Information on EC 3.4.22.69 - SARS coronavirus main proteinase

Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Specify your search results
Mark a special word or phrase in this record:
Select one or more organisms in this record:
Show additional data
Do not include text mining results
Include (text mining) results (more...)
Include results (AMENDA + additional results, but less precise; more...)


The expected taxonomic range for this enzyme is: Coronavirinae

EC NUMBER
COMMENTARY
3.4.22.69
-
RECOMMENDED NAME
GeneOntology No.
SARS coronavirus main proteinase
-
REACTION
REACTION DIAGRAM
COMMENTARY
ORGANISM
UNIPROT ACCESSION NO.
LITERATURE
TSAVLQ-/-SGFRK-NH2 and SGVTFQ-/-!GKFKK the two peptides corresponding to the two self-cleavage sites of the SARS 3C-like proteinase are the two most reactive peptide substrates. The enzyme exhibits a strong preference for substrates containing Gln at P1 position and Leu at P2 position.
show the reaction diagram
-
-
-
-
REACTION TYPE
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
hydrolysis of peptide bond
-
-
-
-
SYNONYMS
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
3C-like protease
P0C6U8
-
3CL protease
P0C6U8
-
3cLpro
-
-
-
-
3cLpro
P0C6U8
-
C30.004
-
-
-
-
chymotrypsin-like protease
P0C6U8
-
coronavirus 3C-like protease
-
-
coronavirus main protease
-
-
Mpro
-
-
-
-
porcine transmissible gastroenteritis virus Mpro
-
-
-
-
SARS 3C-like protease
-
-
SARS 3C-like proteinase
-
-
SARS 3CL protease
-
-
SARS 3CL protease
P0C6U8
-
SARS 3CLpro
-
-
SARS coronavirus 3C-like protease
-
-
SARS coronavirus 3C-like proteinase
-
-
SARS coronavirus 3CL protease
-
-
SARS coronavirus main peptidase
-
-
SARS coronavirus main protease
-
-
SARS coronavirus main protease
P0C6U8
-
SARS coronavirus main proteinase
-
-
SARS CoV main proteinase
-
-
SARS CoVMpro
-
-
SARS main protease
-
-
SARS Mpro
-
-
SARS-3CL protease
-
-
SARS-3CLpro
-
-
SARS-coronavirus 3CL protease
-
-
SARS-coronavirus main protease
-
-
SARS-CoV 3C-like peptidase
-
-
SARS-CoV 3C-like protease
-
-
SARS-CoV 3CL peptidase
-
-
SARS-CoV 3CL protease
-
-
SARS-CoV 3CLpro enzyme
-
-
SARS-CoV main protease
-
-
SARS-CoV Mpro
-
-
SARS-CoV Mpro
P0C6U8
-
severe acute respiratory syndrome coronavirus 3C-like protease
-
-
severe acute respiratory syndrome coronavirus main protease
-
-
severe acute respiratory syndrome coronavirus main proteinase
-
-
TGEV Mpro
-
-
-
-
CAS REGISTRY NUMBER
COMMENTARY
218925-73-6
-
37353-41-6
-
GENERAL INFORMATION
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
physiological function
-
the enzyme is required for viral polyprotein processing
physiological function
-
3CLpro is required for viral replication
physiological function
P0C6U8
3CLpro is vital for SARS-coronavirus replication
SUBSTRATE
PRODUCT                      
REACTION DIAGRAM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
(Substrate)
LITERATURE
(Substrate)
COMMENTARY
(Product)
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
(Ala-Arg-Leu-Gln-NH)2-rhodamine
rhodamine 110 + (Ala-Arg-Leu-Gln-NH)-rhodamine
show the reaction diagram
-
-
-
-
?
(CAL fluor red 610)-TSAVLQSGFRK(BHQ1) + H2O
(CAL fluor red 610)-TSAVLQ + SGFRK(BHQ1)
show the reaction diagram
-
-
-
-
?
2-aminobenzoyl-SVTLQSG-Tyr(NO2)Arg + H2O
?
show the reaction diagram
-
-
-
-
?
2-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide + H2O
2-aminobenzoyl-TSAVLQ + SGFRK-2,4-dinitrophenyl amide
show the reaction diagram
-
-
-
-
?
AAVLQSGF-NH2 + H2O
AAVLQ + SGF-NH2
show the reaction diagram
-
-
-
-
?
Abz-LQxSGFRK(Dnp)NH2 + H2O
Abz-LQ + SGFRK(Dnp)NH2
show the reaction diagram
-
-
-
-
?
Abz-LYQPPQTSITSAVLQSGFRK(Dnp)NH2 + H2O
Abz-LYQPPQTSITSAVLQ + SGFRK(Dnp)NH2
show the reaction diagram
-
-
-
-
?
Abz-QTSITSAVLQSGFRK(Dnp)NH2 + H2O
Abz-QTSITSAVLQ + SGFRK(Dnp)NH2
show the reaction diagram
-
-
-
-
?
Abz-SAVLQSGFRK(Dnp)NH2 + H2O
Abz-SAVLQ + SGFRK(Dnp)NH2
show the reaction diagram
-
-
-
-
?
Abz-SAVLQSGFRKMAK(Dnp)NH2 + H2O
Abz-SAVLQ + SGFRKMAK(Dnp)NH2
show the reaction diagram
-
-
-
-
?
Abz-SAVLQSGK(Dnp)NH2 + H2O
Abz-SAVLQ + SGK(Dnp)NH2
show the reaction diagram
-
-
-
-
?
Abz-SAVLQxSGFRKMAFPSGK(Dnp)NH2 + H2O
Abz-SAVLQ + SGFRKMAFPSGK(Dnp)NH2
show the reaction diagram
-
-
-
-
?
Abz-SGADVLYQPPQTSITSAVLQSGFRK(Dnp)NH2 + H2O
Abz-SGADVLYQPPQTSITSAVLQ + SGFRK(Dnp)NH2
show the reaction diagram
-
-
-
-
?
Abz-VLQSGFRK(Dnp)NH2 + H2O
Abz-VLQ + SGFRK(Dnp)NH2
show the reaction diagram
-
-
-
-
?
acetyl-TSAVLH-7-amido-4-carbamoyl-coumarin + H2O
acetyl-TSAVLH + 7-amino-4-carbamoyl-coumarin
show the reaction diagram
-
SARS-CoV 3Clpro prefers Gln over His in P1 position. Unlike SARS-CoV 3Clpro, His is strongly preferred in the P1 position by 3C-like proteases from infectious bronchitis virus murine hepatitis virus
-
-
?
acetyl-TSTKLQ-7-amido-4-carbamoyl-coumarin + H2O
acetyl-TSTKLQ + 7-amino-4-carbamoyl-coumarin
show the reaction diagram
-
optimized fluorogenic peptide substrate. The enzyme exhibits a strong preference for P1 Gln containing substrates and P2 Leu containing substrates
-
-
?
ATVRLQAGNAT + H2O
ATVRLQ + AGNAT
show the reaction diagram
-
-
-
-
?
AVLQS-NH2 + H2O
AVLQ + L-serinamide
show the reaction diagram
-
-
-
-
?
AVLQSE-NH2 + H2O
AVLQ + Ser-Glu-NH2
show the reaction diagram
-
-
-
-
?
AVLQSGF-NH2 + H2O
AVLQ + SGF-NH2
show the reaction diagram
-
-
-
-
?
coronavirus polyprotein + H2O
?
show the reaction diagram
-
3CLpro processes the translated polyproteins to functional viral proteins
-
-
?
cyan fluorescent protein-TSAVLQSGFRKM-yellow fluorescent protein + H2O
cyan fluorescent protein-TSAVLQ + SGFRKM-yellow fluorescent protein
show the reaction diagram
-
-
-
-
?
Dabcyl-KNSTLQSGLRKE-Edans + H2O
Dabcyl-KNSTLQ + SGLRKE-Edans
show the reaction diagram
-
-
-
-
?
Dabcyl-KTSAVLQSGFRKME-Edans + H2O
Dabcyl-KTSAVLQ + SGFRKME-Edans
show the reaction diagram
-
-
-
-
?
dabcyl-KTSAVLQSGFRKME-Edans + H2O
?
show the reaction diagram
-
-
-
-
?
Dabcyl-KTSAVLQSGFRKME-Edans-amide + H2O
Dabcyl-KTSAVLQ + SGFRKME-Edans-amide
show the reaction diagram
P0C6U8
-
-
-
?
Dabcyl-KTSAVLQSGFRKMQ-Edans + H2O
Dabcyl-KTSAVLQ + SGFRKMQ-Edans
show the reaction diagram
-
-
-
-
?
DABCYL-Lys-Asn-Ser-Thr-Leu-Gln-Ser-Gly-Leu-Arg-Lys-Glu-EDANS + H2O
DABCYL-Lys-Asn-Ser-Thr-Leu-Gln + Ser-Gly-Leu-Arg-Lys-Glu-EDANS
show the reaction diagram
-
-
-
-
?
DABCYL-Lys-Thr-Ser-Ala-Val-Leu-Gln-Ser-Gly-Phe-Arg-Lys-Met-Glu-EDANS + H2O
DABCYL-Lys-Thr-Ser-Ala-Val-Leu-Gln + Ser-Gly-Phe-Arg-Lys-Met-Glu-EDANS
show the reaction diagram
-
-
-
-
?
