Arg-Ala
-
pH 4.5, 30°C
0.126
Lys-Pro-Ala-Lys-Phe-4-(NO2)Phe-Arg-Arg
-
pH 4.5, 30°C
0.024
Lys-Pro-Ala-Lys-Phe-4-(NO2)Phe-Arg-Asp
-
pH 4.5, 30°C
0.03
Lys-Pro-Ala-Lys-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
0.25
Lys-Pro-Ala-Lys-Phe-4-(NO2)Phe-Arg-Ser
-
pH 4.5, 30°C
0.068
Lys-Pro-Ala-Lys-Phe-4-(NO2)Phe-Asp-Leu
-
pH 4.5, 30°C
0.017
Lys-Pro-Ala-Lys-Phe-4-(NO2)Phe-Leu-Leu
-
pH 4.5, 30°C
0.073
Lys-Pro-Ala-Lys-Phe-4-(NO2)Phe-Ser-Leu
-
pH 4.5, 30°C
0.015
Lys-Pro-Ala-Ser-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
0.028
Lys-Pro-Arg-Asp-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
0.028
Lys-Pro-Asp-Asp-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
0.1 - 0.25
Lys-Pro-Ile-Glu-Phe-L-nitrophenylalanine-Arg-Leu
0.038
Lys-Pro-Leu-Asp-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
0.037
Lys-Ser-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
0.015
Ser-Ser-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
0.00607
Suc-APAKFFRL-4-methylcoumarin 7-amide
-
pH 4.5, 30°C
0.0181
succinyl-LFAEVAYD-7-amido-4-methylcoumarin
-
pH 4.5, 30°C
-
0.0393
succinyl-RFFHLLVY-7-amido-4-methylcoumarin
-
pH 4.5, 30°C
-
TURNOVER NUMBER [1/s]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
18.1
(7-methoxycoumarin-4-yl)acetyl-APAKFFRLK(2,4-dinitrophenyl)-NH2
-
pH 4.5, 30°C
10.9
Ala-Leu-Ser-Ala-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
0.012 - 14.4
Ala-Pro-Ala-Lys-Phe-(NO2)-Phe-Arg-Leu
14.4
Ala-Ser-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
14.7
Arg-Ser-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
18.6
Asp-Ser-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
19.7
Gly-Ala-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
13.8
Leu-Ser-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
6.7
Lys-Ala-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
5.8
Lys-Arg-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
2.4
Lys-Asp-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
3.5
Lys-Leu-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
15.9
Lys-Pro-Ala-Ala-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
9.4
Lys-Pro-Ala-Arg-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
1.7
Lys-Pro-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
8.4
Lys-Pro-Ala-Leu-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
1.5
Lys-Pro-Ala-Lys-Phe-4-(NO2)Phe-Ala -Leu
-
pH 4.5, 30°C
6.7
Lys-Pro-Ala-Lys-Phe-4-(NO2)Phe-Arg-Ala
-
pH 4.5, 30°C
2.7
Lys-Pro-Ala-Lys-Phe-4-(NO2)Phe-Arg-Arg
-
pH 4.5, 30°C
1.7
Lys-Pro-Ala-Lys-Phe-4-(NO2)Phe-Arg-Asp
-
pH 4.5, 30°C
4
Lys-Pro-Ala-Lys-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
4.7
Lys-Pro-Ala-Lys-Phe-4-(NO2)Phe-Arg-Ser
-
pH 4.5, 30°C
2
Lys-Pro-Ala-Lys-Phe-4-(NO2)Phe-Asp-Leu
-
pH 4.5, 30°C
1.7
Lys-Pro-Ala-Lys-Phe-4-(NO2)Phe-Leu-Leu
-
pH 4.5, 30°C
0.9
Lys-Pro-Ala-Lys-Phe-4-(NO2)Phe-Ser-Leu
-
pH 4.5, 30°C
6.7
Lys-Pro-Ala-Ser-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
3.3
Lys-Pro-Arg-Asp-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
1.9
Lys-Pro-Asp-Asp-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
21 - 66
Lys-Pro-Ile-Glu-Phe-L-nitrophenylalanine-Arg-Leu
10.6
Lys-Pro-Leu-Asp-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
10.4
Lys-Ser-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
6.6
Ser-Ser-Ala-Asp-Phe-4-(NO2)Phe-Arg-Leu
-
pH 4.5, 30°C
18.5
Suc-APAKFFRL-4-methylcoumarin 7-amide
-
pH 4.5, 30°C
3.13 - 3.73
succinyl-LFAEVAYD-7-amido-4-methylcoumarin
-
8.25
succinyl-RFFHLLVY-7-amido-4-methylcoumarin
-
pH 4.5, 30°C
-
Ki VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.000398
CP-108,420
-
pH 4.7, 37°C
0.003742
CP-72,647
-
pH 4.7, 37°C
0.0009418
CP-81,198
-
pH 4.7, 37°C
0.0000071
CP-81,282
-
pH 4.7, 37°C
0.0000017
IA3
-
pH 4.5
-
0.0000006 - 0.0021
IA3 inhibitor
-
0.000004
PD-129,541
-
pH 4.7, 37°C
0.0000137
PD-133,450
-
pH 4.7, 37°C
0.0000002
potato aspartic proteinase inhibitor
-
pH 4.7, 37°C
-
0.0000011
protein IA3
-
pH 4.7, 37°C