EDANS-VNSTLQSGLRK-(Dabcyl)-M + H2O
EDANS-VNSTLQ + SGLRK-(Dabcyl)-M
show the reaction diagram
-
-
-
-
?
FAVLQSGF + H2O
FAVLQ + SGF
show the reaction diagram
-
-
-
-
?
FVRLQSGF+ H2O
FVRLQ + SGF
show the reaction diagram
-
-
-
-
?
FVVLQSGF + H2O
FVVLQ + SGF
show the reaction diagram
-
-
-
-
?
FYPKLQASQAW + H2O
FYPKLQ + ASQAW
show the reaction diagram
-
-
-
-
?
GPFVDRQTAQAAGTDT-NH2 + H2O
?
show the reaction diagram
-
1% of the activity with TSAVLQSGFRK-NH2
-
-
?
H-Thr-Ser-Ala-Val-Leu-Gln-Ser-Gly-Phe-Arg-Lys-NH2 + H2O
H-Thr-Ser-Ala-Val-Leu-Gln + Ser-Gly-Phe-Arg-Lys-NH2
show the reaction diagram
-
-
-
-
?
KVATVQSKMSD + H2O
KVATVQ + SKMSD
show the reaction diagram
-
-
-
-
?
KVATVQSKMSD + H2O
KVATVQ + SKMSD
show the reaction diagram
-
weak activity
-
-
?
KVATVQSKMSD-NH2
?
show the reaction diagram
-
undecapeptide containing the non-canonical P3/P4 cleavage site of 3CL protease, 6% of the activity with TSAVLQSGFRK-NH2
-
-
-
L-Thr-L-Ser-L-Ala-L-Val-L-Leu-L-Gln-4-nitroanilide + H2O
L-Thr-L-Ser-L-Ala-L-Val-L-Leu-L-Gln + 4-nitroaniline
show the reaction diagram
-
-
-
-
?
LAVLQSGF-NH2 + H2O
LAVLQ + SGF-NH2
show the reaction diagram
-
-
-
-
?
LQSG-NH2 + H2O
Leu-Gln + Ser-Gly-NH2
show the reaction diagram
-
-
-
-
?
NRATLQAIASE + H2O
NRATLQ + AIASE
show the reaction diagram
-
-
-
-
?
NRATLQAIASE + H2O
NRATLQ + AIASE
show the reaction diagram
-
weak activity
-
-
?
NVATLQAENVT + H2O
NVATLQ + AENVT
show the reaction diagram
-
-
-
-
?
NVATLQAENVT + H2O
NVATLQ + AENVT
show the reaction diagram
-
weak activity
-
-
?
o-aminobenzoyl-TSAVLQSGFRY(3-NO2)G + H2O
o-aminobenzoyl-TSAVLQ + SGFRY(3-NO2)G
show the reaction diagram
-
-
-
-
?
PATVLQAVGAC + H2O
PATVLQ + AVGAC
show the reaction diagram
-
-
-
-
?
PHTVLQAVGAC + H2O
PHTVLQ + AVGAC
show the reaction diagram
-
-
-
-
?
REPLMQSADAS + H2O
REPLMQ + SADAS
show the reaction diagram
-
-
-
-
?
REPLMQSADAS + H2O
REPLMQ + SADAS
show the reaction diagram
-
weak activity
-
-
?
SAALQSGF-NH2 + H2O
SAALQ + SGF-NH2
show the reaction diagram
-
-
-
-
?
SAKLQSGF-NH2 + H2O
SAKLQ + SGF-NH2
show the reaction diagram
-
-
-
-
?
SALLQSGF-NH2 + H2O
SALLQ + SGF-NH2
show the reaction diagram
-
-
-
-
?
SATLQSGF-NH2 + H2O
SATLQ + SGF-NH2
show the reaction diagram
-
-
-
-
?
SAVAQSGF-NH2 + H2O
SAVAQ + SGF-NH2
show the reaction diagram
-
-
-
-
?
SAVFQSGF-NH2 + H2O
SAVMQ + SGF-NH2
show the reaction diagram
-
-
-
-
?
SAVIQSGF-NH2 + H2O
SAVIQ + SGF-NH2
show the reaction diagram
-
-
-
-
?
SAVKLQNNELS + H2O
SAVKLQ + NNELS
show the reaction diagram
-
-
-
-
?
SAVKLQNNELS + H2O
SAVKLQ + NNELS
show the reaction diagram
-
weak activity
-
-
?
SAVLESGF-NH2 + H2O
SAVLE + SGF-NH2
show the reaction diagram
-
-
-
-
?
SAVLKSGF-NH2 + H2O
SAVLK + SGF-NH2
show the reaction diagram
-
-
-
-
?
SAVLNSGF-NH2 + H2O
SAVLN + SGF-NH
show the reaction diagram
-
-
-
-
?
SAVLQAGF-NH2 + H2O
SAVLQ + AGF-NH2
show the reaction diagram
-
-
-
-
?
SAVLQEGFRK + H2O
SAVLQ + EGFRK
show the reaction diagram
-
the cleavage rate of the mutant enzyme T25G is remarkably higher compared to the wild type enzyme
-
-
?
SAVLQFGFRK + H2O
SAVLQ + FGFRK
show the reaction diagram
-
the cleavage rate of the mutant enzyme T25G is remarkably higher compared to the wild type enzyme
-
-
?
SAVLQGGF-NH2 + H2O
SAVLQ + GGF-NH2
show the reaction diagram
-
-
-
-
?
SAVLQGGFRK + H2O
SAVLQ + GGFRK
show the reaction diagram
-
the cleavage rate of the mutant enzyme T25G is similar to the wild type enzyme
-
-
?
SAVLQHGFRK + H2O
SAVLQ + HGFRK
show the reaction diagram
-
low activity
-
-
?
SAVLQKGFRK + H2O
SAVLQ + KGFRK
show the reaction diagram
-
low activity
-
-
?
SAVLQLGF-NH2 + H2O
SAVLQ + LGF-NH2
show the reaction diagram
-
-
-
-
?
SAVLQLGFRK + H2O
SAVLQ + LGFRK
show the reaction diagram
-
the cleavage rate of the mutant enzyme T25G is remarkably higher compared to the wild type enzyme
-
-
?
SAVLQMGFRK + H2O
SAVLQ + MGFRK
show the reaction diagram
-
the cleavage rate of the mutant enzyme T25G is remarkably higher compared to the wild type enzyme
-
-
?
SAVLQSGF-NH2 + H2O
SAVLQ + SGF-NH2
show the reaction diagram
-
-
-
-
?
SAVLQSGFRK + H2O
SAVLQ + SGFRK
show the reaction diagram
-
-
-
-
?
SAVLQSGFRK + H2O
SAVLQ + SGFRK
show the reaction diagram
-
best substrate for both, wild type and mutant enzyme T25G
-
-
?
SAVLQWGFRK + H2O
SAVLQ + WGFRK
show the reaction diagram
-
low activity
-
-
?
SAVMQSGF-NH2 + H2O
SAVMQ + SGF-NH2
show the reaction diagram
-
-
-
-
?
SAVRQSGF-NH2 + H2O
SAVRQ + SGF-NH2
show the reaction diagram
-
-
-
-
?
SAVVQSGF-NH2 + H2O
SAVVQ + SGF-NH2
show the reaction diagram
-
-
-
-
?
Ser-Ala-Val-Leu-Gln-Leu-Gly-Phe-Arg-Lys + H2O
Ser-Ala-Val-Leu-Gln + Leu-Gly-Phe-Arg-Lys
show the reaction diagram
-
substrate for T25G mutant protein
-
-
?
Ser-Ala-Val-Leu-Gln-Met-Gly-Phe-Arg-Lys + H2O
Ser-Ala-Val-Leu-Gln + Met-Gly-Phe-Arg-Lys
show the reaction diagram
-
-
-
-
?
Ser-Ala-Val-Leu-Gln-Ser-Gly-Phe-Arg-Lys + H2O
Ser-Ala-Val-Leu-Gln + Ser-Gly-Phe-Arg-Lys
show the reaction diagram
-
-
-
-
?
SGVTFQGKFKK + H2O
SGVTFQ + GKFKK
show the reaction diagram
-
-
-
-
?
SGVTFQGKFKK + H2O
SGVTFQ + GKFKK
show the reaction diagram
-
highest cleavage efficiency. The two peptides corresponding to the two self-cleavage sites of the SARS 3C-like proteinase are the two most reactive ones
-
-
?
SITSAVLQ-p-nitroanilide + H2O
?
show the reaction diagram
-
-
-
-
?
SITSAVLQ-p-nitrophenyl ester + H2O
?
show the reaction diagram
-
-
-
-
?
SITSAVLQSGFRKMA + H2O
?
show the reaction diagram
-
-
-
-
?
SLVLQSGF-NH2 + H2O
SLVLQ + SGF-NH2
show the reaction diagram
-
-
-
-
?
STVLQSGF-NH2 + H2O
STVLQ + SGF-NH2
show the reaction diagram
-
-
-
-
?
SVVLQSGF-NH2 + H2O
SVVLQ + SGF-NH2
show the reaction diagram
-
-
-
-
?
SWTSAVAQSGFRKWA + H2O
SWTSAVAQ + SGFRKWA
show the reaction diagram
P0C6U8
less than 10% activity compared to SWTSAVLQSGFRKWA
-
-
?