-
0.000003
protein IA3 mutant 2-34
-
pH 4.7, 37°C
-
0.0000009
protein IA3 mutant M31-M32
-
pH 4.7, 37°C
-
0.00003
tomato aspartic proteinase inhibitor
-
pH 4.7, 37°C
-
IC50 VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
additional information
IA3
Saccharomyces cerevisiae
-
below 0.1 nM, exact detection impossible
-
SPECIFIC ACTIVITY [µmol/min/mg]
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
additional information
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
2.4
-
casein, azocasein
2.4 - 2.8
-
and 5.5-6.0, casein
2.7 - 3.2
-
hemoglobin
3.2
-
hemoglobin
4.7
-
inactivation of nucleosidase
5 - 5.5
-
succinyl-Arg-Pro-Phe-His-Leu-Leu-Val-Tyr 4-methylcoumarin 7-amide
5.5 - 6
-
and 2.4-2.8, casein
6
-
casein, azocasein
additional information
-
the pH-optimum for hydrolysis of protein substrates can be shifted to about 5 with 4-6 M urea
pH RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
4 - 6.5
-
4: about 50% of activity maximum, 6.5: about 30% of activity maximum
TEMPERATURE OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
-
overexpression results in secretion
-
Manually annotated by BRENDA team
additional information
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
metabolism
-
the enzyme is responsible for formation of the Spt-Ada-Gcn5 acetyltransferase (SAGA)-related SALSA/SAGA-like (SLIK) protein complex
physiological function
-
Pep4p has a role in mitochondrial degradation. Depletion and overexpression of Pep4p delays and enhances mitochondrial degradation, respectively
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
40760
-
laser desorption mass spectroscopy, a second form with MW 38132 isolated from the culture medium is an underglycosylated form lacking the carbohydrate moiety at Asn269
41400
-
sedimentation-diffusion equilibrium ultracentrifugation
41700
-
1 * 41700, Saccharomyces cerevisiae, SDS-PAGE
42000
45000
49000
-
enzyme form A, gel filtration
54000
-
1 * 54000, Saccharomyces cerevisiae, enzyme form A, SDS-PAGE
additional information
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
monomer
synthesized as inactive precursor of 405 residues with an apparent molecular weight of 52000 Da, mature nonglycosylated form of PrA has a molecular weight of 35800 Da, mature glycosylated form of PrA has a molecular weight of 41500 Da
monomer
additional information
POSTTRANSLATIONAL MODIFICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
glycoprotein
glycosylation at Asn67 and Asn266
glycoprotein
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
structures of the native enzyme solved by molecular replacement in monoclinic and trygonal crystal forms, trigonal space group P3(2)21, cell dimensions a = b = 84.6 A, c = 108.7 A, monoclinic space group P2(1), cell dimensions a = 82.97 A, b = 49.08 A, c = 94.69 A
bound to inhibitor protein IA3, vapor diffusion, space group P6(2)22, unit cell dimensions a = b = 192.66 A, c = 52.09 A
-
crystallized with and without non-hydrolyzable transition-state analogue inhibitors
-
in complex with natural aspartic proteinase in hibitor IA3, space group P6(2)22, with unit-cell parameters a : b : 192.1 A, c : 59.80 A, native saccharopepsin crystals belongs to the orthorhombic space group I2(1)2(1)2(1) with unit-cell parameters a : 101.4 A, b 0 128.7 A, c : 155.4 A, in complex with CP81,282 and PD130,327 trigonal space group P3(2)21, with unit-cell parameters a 0 b : 87.4 A, c : 110.2 A
-
vapour diffusion, space group P3(2)21, in complex with inhibitor CP-81,198 unit cell dimensions a : b : 86.8 A, c : 110.2 A, in complex with inhibitor CP-108,420 unit cell dimensions a : b : 86.9 A, c : 110.2 A, in complex with inhibitor CP-72,647 unit cell dimensions a : b : 86.4 A, c : 109.9 A, in complex with inhibitor PD-129,541 unit cell dimensions a : b : 87.3 A, c : 110.7 A, in complex with inhibitor PD-133,450 unit cell dimensions a : b : 86.9 A, c : 110.2 A
-
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
A213I
-
increased Km and 50% higher turnover than wild type enzyme
D294A
-
inactive
T222A
-
50% of wild type turnover
T287A/P288G
-
50% of wild type turnover
pH STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
3
-
25°C, 48 h, 80% loss of activity
30697
3.6 - 6.8
-
37°C, optimal pH for stability
30710
4 - 6
-
25°C, stable
30697
5.5
-
2 h, stable below 45°C
30697
TEMPERATURE STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
25
-
pH 4-6: stable, pH 3: 80% loss of activity
25 - 45
-
the enzyme is stable at temperatures lower than 45°C and pH 5.5 and at 25°C and pH of 5.0-6.0
45
-
pH 5.5, 2 h, stable below
GENERAL STABILITY
ORGANISM
UNIPROT
LITERATURE
lyophilization inactivates
-
Quite stable in concentrated solutions of urea, retains full activity after 1 h at 4°C in 6 M urea at pH 6.0, significant loss of activity at pH 5.0 and 7.0
-
repeated freezing and thawing inactivates
-
STORAGE STABILITY
ORGANISM
UNIPROT
LITERATURE
-20°C or 0°C, 0.05 M potassium phosphate buffer, pH 6.7, stable for many months
-
-20°C, 50 mM imidazole buffer, pH 7.0, after 3 years, 40% of the original activity is retained
-
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
Sephadex G-25gel filtration
-
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
construction of different PEP4, PRB1, and PRC1 deficiency mutants
-
expression in Xenopus oocytes
-
overproduction-induced mislocation of the enzyme protein allows isolation of its structural gene
-
EXPRESSION
ORGANISM
UNIPROT
LITERATURE
overexpression of the actin-severing protein cofilin reduces enzyme expression and excretion. Overexpression of Golgi apparatus-localized Ca2+ ATPase Pmr1 reduces enzyme excretion
-
the enzyme activity increases with increasing concentrations of 8-20% (w/v) D-glucose
-
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
medicine
important in a number of pathological processes, including gastric ulcers, Alzheimer's disease, hypertension, malaria, and AIDS
food industry
medicine
-
participates in a variety of physiological processes, and the onset of pathological conditions such as hypertension, gastric ulcers, and neoplastic diseases may be related to changes in the level of activity
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Ammerer, G.; Hunter, C.P.; Rothman, J.H.; Saari, G.C.; Valls, L.A.; Stevens, T.H.
PEP4 gene of Saccharomyces cerevisiae encodes proteinase A, a vacuolar enzyme required for processing of vacuolar precursors
Mol. Cell. Biol.
6
2490-2499
1986
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Meussendoerffer, F.; Tortora, P.; Holzer, H.
Purification and properties of proteinase A from yeast
J. Biol. Chem.
255
12087-12093
1980
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Mechler, B.; Muller, M.; Muller, H.; Meussendoerffer, F.; Wolf, D.H.
In vivo biosynthesis of the vacuolar proteinases A and B in the yeast Saccharomyces cerevisiae
J. Biol. Chem.
257
11203-11206
1982
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Rothman, J.H.; Hunter, C.P.; Valls, L.A.; Stevens, T.H.
Overproduction-induced mislocalization of a yeast vacuolar protein allows isolation of its structural gene
Proc. Natl. Acad. Sci. USA
83
3248-3252
1986
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Mechler, B.; Wolf, D.H.
Analysis of proteinase A function in yeast
Eur. J. Biochem.
121
47-52
1981
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Dreyer, T.; Valler, M.J.; Kay, J.; Charlton, P.; Dunn, B.M.
The selectivity of action of the aspartic-proteinase inhibitor IA3 from yeast (Saccharomyces cerevisiae)
Biochem. J.
231
777-779
1985
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Dreyer, T.; Svendsen, I.; Ottesen, M.
Partial primary structure and substance specificity of proteinase A from Saccharomyces cerevisiae
Biochem. Soc. Trans.
13
1142-1143
1985
Saccharomyces cerevisiae
-
Manually annotated by BRENDA team
Jusic, M.; Hinze, H.; Holzer, H.