SWTSAVCQSGFRKWA + H2O
SWTSAVCQ + SGFRKWA
show the reaction diagram
P0C6U8
less than 1% activity compared to SWTSAVLQSGFRKWA
-
-
?
SWTSAVFQSGFRKWA + H2O
SWTSAVFQ + SGFRKWA
show the reaction diagram
P0C6U8
about 70% activity compared to SWTSAVLQSGFRKWA
-
-
?
SWTSAVHQSGFRKWA + H2O
SWTSAVHQ + SGFRKWA
show the reaction diagram
P0C6U8
less than 5% activity compared to SWTSAVLQSGFRKWA
-
-
?
SWTSAVIQSGFRKWA + H2O
SWTSAVIQ + SGFRKWA
show the reaction diagram
P0C6U8
about 45% activity compared to SWTSAVLQSGFRKWA
-
-
?
SWTSAVLQSGFRKWA + H2O
?
show the reaction diagram
-
-
-
-
?
SWTSAVLQSGFRKWA + H2O
SWTSAVLQ + SGFRKWA
show the reaction diagram
P0C6U8
100% activity
-
-
?
SWTSAVMQSGFRKWA + H2O
SWTSAVMQ + SGFRKWA
show the reaction diagram
P0C6U8
about 58% activity compared to SWTSAVLQSGFRKWA
-
-
?
SWTSAVNQSGFRKWA + H2O
SWTSAVNQ + SGFRKWA
show the reaction diagram
P0C6U8
less than 1% activity compared to SWTSAVLQSGFRKWA
-
-
?
SWTSAVPQSGFRKWA + H2O
SWTSAVPQ + SGFRKWA
show the reaction diagram
P0C6U8
about 10% activity compared to SWTSAVLQSGFRKWA
-
-
?
SWTSAVQQSGFRKWA + H2O
SWTSAVQQ + SGFRKWA
show the reaction diagram
P0C6U8
less than 5% activity compared to SWTSAVLQSGFRKWA
-
-
?
SWTSAVSQSGFRKWA + H2O
SWTSAVSQ + SGFRKWA
show the reaction diagram
P0C6U8
less than 1% activity compared to SWTSAVLQSGFRKWA
-
-
?
SWTSAVTQSGFRKWA + H2O
SWTSAVTQ + SGFRKWA
show the reaction diagram
P0C6U8
less than 5% activity compared to SWTSAVLQSGFRKWA
-
-
?
SWTSAVVQSGFRKWA + H2O
SWTSAVVQ + SGFRKWA
show the reaction diagram
P0C6U8
about 55% activity compared to SWTSAVLQSGFRKWA
-
-
?
SWTSAVWQSGFRKWA + H2O
SWTSAVWQ + SGFRKWA
show the reaction diagram
P0C6U8
less than 5% activity compared to SWTSAVLQSGFRKWA
-
-
?
SWTSAVYQSGFRKWA + H2O
SWTSAVYQ + SGFRKWA
show the reaction diagram
P0C6U8
less than 5% activity compared to SWTSAVLQSGFRKWA
-
-
?
TAVLQSGF + H2O
TAVLQ + SGF
show the reaction diagram
-
lowest activity
-
-
?
TAVLQSGF-NH2 + H2O
TAVLQ + SGF-NH2
show the reaction diagram
-
-
-
-
?
TFTRLQSLENV + H2O
TFTRLQ + SLENV
show the reaction diagram
-
-
-
-
?
Thr-Ser-Ala-Val-Leu-Gln-p-nitroanilide + H2O
Thr-Ser-Ala-Val-Leu-Gln + p-nitroaniline
show the reaction diagram
-
-
-
-
?
TSAVLQSGFRK-NH2 + H2O
TSAVLQ + SGFRK-NH2
show the reaction diagram
-
-
-
-
?
TSAVLQSGFRK-NH2 + H2O
TSAVLQ + SGFRK-NH2
show the reaction diagram
-
highest cleavage efficiency. The two peptides corresponding to the two self-cleavage sites of the SARS 3C-like proteinase are the two most reactive ones
-
-
?
TSAVLQSGFRK-NH2 + H2O
TSAVLQ + SGFRK-NH2
show the reaction diagram
-
peptide containing the P1/P2 cleavage site, the N-terminal self-cleavage site of the protease, most suitable substrate
-
-
?
TVILQAGF + H2O
TVILQ + Ala-Gly-Phe
show the reaction diagram
-
-
-
-
?
TVKLQAGF + H2O
TVKLQ + Ala-Gly-Phe
show the reaction diagram
-
-
-
-
?
TVKLQAGF-NH2 + H2O
TVKLQ + AGF-NH2
show the reaction diagram
-
-
-
-
?
TVRLQAGF + H2O
TVRLQ + Ala-Gly-Phe
show the reaction diagram
-
-
-
-
?
TVRLQSGF + H2O
TVRLQ + SGF
show the reaction diagram
-
highest activity
-
-
?
TVTLQSGF-NH2 + H2O
TVTLQ + SGF-NH2
show the reaction diagram
-
-
-
-
?
TVVLQSGF+ H2O
TVVLQ + SGF
show the reaction diagram
-
-
-
-
?
TVVLQSGF-NH2 + H2O
TVVLQ + SGF-NH2
show the reaction diagram
-
-
-
-
?
VAVLQSGF + H2O
VAVLQ + SGF
show the reaction diagram
-
-
-
-
?
VLQS-NH2 + H2O
VLQ + L-serinamide
show the reaction diagram
-
-
-
-
?
VLQSG-NH2 + H2O
VLQ + Ser-Gly-NH2
show the reaction diagram
-
-
-
-
?
VVRLQSGF + H2O
VVRLQ + SGF
show the reaction diagram
-
-
-
-
?
VVTLQSGF-NH2 + H2O
VVTLQ + SGF-NH2
show the reaction diagram
-
-
-
-
?
VVVLQSGF+ H2O
VVVLQ + SGF
show the reaction diagram
-
-
-
-
?
[4-(4-dimethylaminophenylazo)benzoic acid]-KNSTLQSGLRKE-[5-[2'-(aminoethyl)amino]-naphthalenesulfonic acid] + H2O
?
show the reaction diagram
-
-
-
-
?
[4-(4-dimethylaminophenylazo)benzoic acid]-KTSAVLQSGF RKME-[5-[2'-(aminoethyl)amino]-naphthalenesulfonic acid] + H2O
?
show the reaction diagram
-
-
-
-
?
[4-(4-dimethylaminophenylazo)benzoic acid]-KTSAVLQSGFRKME-[5-[2'-(aminoethyl)amino]-naphthalenesulfonic acid] + H2O
?
show the reaction diagram
-
-
-
-
?
[4-(4-dimethylaminophenylazo)benzoic acid]-VNSTLQSGLRK-[5-[2'-(aminoethyl)amino]-naphthalenesulfonic acid]-M + H2O
?
show the reaction diagram
-
-
-
-
?
MCAAVLQSGFR-Lys(Dnp)-Lys-NH2 + H2O
MCAAVLQ + Ser-Gly-Phe-Arg-Lys(Dnp)-Lys-NH2
show the reaction diagram
-
-
-
-
?
additional information
?
-
-
a 3CLpro mechanism utilizes an electrostatic trigger to initiate the acylation reaction, a cysteine-histidine catalytic dyad ion pair, an enzyme-facilitated release of P1, and a general base catalyzed deacylation reaction
-
-
-
additional information
?
-
-
complete description of the tetrapeptide substrate specificity of 3Clpro using fully degenerate peptide libraries consisting of all 160 000 possible naturally occurring tetrapeptides. P1-Gln P2-Leu specificity and elucidate a novel preference for P1-His containing substrates equal to the expected preference for P1-Gln
-
-
-
additional information
?
-
-
SARS-CoV 3CLpro mediates extensive proteolytic processing of two overlapping replicase polyproteins, pp1a (486000 Da) and pp1ab (790000 Da), to yield the corresponding functional polypeptides that are essential for SARSCoV replication and transcription processes
-
-
-
additional information
?
-
-
the genomic RNA produces two large proteins with overlapping sequences, polyproteins 1a and 1ab, which are autocatalytically cleaved by two or three viral proteases to yield functional polypeptides. The key enzyme in this processing is SARS 3CL protease
-
-
-
additional information
?
-
-
a complete description of the tetrapeptide substrate specificity of 3Clpro using fully degenerate peptide libraries consisting of all 160000 possible naturally occurring tetrapeptides. The enzyme exhibits a strong preference for P1 Gln containing substrates and P2 Leu containing substrates. The enzyme also shows a strong preference for P1 histidine containing substrates. 3Clpro has extended substrate specificity at P5 and P6 preferring hydrophobic amino acids such as Leu
-
-
-
additional information
?
-
-
comprehensive overview of SARS-CoV 3CLpro substrate specificity. The hydrophobic pocket in the P2 position at the protease cleavage site is crucial to SARS-CoV 3CLpro-specific binding, which is limited to substitution by hydrophobic residue. The binding interface of SARS-CoV 3CLpro that is facing the P1' position is suggested to be occupied by acidic amino acids, thus the P1' position is intolerant to acidic residue substitution, owing to electrostatic repulsion. Steric hindrance caused by some bulky or branching amino acids in P3 and P2' positions may also hinder the binding of SARS-CoV 3CLpro. In addition to the conserved Gln residue in the P1 position at the SARS-CoV 3CLpro cleavage site, the P2 position, which is exclusively occupied by Leu residue, also serves as another important determinant of substrate specificity. Peptide substrate with Phe replacement in the P2 position is also favorable for SARSCoV 3CLpro cleavage. Ile is intolerant in the P2 position. P1' position, which is frequently occupied by Ser residue, also contributes to the substrate specificity of SARS-CoV 3CLpro considerably. The P1' position is highly unfavorable to the substitution by Pro, Asp, and Glu residues. The substrate specificity of SARS-CoV 3CLpro is less dependent on the P2' and P3 positions at the cleavage site. The peptide cleavage results show that the P3' and P4 positions have no effect on determining the substrate specificity preferences of SARS-CoV 3CLpro
-
-
-
additional information
?