Inactivation of yeast enzymes by proteinase A and B and carboxypeptidase Y from yeast
Hoppe-Seyler's Z. Physiol. Chem.
357
735-740
1976
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Huse, K.; Kopperschlger, G.; Hofmann, E.
Differences in the degradation of yeast phosphofructokinase by proteinases A and B from yeast
Biochem. J.
155
721-723
1976
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Pedersen, J.; Biedermann, K.
Characterization of proteinase A glycoforms from recombinant Saccharomyces cerevisiae
Biotechnol. Appl. Biochem.
18
377-388
1993
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Yokosawa, H.; Ito, H.; Murata, S.; Ishii, S.I.
Purification and fluorometric assay of proteinase A from yeast
Anal. Biochem.
134
210-215
1983
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Badasso, M.; Wood, S.P.; Aguilar, C.; Cooper, J.B.; Blundell, T.L.
Crystallization and preliminary crystallographic characterization of aspartic proteinase-A from bakers yeast and its complexes with inhibitors
J. Mol. Biol.
232
701-703
1993
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Faust, P.L.; Kornfeld, S.
Expression of the yeast aspartyl protease, proteinase A. Phosphorylation and binding to the mannose 6-phosphate receptor are altered by addition of cathepsin D sequences
J. Biol. Chem.
264
479-488
1989
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Magni, G.; Natalini, P.; Santarelli, I.; Vita, A.
Bakers yeast protease A purification and enzymatic and molecular properties
Arch. Biochem. Biophys.
213
426-433
1982
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Nowak, J.; Tsai, H.
Purification and properties of three endopeptidases from baker's yeast
Can. J. Microbiol.
35
295-303
1989
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Dreyer, T.
Substrate specificity of proteinase yscA from saccharomyces cerevisiae
Carlsberg Res. Commun.
54
85-97
1989
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Dreyer, T.; Halkier, B.; Svendsen, I.; Ottesen, M.
Primary structure of the aspartic proteinase A from Saccharomyces cerevisiae
Carlsberg Res. Commun.
51
27-41
1986
Saccharomyces cerevisiae
-
Manually annotated by BRENDA team
Badasso, M.O.; Read, J.A.; Dhanaraj, V.; Cooper, J.B.; Wood, S.P.; Blundell, T.L.; Dreyer, T.; Winther, J.
Purification, co-crystallization and preliminary X--ray analysis of the natural aspartic proteinase inhibitor IA3 complexed with saccharopepsin from Saccharomyces cerevisiae
Acta Crystallogr. Sect. D
56
915-917
2000
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Gustchina, A.; Li, M.; Phylip, L.H.; Lees, W.E.; Kay, J.; Wlodawer, A.
An unusual orientation for Tyr75 in the active site of the aspartic proteinase from Saccharomyces cerevisiae
Biochem. Biophys. Res. Commun.
295
1020-1026
2002
Saccharomyces cerevisiae (P07267)
Manually annotated by BRENDA team
Cater, S.A.; Lees, W.E.; Hill, J.; Brzin, J.; Kay, J.; Phylip, L.H.
Aspartic proteinase inhibitors from tomato and potato are more potent against yeast proteinase A than cathepsin D
Biochim. Biophys. Acta
1596
76-82
2002
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Kondo, H.; Shibano, Y.; Amachi, T.; Cronin, N.; Oda, K.; Dunn, B.M.
Substrate specificities and kinetic properties of proteinase A from the yeast Saccharomyces cerevisiae and the development of a novel substrate
J. Biochem.
124
141-147
1998
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Phylip, L.H.; Lees, W.E.; Brownsey, B.G.; Bur, D.; Dunn, B.M.; Winther, J.R.; Gustchina, A.; Li, M.; Copeland, T.; Wlodawer, A.; Kay, J.
The potency and specificity of the interaction between the IA3 inhibitor and its target aspartic proteinase from Saccharomyces cerevisiae
J. Biol. Chem.
276
2023-2030
2001
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Cronin, N.B.; Badasso, M.O.; Tickle, J.; Dreyer, T.; Hoover, D.J.; Rosati, R.L.; Humblet, C.C.; Lunney, E.A.; Cooper, J.B.
X-ray structures of five renin inhibitors bound to saccharopepsin: exploration of active-site specificity
J. Mol. Biol.
303
745-760
2000
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Li, M.; Phylip, L.H.; Lees, W.E.; Winther, J.R.; Dunn, B.M.; Wlodawer, A.; Kay, J.; Gustchina, A.
The aspartic proteinase from Saccharomyces cerevisiae folds its own inhibitor into a helix
Nat. Struct. Biol.