-
-
cuts the 11 peptides covering all of the 11 cleavage sites on the viral polyprotein with different efficiency
-
-
-
additional information
?
-
-
the S3 subsite of the SARS CoVMpro has a negative character. The electrostatic interactions between Glu47 and P3Lys play a key role in specific binding. These observations are very important and provide further information for structural-based drug design against SARS virus
-
-
-
additional information
?
-
-
3CLpro cleaves the replicase polyproteins at 11 sites with the conserved Gln-(Ser, Ala, Gly) sequences, no cleavage of SAVLQPGFRK
-
-
-
additional information
?
-
P0C6U8
no activity towards SWTSAVKQSGFRKWA, SWTSAVRQSGFRKWA, SWTSAVEQSGFRKWA, and SWTSAVDQSGFRKWA, the substrate specificity of the enzyme requires glutamine in the P1 position and a large hydrophobic residue in the P2 position
-
-
-
NATURAL SUBSTRATES
NATURAL PRODUCTS
REACTION DIAGRAM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
(Substrate)
LITERATURE
(Substrate)
COMMENTARY
(Product)
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
coronavirus polyprotein + H2O
?
show the reaction diagram
-
3CLpro processes the translated polyproteins to functional viral proteins
-
-
?
Dabcyl-KTSAVLQSGFRKME-Edans + H2O
Dabcyl-KTSAVLQ + SGFRKME-Edans
show the reaction diagram
-
-
-
-
?
additional information
?
-
-
SARS-CoV 3CLpro mediates extensive proteolytic processing of two overlapping replicase polyproteins, pp1a (486000 Da) and pp1ab (790000 Da), to yield the corresponding functional polypeptides that are essential for SARSCoV replication and transcription processes
-
-
-
additional information
?
-
-
the genomic RNA produces two large proteins with overlapping sequences, polyproteins 1a and 1ab, which are autocatalytically cleaved by two or three viral proteases to yield functional polypeptides. The key enzyme in this processing is SARS 3CL protease
-
-
-
additional information
?
-
-
3CLpro cleaves the replicase polyproteins at 11 sites with the conserved Gln-(Ser, Ala, Gly) sequences
-
-
-
INHIBITORS
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
IMAGE
(S)-2-((2S,3R)-2-((S)-2-acetamido-3-methylbutanamido)-3-(benzyloxy)butanamido)-4-methyl-N-((S)-4-(5-nitro-1,4-dioxo-3,4-dihydrophthalazin-2(1H)-yl)-3-oxo-1-((S)-2-oxopyrrolidin-3-yl)butan-2-yl)pentanamide
-
-
1,1'-sulfonylbis(4-nitrobenzene)
-
-
1-(1-benzothiophen-2-ylmethyl)-5-iodo-1H-indole-2,3-dione
-
-
1-(2-naphthylmethyl)-2,3-dioxoindoline-5-carboxamide
-
-
1-(2-naphthylmethyl)isatin-5-carboxamide
-
-
1-butyl-N-[4-(3,5-diphenyl-4,5-dihydro-1H-pyrazol-1-yl)benzyl]-1H-benzimidazol-2-amine
-
-
1-hydroxypyridine-2-thione zinc
-
-
1-[(1H-benzimidazol-5-ylcarbonyl)oxy]-1H-1,2,3-benzotriazole
-
inhibition and irreversible mechanism-based inactivators, no irreversible inactivation with the C145A mutant enzyme
1-[(1H-indol-2-ylcarbonyl)oxy]-1H-1,2,3-benzotriazole
-
inhibition and irreversible mechanism-based inactivators, no irreversible inactivation with the C145A mutant enzyme
1-[(1H-indol-5-ylcarbonyl)oxy]-1H-1,2,3-benzotriazole
-
inhibition and irreversible mechanism-based inactivators, no irreversible inactivation with the C145A mutant enzyme
1-[(1H-indol-5-ylcarbonyl)oxy]-1H-benzotriazole
-
-
1-[(4-chlorophenyl)sulfonyl]-2-nitro-4-(trifluoromethyl)benzene
-
-
1-[2-(dimethylamino)ethyl]-3-hydroxy-5-(4-hydroxy-3-methoxyphenyl)-4-[2-methyl-4-(2-methylpropoxy)benzoyl]-1,5-dihydro-2H-pyrrol-2-one
-
competitive inhibitor, 61.36% inhibition at 0.1 mM
1-[bis(4-chlorophenyl)methyl]-3-[2-[(2,4-dichlorobenzyl)oxy]-2-(2,4-dichlorophenyl)ethyl]-1H-imidazol-3-ium
-
-
1-[[(5-fluoro-1H-indol-2-yl)carbonyl]oxy]-1H-1,2,3-benzotriazole
-
inhibition and irreversible mechanism-based inactivators, no irreversible inactivation with the C145A mutant enzyme
2',5'-dimethyl-3-(methylthio)-4'-nitro-5-(2-thienyl)-2'H-1,3'-bipyrazole-4-carbonitrile
-
-
2,2-difluoro-2-(pyridin-3-yl)-1-(thiophen-2-yl)ethanone
-
0.1 mM, 38% inhibition
2,4-dichloro-5-methylphenyl 2,6-dinitro-4-(trifluoromethyl)phenyl sulfone
-
-
2,5-bis[[(benzyloxy)carbonyl]amino]-1,2,5,6-tetradeoxy-1,6-di-1H-indol-3-yl-L-iditol
-
-
2-(3',4'-dihydroxyphenyl)-3-beta-D-galactosyl-4H-chromen-4-one
-
0.05 mM, 30.1% inhibition
2-(3',4'-dihydroxyphenyl)-5,7-dihydroxy-3-beta-D-arabinosyl-4H-chromen-4-one
-
0.05 mM, 49.4% inhibition
2-(3',4'-dihydroxyphenyl)-5,7-dihydroxy-3-beta-D-galactosyl-4H-chromen-4-one
-
0.05 mM, 41.8% inhibition
2-(3',4'-dihydroxyphenyl)-5,7-dihydroxy-3-beta-D-glucosyl-4H-chromen-4-one
-
0.05 mM, 57.5% inhibition
2-(3',4'-dihydroxyphenyl)-5,7-dihydroxy-3-beta-L-fucosyl-4H-chromen-4-one
-
0.05 mM, 57.4% inhibition
2-(3',4'-dihydroxyphenyl)-5-hydroxy-3,7-di(beta-D-galactosyl)-4H-chromen-4-one
-
0.05 mM, 53.0% inhibition
2-(3-chlorophenyl)-2,2-difluoro-1-(furan-2-yl)ethanone
-
0.1 mM, 13% inhibition
2-(3-chlorophenyl)-2-fluoro-1-(furan-2-yl)ethanone
-
0.1 mM, 15% inhibition
2-(4,5-dihydro-1,3-thiazol-2-yl)-1-(1,3-thiazol-2-yl)ethanone
-
-
2-(4-aminophenyl)-6-methyl-1H-benzimidazole-7-sulfonic acid
-
-
2-(5-bromopyridin-3-yl)-1-(5-(4-chlorophenyl)furan-2-yl)-2-fluoroethanone
-
-
2-(5-bromopyridin-3-yl)-1-(5-(4-chlorophenyl)furan-2-yl)ethanone
-
-
2-(5-bromopyridin-3-yl)-2,2-difluoro-1-(furan-2-yl)ethanone
-
0.1 mM, 21% inhibition
2-(5-chloropyridin-3-yl)-2,2-difluoro-1-(furan-2-yl)ethanone
-
0.1 mM, 27% inhibition
2-(5-chloropyridin-3-yl)-2-fluoro-1-(furan-2-yl)ethanone
-
0.1 mM, 14% inhibition
2-(benzylsulfanyl)-4-(3-chlorophenyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile
-
-
-
2-(benzylsulfanyl)-4-(4-methoxyphenyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile
-
-
-
2-(benzylsulfanyl)-4-(4-methylphenyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile
-
-
-
2-(benzylsulfanyl)-6-oxo-4-phenyl-1,6-dihydropyrimidine-5-carbonitrile
-
-
-
2-([N-[(benzyloxy)carbonyl]-L-alanyl-L-valyl]amino)-5-[[(2S,5S)-5-[[(benzyloxy)carbonyl]amino]-2-(1-methylethyl)-4-oxohexanoyl]amino]-1,2,5,6-tetradeoxy-1,6-diphenyl-L-iditol
-
-
2-acetyl-3-(3-iodophenyl)-7-methoxy-3,3a,4,5-tetrahydro-2H-benzo[g]indazole
-
-
2-benzyl-2H-isoindole-4,7-dione
-
-
2-fluoro-2-(pyridin-3-yl)-1-(thiophen-2-yl)ethanone
-
0.1 mM, 10% inhibition
2-phenyl-5,7-dihydroxy-3-beta-D-galactosyl-4H-chromen-4-one
-
0.05 mM, 18.7% inhibition
2-phenylethyl 2-methyl-4-(2-nitrophenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate
-
-
2-[(1H-1,2,3-benzotriazol-1-yloxy)carbonyl]aniline