7
113-117
2000
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Green, T.B.; Ganesh, O.; Perry, K.; Smith, L.; Phylip, L.H.; Logan, T.M.; Hagen, S.J.; Dunn, B.M.; Edison, A.S.
IA3, an aspartic proteinase inhibitor from Saccharomyces cerevisiae, is intrinsically unstructured in solution
Biochemistry
43
4071-4081
2004
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Parr, C.L.; Keates, R.A.; Bryksa, B.C.; Ogawa, M.; Yada, R.Y.
The structure and function of Saccharomyces cerevisiae proteinase A
Yeast
24
467-480
2007
Saccharomyces cerevisiae (P07267), Saccharomyces cerevisiae
Manually annotated by BRENDA team
Kato, M.; Kuzuhara, Y.; Maeda, H.; Shiraga, S.; Ueda, M.
Analysis of a processing system for proteases using yeast cell surface engineering: conversion of precursor of proteinase A to active proteinase A
Appl. Microbiol. Biotechnol.
72
1229-1237
2006
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Guilloux-Benatier, M.; Remize, F.; Gal, L.; Guzzo, J.; Alexandre, H.
Effects of yeast proteolytic activity on Oenococcus oeni and malolactic fermentation
FEMS Microbiol. Lett.
263
183-188
2006
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Winterburn, T.J.; Wyatt, D.M.; Phylip, L.H.; Bur, D.; Harrison, R.J.; Berry, C.; Kay, J.
Key features determining the specificity of aspartic proteinase inhibition by the helix-forming IA3 polypeptide
J. Biol. Chem.
282
6508-6516
2007
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Marques, M.; Mojzita, D.; Amorim, M.A.; Almeida, T.; Hohmann, S.; Moradas-Ferreira, P.; Costa, V.
The Pep4p vacuolar proteinase contributes to the turnover of oxidized proteins but PEP4 overexpression is not sufficient to increase chronological lifespan in Saccharomyces cerevisiae
Microbiology
152
3595-3605
2006
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Narayanan, R.; Ganesh, O.K.; Edison, A.S.; Hagen, S.J.
Kinetics of folding and binding of an intrinsically disordered protein: the inhibitor of yeast aspartic proteinase YPrA
J. Am. Chem. Soc.
130
11477-11485
2008
Saccharomyces cerevisiae (P07267), Saccharomyces cerevisiae
Manually annotated by BRENDA team
Spedale, G.; Mischerikow, N.; Heck, A.; Marc Timmers, H.; Pim Pijnappel, W.
Identification of Pep4p as the protease responsible for formation of the SAGA-related SLIK protein complex
J. Biol. Chem.
285
22793-22799
2010
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Pereira, C.; Chaves, S.; Alves, S.; Salin, B.; Camougrand, N.; Manon, S.; Sousa, M.; Corte-Real, M.
Mitochondrial degradation in acetic acid-induced yeast apoptosis: The role of Pep4 and the ADP/ATP carrier
Mol. Microbiol.
76
1398-1410
2010
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Chen, Y.; Song, L.; Han, Y.; Liu, M.; Gong, R.; Luo, W.; Guo, X.; Xiao, D.
Decreased proteinase A excretion by strengthening its vacuolar sorting and weakening ist constitutive secretion in Saccharomyces cerevisiae
J. Ind. Microbiol. Biotechnol.
44
149-159
2017
Saccharomyces cerevisiae, Saccharomyces cerevisiae W303-1A
Manually annotated by BRENDA team
Song, L.; Chen, Y.; Guo, Q.; Huang, S.; Guo, X.; Xiao, D.
Regulating the Golgi apparatus sorting of proteinase A to decrease its excretion in Saccharomyces cerevisiae
J. Ind. Microbiol. Biotechnol.
46
601-612
2019
Saccharomyces cerevisiae, Saccharomyces cerevisiae W303-1A
Manually annotated by BRENDA team
Dong, L.; Li, F.; Piao, Y.; Sun, D.; Zhao, R.; Li, C.; Cong, L.; Zhao, C.
Characterization of proteinase A excretion from Saccharomyces cerevisiae in high sugar stress conditions
J. Korean Soc. Appl. Biol. Chem.
58
203-208
2015
Saccharomyces cerevisiae
-
Manually annotated by BRENDA team
Song, L.; Chen, Y.; Du, Y.; Wang, X.; Guo, X.; Dong, J.; Xiao, D.
Saccharomyces cerevisiae proteinase A excretion and wine making
World J. Microbiol. Biotechnol.
33
210
2017
Saccharomyces cerevisiae
Manually annotated by BRENDA team