-
inhibition and irreversible mechanism-based inactivators, no irreversible inactivation with the C145A mutant enzyme
2-[(2-acetylphenyl)sulfonyl]benzoic acid
-
-
2-[(2-cyclohexylquinazolin-4-yl)sulfanyl]-N-(furan-2-ylmethyl)acetamide
-
0.01 mM, 30% inhibition
2-[(4-chlorophenyl)sulfonyl]-5-nitropyridine 1-oxide
-
-
2-[(4-nitrobenzyl)sulfanyl]-4-(3-nitrophenyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile
-
-
-
2-[(4-nitrobenzyl)sulfanyl]-6-oxo-4-phenyl-1,6-dihydropyrimidine-5-carbonitrile
-
-
-
3,4-dichloro-5-[2-(5-chloro-3-methyl-1-benzothien-2-yl)-2-oxoethyl]furan-2(5H)-one
-
-
3,4-dichloro-5-[2-(5-chloro-3-methyl-1-benzothiophen-2-yl)-2-oxoethyl]furan-2(5H)-one
-
-
3-(4-bromophenyl)-5-(4-chlorophenyl)-1-(3,4-dichlorophenyl)-4-(1H-imidazol-1-yl)-4,5-dihydro-1H-pyrazole
-
-
3-(N-L-gamma-Glu-L-Ala)-1,1,1-trifluoropropan-2-one
-
-
3-benzyl-1-[(6,7-dimethyl-2-oxo-1,2-dihydroquinolin-3-yl)methyl]-1-[2-(2-methylphenyl)ethyl]urea
-
0.01 mM, 40% inhibition
3-[(2-furylmethyl)amino]-6,6-dimethyl-4-oxo-4,5,6,7-tetrahydro-2-benzothiophene-1-carbonitrile
-
-
3-[1-(4-benzyloxyphenyl)-1H-tetrazol-5-ylthio]-4-hydroxyquinolin-2-(1H)one
-
-
-
3-[1-(4-benzyloxyphenyl)-1H-tetrazol-5-ylthio]-4-methoxyquinolin-2-(1H)one
-
-
-
3-[1-(4-ethoxyphenyl)-1H-tetrazol-5-ylthio]-4-hydroxyquinolin-2-(1H)one
-
-
-
3-[N-(N-benzyloxycarbonyl-L-Leu)]-4-phenyl-1,1,1-trifluorobutan-2-one
-
-
3-[N-(N-benzyloxycarbonyl-L-Phe)]-4-phenyl-1,1,1-trifluorobutan-2-one
-
-
3-[N-(N-tert-butoxycarbonyl)-L-Leu]-1,1,1-trifluorobutan-2-one
-
-
3-[N-[N-benzyloxycarbonyl-L-Ala-L-Val-L-Leu]]-4-phenyl-1,1,1-trifluorobutan-2-one
-
-
3-[N-[N-decanoyl-L-Leu]]-4-phenyl-1,1,1-trifluorobutan-2-one
-
-
3-{N-[N-tert-butoxycarbonyl-L-gamma-Glu(OtBu)-L-Ala]}-1,1,1-trifluoropropan-2-one
-
-
4,5-anhydro-2-([N-[(benzyloxy)carbonyl]-L-phenylalanyl]amino)-1,2-dideoxy-D-erythro-pent-3-ulose
-
-
4,6-dimethyl-2-[(4-methylphenyl)sulfonyl]-5-nitronicotinonitrile
-
-
4,6-dimethyl-5-nitro-2-(phenylsulfonyl)nicotinonitrile
-
-
4-(3-nitrophenyl)-6-oxo-2-[(2-phenylethyl)sulfanyl]-1,6-dihydropyrimidine-5-carbonitrile
-
-
4-(4-chlorophenyl)-2-[(4-nitrobenzyl)sulfanyl]-6-oxo-1,6-dihydropyrimidine-5-carbonitrile
-
-
4-(4-chlorophenyl)-6-oxo-2-[(2-phenylethyl)sulfanyl]-1,6-dihydropyrimidine-5-carbonitrile
-
-
-
4-(4-methoxyphenyl)-2-[(4-nitrobenzyl)sulfanyl]-6-oxo-1,6-dihydropyrimidine-5-carbonitrile
-
-
4-(4-methoxyphenyl)-6-oxo-2-[(2-phenylethyl)sulfanyl]-1,6-dihydropyrimidine-5-carbonitrile
-
-
4-(4-methylphenyl)-2-[(4-nitrobenzyl)sulfanyl]-6-oxo-1,6-dihydropyrimidine-5-carbonitrile
-
-
4-(4-methylphenyl)-6-oxo-2-[(2-phenylethyl)sulfanyl]-1,6-dihydropyrimidine-5-carbonitrile
-
-
4-(5-chloro-2-thienyl)-2-[(2-thienylsulfonyl)methyl]-1,3-thiazole
-
-
4-([[4-cyclohexyl-5-(naphthalen-1-yl)-4H-1,2,4-triazol-3-yl]sulfanyl]methyl)-1,3-thiazol-2-amine
-
competitive inhibitor, 58.23% inhibition at 0.1 mM
4-benzyloxy-3-[1-(4-benzyloxyphenyl)-1H-tetrazol-5-ylthio]quinolin-2-(1H)one
-
-
-
4-benzyloxy-3-[1-(4-ethoxyphenyl)-1H-tetrazol-5-ylthio]quinolin-2-(1H)one
-
-
-
4-benzyloxy-3-[1-(4-methoxyphenyl)-1H-tetrazol-5-ylthio]quinolin-2-(1H)one
-
-
-
4-hydroxy-3-[1-(4-hydroxyphenyl)-1H-tetrazol-5-ylthio]quinolin-2-(1H)one
-
-
-
4-hydroxy-3-[1-(4-methoxyphenyl)-1H-tetrazol-5-ylthio]quinolin-2-(1H)one
-
-
-
4-methoxy-6-[([1,3]thiazolo[5,4-b]pyridin-2-ylsulfinyl)methyl]-2H-pyran-2-one
-
-
4-[(1H-1,2,3-benzotriazol-1-yloxy)carbonyl]-N,N-diethylaniline
-
inhibition and irreversible mechanism-based inactivators, no irreversible inactivation with the C145A mutant enzyme
4-[(1H-1,2,3-benzotriazol-1-yloxy)carbonyl]-N,N-dimethylaniline
-
inhibition and irreversible mechanism-based inactivators, no irreversible inactivation with the C145A mutant enzyme
4-[(1H-1,2,3-benzotriazol-1-yloxy)carbonyl]-N-methylaniline
-
inhibition and irreversible mechanism-based inactivators, no irreversible inactivation with the C145A mutant enzyme
4-[(2,4-dimethyl-1,3-thiazol-5-yl)carbonyl]-3-hydroxy-1-[3-(morpholin-4-yl)propyl]-5-(3-nitrophenyl)-1,5-dihydro-2H-pyrrol-2-one
-
competitive inhibitor, 49.14% inhibition at 0.1 mM
4-[(3,5-dibromo-4-hydroxyphenyl)sulfonyl]benzoic acid
-
-
4-[(E)-[(2-methoxyphenyl)imino]methyl]-2-phenyl-1,3-oxazol-5-yl acetate
-
-
4-[2-(2-benzyloxycarbonylamino-3-methyl-butyrylamino)-3-phenyl-propionylamino]-5-(2-oxo-pyrrolidin-3-yl)-pent-2-enoic acid ethyl ester
-
-
4-[2-(2-benzyloxycarbonylamino-3-methyl-butyrylamino)-4-methyl-pentanoylamino]-5-(2-oxo-pyrrolidin-3-yl)-pent-2-enoic acid ethyl ester
-
-
4-[2-(2-benzyloxycarbonylamino-3-tert-butoxy-butyrylamino)-4-methyl-pentanoylamino]-5-(2-oxo-pyrrolidin-3-yl)-pent-2-enoic acid ethyl ester
-
-
5,7-dichloro-4-hydroxy-3-[1-(4-methoxy-phenyl)-1H-tetrazol-5-ylsulfanyl]-1H-quinolin-2-one
-
-
-
5,7-dichloro-4-hydroxy-3-[[1-(4-hydroxyphenyl)-1H-tetrazol-5-yl]sulfanyl]quinolin-2(1H)-one
-
-
5-(1,3-dimethyl-1H-pyrazol-5-yl)-N-(3-methyl-4-nitroisoxazol-5-yl)thiophene-2-carboxamide
-
-
5-chloropyridin-3-yl (3S)-2-acetyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylate
-
-
5-chloropyridin-3-yl 1-acetyl-1H-indole-4-carboxylate
-
-
5-chloropyridin-3-yl 1-acetyl-1H-indole-5-carboxylate
-
-
5-chloropyridin-3-yl 1-naphthoate
-
-
5-chloropyridin-3-yl 1-[(3-nitrophenyl)sulfonyl]-1H-indole-5-carboxylate
-
-
5-chloropyridin-3-yl 1-[(4-methylphenyl)sulfonyl]-1H-indole-5-carboxylate
-
-
5-chloropyridin-3-yl 1H-indole-4-carboxylate
-
-
5-chloropyridin-3-yl 1H-indole-5-carboxylate
-
-
5-chloropyridin-3-yl 1H-indole-6-carboxylate
-
-
5-chloropyridin-3-yl 1H-indole-7-carboxylate
-
-
5-chloropyridin-3-yl 2-nitrobenzoate
-
-
5-chloropyridin-3-yl 2-oxo-2H-chromene-3-carboxylate
-
-
5-chloropyridin-3-yl 3-nitrobenzoate
-
-
5-chloropyridin-3-yl 4-chlorobenzoate
-
-
5-chloropyridin-3-yl 5-(2-nitrophenyl)-2-furoate
-
-
5-chloropyridin-3-yl 5-(3-nitrophenyl)-2-furoate
-
-
5-chloropyridin-3-yl 5-(4-chloro-2-nitrophenyl)-2-furoate
-
-
5-chloropyridin-3-yl 5-(4-chlorophenyl)-2-furoate
-
-
5-chloropyridin-3-yl 5-(4-nitrophenyl)-2-furoate
-
-
5-chloropyridin-3-yl isonicotinate
-
-
5-chloropyridin-3-yl nicotinate
-
-
5-chloropyridin-3-yl thiophene-2-carboxylate
-
-
5-[(4-chlorophenyl)sulfonyl]pyrimidine-2,4-diamine
-
-
6-oxo-4-phenyl-2-[(2-phenylethyl)sulfanyl]-1,6-dihydropyrimidine-5-carbonitrile
-
-
acetyl-Ala-Val-Leu-NHCH(CH2CH2CON(CH3)2)-CHO
-
-
acetyl-leucylalanyl-alanyl-ketomethyl(cycloglutamine)-phthalhydrazide
-
-
acetyl-Ser-Ala-Val-Leu-NHCH(CH2CH2CON(CH3)2)-CHO
-
-
acetyl-Thr-Ser-Ala-Val-Leu-NHCH(CH2CH2CON(CH3)2)-CHO
-
-
acetyl-Val-Leu-NHCH(CH2CH2CON(CH3)2)-CHO
-
-
acetyl-valyl-(O-benzyloxy)threonyl-leucyl-ketomethyl(cycloglutamine)-phthalhydrazide
-
-
benzyl (2S,3S)-3-tert-butoxy-1-((S)-3-cyclohexyl-1-oxo-1-((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-ylamino)propan-2-ylamino)-1-oxobutan-2-ylcarbamate
-
-
benzyl [(1S)-1-benzyl-3-chloro-2-oxopropyl]carbamate
-
potent and selective inhibitor
benzyl [(1S)-3-chloro-1-(4-fluorobenzyl)-2-oxopropyl]carbamate
-
potent and selective inhibitor
benzyl [(1S)-3-chloro-1-(naphthalen-2-ylmethyl)-2-oxopropyl]carbamate
-
potent and selective inhibitor
benzyl [(1S,4S,7S,8R,9R,10S,13S,16S)-7,10-dibenzyl-8,9-dihydroxy-1,16-dimethyl-4,13-bis(1-methylethyl)-2,5,12,15,18-pentaoxo-20-phenyl-19-oxa-3,6,11,14,17-pentaazaicos-1-yl]carbamate
-
-
benzyl [(2S)-1-[[(2S)-1-(1,3-benzothiazol-2-yl)-5-(diethylamino)-1,5-dioxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]carbamate
-
-
benzyl [(2S)-1-[[(2S)-1-[[(2S)-1-(1,3-benzothiazol-2-yl)-5-(diethylamino)-1,5-dioxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]carbamate
-
-
benzyl [(2S)-1-[[(2S)-1-[[(2S)-5-(diethylamino)-1,5-dioxo-1-(1,3-thiazol-2-yl)pentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]carbamate
-
-
benzyl [(2S)-1-[[(2S)-5-(diethylamino)-1,5-dioxo-1-(1,3-thiazol-2-yl)pentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]carbamate
-
-
-
benzyl [(2S)-1-[[(2S)-5-(diethylamino)-1,5-dioxo-1-(1,3-thiazol-2-yl)pentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]carbamate
-
-
benzyl [(7S,8R,9R,10S)-8,9-dihydroxy-7,10-bis(1H-indol-3-ylmethyl)-1,16-dimethyl-4,13-bis(1-methylethyl)-2,5,12,15,18-pentaoxo-20-phenyl-19-oxa-3,6,11,14,17-pentaazaicos-1-yl]carbamate
-
highly selective for the 3CL protease and that no inhibitionis observed against HIV protease at 0.1 mM
betulinic acid
-
competitive
bis[1,3]thiazolo[4,5-b:5',4'-e]pyridine-2,6-diamine
-
-
celastrol
-
competitive inhibitor
diethyl (2E,2'E)-3,3'-[sulfonylbis(benzene-4,1-diylimino)]bis(2-cyanoprop-2-enoate)
-
-
dihydrocelastrol
-
-
DTT
-
80% of enzyme activity inhibited in the presence of 2.5 mM DTT
esculetin-4-carboxylic acid ethyl ester
-
a novel class of anti-SARS agents from the tropical marine sponge Axinella corrugata
ethyl (2E)-4-[(N-[(2E)-3-[4-(dimethylamino)phenyl]prop-2-enoyl]-L-phenylalanyl)amino]-5-phenylpent-2-enoate
-
-
ethyl (2E,4S)-4-[[(2R,5S)-2-benzyl-6-methyl-5-[[(5-methylisoxazol-3-yl)carbonyl]amino]-4-oxoheptanoyl]amino]-5-[(3S)-3-methyl-2-oxopyrrolidin-3-yl]pent-2-enoate
-
-
ethyl (2E,4S)-4-[[(2R,5S)-5-[(N-tert-butyl-L-seryl)amino]-6-methyl-2-(3-methylbut-2-en-1-yl)-4-oxoheptanoyl]amino]-5-[(3S)-3-methyl-2-oxopyrrolidin-3-yl]pent-2-enoate
-
-
ethyl (2E,4S)-4-[[(2R,5S)-6-methyl-2-(3-methylbut-2-en-1-yl)-5-[[(5-methylisoxazol-3-yl)carbonyl]amino]-4-oxoheptanoyl]amino]-5-[(3S)-3-methyl-2-oxopyrrolidin-3-yl]pent-2-enoate
-
-
extracts of Rheum palmatum
-
-
-
Hexachlorophene
-
-
iguesterin
-
competitive inhibitor
methyl 3-([N-[(benzyloxy)carbonyl]-L-valyl]amino)-5-fluoro-4-oxopentanoate
-
potent and selective inhibitor
N-(2,2'-bithien-5-ylmethyl)-1,3-dimethyl-4-nitro-1H-pyrazol-5-amine
-
-
N-(2-allylthiophenyl)cinnamide
-
-
N-(2-benzylthiophenyl)cinnamide
-
-
N-(2-carbomethoxyethylthiophenyl)cinnamide
-
-
N-(2-chloro-4-nitrophenyl)-Nalpha-[[4-(dimethylamino)phenyl]carbonyl]phenylalaninamide
-
-
N-(2-cinnamoylthiophenyl)cinnamide
-
-
N-(2-[2-[(2S)-1-cyclohexyl-3-oxopropan-2-yl]hydrazinyl]-4-methylpentanoyl)valyl-N-(1-hydroxy-3,4-dioxopentan-2-yl)alaninamide
-
-
N-(2-[2-[(2S)-3,3-dimethyl-1-oxobutan-2-yl]hydrazinyl]-4-methylpentanoyl)valyl-N-(1-hydroxy-3,4-dioxopentan-2-yl)alaninamide
-
-
N-(4-methyl-2-[2-[(2S)-1-oxo-3-(thiophen-2-yl)propan-2-yl]hydrazinyl]pentanoyl)valyl-N-(1-hydroxy-3,4-dioxopentan-2-yl)alaninamide
-
-
N-(4-methyl-2-[2-[(2S)-1-oxo-3-phenylpropan-2-yl]hydrazinyl]pentanoyl)valyl-N-(1-hydroxy-3,4-dioxopentan-2-yl)alaninamide
-
-
N-(furan-2-ylmethyl)-2-[[5-(morpholin-4-yl)-1,2,3,4-tetrahydropyrimido[4',5':4,5]thieno[2,3-c]isoquinolin-8-yl]sulfanyl]acetamide
-
competitive inhibitor, 53.27% inhibition at 0.1 mM
N-acetyl-Ala-Val-Cha-His
-
-
-
N-acetyl-Asn-Val-Cha-His
-
-
-
N-acetyl-DSFDQ
-
micromolar inhibitor
-
N-acetyl-ESTLQ
-
micromolar inhibitor
-
N-acetyl-NSFSQ
-
micromolar inhibitor
-
N-acetyl-NSTSQ
-
micromolar inhibitor
-
N-acetyl-Ser-Ala-Val-Cha-His
-
-
-
N-acetyl-Ser-Ala-Val-Leu-His
-
-
-
N-acetyl-Ser-Ala-Val-Leu-NHCH(CH2CH2CON(CH3)2)-CH-CHCOOEt
-
-
-
N-acetyl-Ser-Ala-Val-Leu-NHCH-(CH2CH2CON(CH3)2)-CHO
-
-
-
N-acetyl-Ser-Ala-Val-Leu-NHCH[CH2CH2CON(CH3)2]CH2CH2CH-CHCOOC2H5
-
-
-
N-acetyl-Ser-Ala-Val-Phe-His
-
-
-
N-acetyl-Ser-Val-Cha-His
-
-
-
N-acetyl-Thr-Val-Cha-His
-
-
-
N-ethyl-N-phenyldithiocarbamic acid zinc
-
-
N-tert-butyl-L-seryl-L-valyl-N-[(1S,2E)-4-ethoxy-1-[[(3S)-3-methyl-2-oxopyrrolidin-3-yl]methyl]-4-oxobut-2-en-1-yl]-L-phenylalaninamide
-
-
N-tert-butyl-L-seryl-L-valyl-N-[(1S,2E)-4-ethoxy-4-oxo-1-[2-(2-oxopyrrolidin-3-yl)ethyl]but-2-en-1-yl]-L-leucinamide
-
-
N-[(1E)-3-[(2E)-2-(4-hydroxy-3,5-dimethoxybenzylidene)hydrazinyl]-3-oxo-1-phenylprop-1-en-2-yl]benzamide
-
competitive inhibitor, 56.11% inhibition at 0.1 mM
N-[(1Z)-3-[[3-(dimethylamino)propyl]amino]-1-[5-(2-nitrophenyl)furan-2-yl]-3-oxoprop-1-en-2-yl]-4-methylbenzamide
-
competitive inhibitor, 81.43% inhibition at 0.1 mM
N-[(1Z)-3-[[3-(dimethylamino)propyl]amino]-1-[5-(3-nitrophenyl)furan-2-yl]-3-oxoprop-1-en-2-yl]-4-methylbenzamide
-
competitive inhibitor, 82.59% inhibition at 0.1 mM
N-[(2S)-1-oxo-3-phenylpropan-2-yl]-Na-[(2E)-3-phenylprop-2-enoyl]-L-phenylalaninamide
-
-
N-[(5-methyl-4,5-dihydro-1H-pyrazol-3-yl)carbonyl]-L-valyl-N-[(1S,2E)-4-ethoxy-1-[[(3S)-3-methyl-2-oxopyrrolidin-3-yl]methyl]-4-oxobut-2-en-1-yl]-L-leucinamide
-
-
N-[(5-methyl-4,5-dihydro-1H-pyrazol-3-yl)carbonyl]-L-valyl-N-[(1S,2E)-4-ethoxy-1-[[(3S)-3-methyl-2-oxopyrrolidin-3-yl]methyl]-4-oxobut-2-en-1-yl]-L-phenylalaninamide
-
-
N-[(benzyloxy)carbonyl]-3-[(2,2-dimethylpropanoyl)amino]-L-alanyl-N-[(1S,2E)-4-oxo-1-[[(3S)-2-oxopyrrolidin-3-yl]methyl]pent-2-en-1-yl]-L-leucinamide
-
inhibits the viral protease, thus preventing CVB3 genome replication
N-[(benzyloxy)carbonyl]-L-alanyl-L-valyl-N-[(3S)-6-(dipropylamino)-1,1,1-trifluoro-2,6-dioxohexan-3-yl]-L-leucinamide
-
-
-
N-[(benzyloxy)carbonyl]-L-alanyl-L-valyl-N-[(3S)-6-amino-1,1,1-trifluoro-2,6-dioxohexan-3-yl]-L-leucinamide
-
-
N-[(benzyloxy)carbonyl]-L-valyl-N-[(2S)-1,5-dioxo-1,5-di(1,3-thiazol-2-yl)pentan-2-yl]-L-leucinamide
-
-
N-[(benzyloxy)carbonyl]-L-valyl-N-[(2S)-1-oxo-3-[(3S)-2-oxopyrrolidin-3-yl]-1-(1,3-thiazol-2-yl)propan-2-yl]-L-leucinamide
-
-
N-[(benzyloxy)carbonyl]-L-valyl-N-[(2S)-5-(morpholin-4-yl)-1,5-dioxo-1-(1,3-thiazol-2-yl)pentan-2-yl]-L-leucinamide
-
-
N-[(benzyloxy)carbonyl]-L-valyl-N-[(3S)-1,1,1-trifluoro-6-(morpholin-4-yl)-2,6-dioxohexan-3-yl]-L-leucinamide
-
-
N-[(benzyloxy)carbonyl]-L-valyl-N-[(3S)-5-carboxy-1,1,1-trifluoro-2-oxopentan-3-yl]-L-leucinamide
-
-
N-[(benzyloxy)carbonyl]-L-valyl-N-[(3S)-6-(dipropylamino)-1,1,1-trifluoro-2,6-dioxohexan-3-yl]-L-leucinamide
-
-
N-[(benzyloxy)carbonyl]-L-valyl-N-[(3S)-6-[benzyl(methyl)amino]-1,1,1-trifluoro-2,6-dioxohexan-3-yl]-L-leucinamide
-
-
N-[(benzyloxy)carbonyl]-O-tert-butylthreonyl-N-[(1S)-1-formyl-2-[(3S)-2-oxopyrrolidin-3-yl]ethyl]-L-phenylalaninamide
-
inhibits the viral protease, thus preventing CVB3 genome replication
N-[(benzyloxy)carbonyl]-O-tert-butylthreonyl-N-[(1S,2E)-4-cyclopropyl-4-oxo-1-[[(3S)-2-oxopyrrolidin-3-yl]methyl]but-2-en-1-yl]-L-leucinamide
-
-
N-[(benzyloxy)carbonyl]-O-tert-butylthreonyl-N-[(1S,2E)-4-ethoxy-4-oxo-1-[[(3S)-2-oxopyrrolidin-3-yl]methyl]but-2-en-1-yl]-L-leucinamide
-
-
N-[2-(2-cyanocinnamoylthio)phenyl]-2-cyanocinnamide
-
-
N-[2-(2-pyridylmethylthio)phenyl]cinnamide
-
-
N-[2-(3-dimethylaminopropylthio)phenyl]-2-cyanocinnamide
-
-
N-[2-(3-pyridylmethylthio)phenyl]cinnamide
-
-
N-[3-(5-tert-butyl-2-methyl-3-furyl)-1H-pyrazol-5-yl]thiophene-2-sulfonamide
-
-
N-[4-(3,5-diphenyl-4,5-dihydro-1H-pyrazol-1-yl)benzyl]-1-ethyl-1H-benzimidazol-2-amine
-
-
N-[4-(3,5-diphenyl-4,5-dihydro-1H-pyrazol-1-yl)benzyl]-1-propyl-1H-benzimidazol-2-amine
-
-
N-[4-[(4-chlorophenyl)sulfonyl]-3-(methylthio)-1H-pyrazol-5-yl]thiophene-2-carboxamide
-
-
N2-[(benzyloxy)carbonyl]-N-[(3S)-6-(dipropylamino)-1,1,1-trifluoro-2,6-dioxohexan-3-yl]-L-leucinamide
-
-
NaCl
-
80% of enzyme activity inhibited in the presence of 100 mM NaCl
niclosamide
-
-
-
NP-40
-
80% of enzyme activity inhibited in the presence of 0.1% NP-40
phenylmercuric acetate
-
-
Phenylmercuric nitrate
-
-
pristimerin
-
competitive inhibitor
S-[5-(trichloromethyl)-4H-1,2,4-triazol-3-yl] 5-(phenylethynyl)furan-2-carbothioate
-
-
savinin
-
competitive
sulfonyldi-4,1-phenylene bis(2,3,3-trichloroacrylate)
-
-
tert-butyl (3S)-3-[[(benzyloxy)carbonyl]amino]-5-bromo-4-oxopentanoate
-
potent and selective inhibitor
tetraethyl 2,2'-[sulfonylbis(benzene-4,1-diyliminomethylylidene)]dipropanedioate
-
-
tingenone
-
competitive inhibitor
toluene-3,4-dithiolato zinc
-
-
-
zinc N-ethyl-N-phenyldithiocarbamate
-
-
[3-([[3-(dihydroxyboranyl)benzyl]oxy]carbonyl)-5-nitrophenyl]boronic acid
-
-
[benzene-1,2-diylbis[methanediylcarbamoyl(5-nitrobenzene-3,1-diyl)]]diboronic acid
-
-
[benzene-1,2-diylbis[methanediyloxycarbonyl(5-nitrobenzene-3,1-diyl)]]diboronic acid
-
-
[benzene-1,3-diylbis[oxycarbonyl(5-nitrobenzene-3,1-diyl)]]diboronic acid
-
-
[benzene-1,4-diylbis[carbamoyl(5-nitrobenzene-3,1-diyl)]]diboronic acid
-
-
[benzene-1,4-diylbis[oxycarbonyl(5-nitrobenzene-3,1-diyl)]]diboronic acid
-
-
methyl 4-hydroxy-6-(trifluoromethyl)furo[2,3-b]pyridine-2-carboxylate
-
-
additional information
-
molecular docking identifies the binding of 3-chloropyridine moieties specifically to the S1 pocket of SARS-CoV Mpro
-
additional information
-
based on the X-ray structure of 3CLPro co-crystallized with a trans-alpha,beta-unsaturated ethyl ester, a set of QM/QM and QM/MM calculations are performed, yielding three models with increasingly higher the number of atoms. It is suggested 3CLPro inhibitors need small polar groups to decrease the energy barrier for alkylation reaction. The results can be useful for the development of new compounds against SARS
-
additional information
-
extracts from Rheum palmatum have a high level of inhibitory activity against 3CL protease with IC50 of 0.01376 mg/ml and an inhibition rate of up to 96%
-
additional information
-
not inhibited by N-acetyl-Ser-Ala-Val-Leu-NHCH(CH2CH2CON(CH3)2)-CH2CH-CHCOOEt and N-acetyl-Ser-Ala-Val-Leu-NHCH(CH2CH2CON(CH3)2)-(CH2)2-CH-CHCOOEt
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
IMAGE
Bovine serum albumin
-
10% (w/v) bovine serum albumin improves the hydrolytic rate by a factor of 2
-
PEG6000
-
3fold activation in the presence of 10% (w/v) PEG6000
Sodium sulfate
-
1 M sodium sulfate stimulates activity
KM VALUE [mM]
KM VALUE [mM] Maximum
SUBSTRATE
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
IMAGE
0.306
-
(Ala-Arg-Leu-Gln-NH)2-rhodamine
-
rate of hydrolysis measured by change in absorbance at 496 nm
0.0017
-
Abz-LQxSGFRK(Dnp)NH2
-
in the presence of 1 M sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
-
0.023
-
Abz-LQxSGFRK(Dnp)NH2
-
in the absence of sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
-
0.0005
-
Abz-LYQPPQTSITSAVLQSGFRK(Dnp)NH2
-
in the presence of 1 M sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
-
0.011
-
Abz-QTSITSAVLQSGFRK(Dnp)NH2
-
in the presence of 1 M sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
-
0.0024
-
Abz-SAVLQSGFRK(Dnp)NH2
-
in the presence of 1 M sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
-
0.016
-
Abz-SAVLQSGFRK(Dnp)NH2
-
in the absence of sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
-
0.002
-
Abz-SAVLQSGFRKMAK(Dnp)NH2
-
in the presence of 1 M sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
-
0.0016
-
Abz-SAVLQSGK(Dnp)NH2
-
in the presence of 1 M sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
-
0.0136
-
Abz-SAVLQSGK(Dnp)NH2
-
in the absence of sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
-
0.0013
-
Abz-SAVLQxSGFRKMAFPSGK(Dnp)NH2
-
in the presence of 1 M sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
-
0.0011
-
Abz-SGADVLYQPPQTSITSAVLQSGFRK(Dnp)NH2
-
in the presence of 1 M sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
-
0.0013
-
Abz-VLQSGFRK(Dnp)NH2
-
in the presence of 1 M sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
-
0.033
-
Abz-VLQSGFRK(Dnp)NH2
-
in the absence of sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
-
1.44
-
ATVRLQAGNAT
-
pH 7.3, room temperature
0.05642
-
Dabcyl-KTSAVLQSGFRKME-Edans
-
wild type enzyme, in 10 mM sodium phosphate, 10 mM sodium chloride, 1 mM EDTA, 1 mM TCEP, pH 7.4, at 25C
0.06783
-
Dabcyl-KTSAVLQSGFRKME-Edans
-
mutant enzyme N28A, in 10 mM sodium phosphate, 10 mM sodium chloride, 1 mM EDTA, 1 mM TCEP, pH 7.4, at 25C
0.0245
-
Dabcyl-KTSAVLQSGFRKME-Edans-amide
-
in 40 mM Tris-HCl buffer, pH 7.3, temperature not specified in the publication
-
0.549
-
FYPKLQASQAW
-
pH 7.3, room temperature
0.046
-
GPFVDRQTAQAAGTDT-NH2
-
pH 7.5, 37C, mutant enzyme R188I
0.004
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme DELTA(303-306)
0.005
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme Q200E; mutant enzyme Q299N
0.006
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme DELTA(304-306)
0.01
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme R298A/Q299A; mutant enzyme S139A
0.011
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme R298A; wild-type enzyme
0.012
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme S123a/R298A
0.013
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme DELTA(299-306); mutant enzyme R298L; mutant enzyme S123A; mutant enzyme S123C
0.014
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme DELTA(305-306)
0.015
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme DELTA(300-306)
0.016
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme R298K
0.018
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme Q299A
0.021
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme DELTA(297-306); mutant enzyme S139A/Q299A
0.022
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme DELTA(302-306)
0.03
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme DELTA(298-306); mutant enzyme DELTA(301-306)
0.037
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme Q299K
0.146
-
o-aminobenzoyl-TSAVLQSGFRY(NO2)G
-
-
1.94
-
PHTVLQAVGAC
-
pH 7.3, room temperature
0.0186
-
SAVLQMGFRK
-
mutant enzyme T25G, at 37C
0.0766
-
SAVLQMGFRK
-
wild type enzyme, at 37C
0.0186
-
Ser-Ala-Val-Leu-Gln-Met-Gly-Phe-Arg-Lys
-
T25G mutant protein
0.0766
-
Ser-Ala-Val-Leu-Gln-Met-Gly-Phe-Arg-Lys
-
wild-type protein
0.583
-
SGVTFQGKFKK
-
pH 7.3, room temperature
0.18
-
SITSAVLQ-p-nitroanilide
-
-
0.073
-
SITSAVLQ-p-nitrophenyl ester
-
-
0.6
-
SITSAVLQSGFRKMA
-
-
61.9
-
SWTSAVLQSGFRKWA
-
HPLC-based cleavage assay, measurement of fluorescence emission at 353 nm
0.286
-
TFTRLQSLENV
-
pH 7.3, room temperature
0.2226
-
Thr-Ser-Ala-Val-Leu-Gln-p-nitroanilide
-
wild-type protein
0.3534
-
Thr-Ser-Ala-Val-Leu-Gln-p-nitroanilide
-
E166A mutant protein
0.0338
-
TSAVLQSGFRK-NH2
-
pH 7.5, 37C, mutant enzyme R188I
1.15
-
TSAVLQSGFRK-NH2
-
pH 7.3, room temperature
0.03817
-
[4-(4-dimethylaminophenylazo)benzoic acid]-KNSTLQSGLRKE-[5-[2'-(aminoethyl)amino]-naphthalenesulfonic acid]
-
mutant enzyme Q189A
0.04938
-
[4-(4-dimethylaminophenylazo)benzoic acid]-KNSTLQSGLRKE-[5-[2'-(aminoethyl)amino]-naphthalenesulfonic acid]
-
wild-type enzyme
0.045
-
[4-(4-dimethylaminophenylazo)benzoic acid]-KTSAVLQSGFRKME-5-['-(aminoethyl)amino]-naphthalenesulfonic acid
-
-
0.051
-
KVATVQSKMSD-NH2
-
pH 7.5, 37C, mutant enzyme R188I
additional information
-
additional information
-
steady-state analysis of the solvent isotope effects on KM-value
-
TURNOVER NUMBER [1/s]
TURNOVER NUMBER MAXIMUM[1/s]
SUBSTRATE
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
IMAGE
0.0153
-
(Ala-Arg-Leu-Gln-NH)2-rhodamine
-
rate of hydrolysis measured by change in absorbance at 496 nm
0.003
-
Abz-LQxSGFRK(Dnp)NH2
-
in the absence of sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
-
0.02
-
Abz-LQxSGFRK(Dnp)NH2
-
in the presence of 1 M sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
-
0.28
-
Abz-LYQPPQTSITSAVLQSGFRK(Dnp)NH2
-
in the presence of 1 M sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
-
0.6
-
Abz-QTSITSAVLQSGFRK(Dnp)NH2
-
in the presence of 1 M sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
-
0.07
-
Abz-SAVLQSGFRK(Dnp)NH2
-
in the absence of sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
-
3.3
-
Abz-SAVLQSGFRK(Dnp)NH2
-
in the presence of 1 M sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
-
3
-
Abz-SAVLQSGFRKMAK(Dnp)NH2
-
in the presence of 1 M sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
-
0.004
-
Abz-SAVLQSGK(Dnp)NH2
-
in the absence of sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
-
0.11
-
Abz-SAVLQSGK(Dnp)NH2
-
in the presence of 1 M sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
-
2.9
-
Abz-SAVLQxSGFRKMAFPSGK(Dnp)NH2
-
in the presence of 1 M sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
-
0.38
-
Abz-SGADVLYQPPQTSITSAVLQSGFRK(Dnp)NH2
-
in the presence of 1 M sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
-
0.04
-
Abz-VLQSGFRK(Dnp)NH2
-
in the absence of sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
-
0.77
-
Abz-VLQSGFRK(Dnp)NH2
-
in the presence of 1 M sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
-
3.29
-
ATVRLQAGNAT
-
pH 7.3, room temperature
1.57
-
FYPKLQASQAW
-
pH 7.3, room temperature
76
-
GPFVDRQTAQAAGTDT-NH2
-
pH 7.5, 37C, mutant enzyme R188I
0.00004
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme DELTA(297-306)
0.00021
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme R298A/Q299A
0.0006
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme DELTA(298-306)
0.0007
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme Q299A
0.001
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme DELTA(299-306)
0.0017
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme Q299N
0.0021
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme Q299K
0.0022
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme Q200E
0.0034
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme R298A
0.0048
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme R298L; mutant enzyme S139A/Q299A
0.0069
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme S123a/R298A
0.017
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme DELTA(300-306); mutant enzyme R298K
0.022
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme DELTA(303-306)
0.025
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme DELTA(301-306)
0.027
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme DELTA(304-306)
0.03
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme DELTA(302-306)
0.032
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
wild-type enzyme
0.033
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme S123A; mutant enzyme S139A
0.035
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme S123C
0.039
-
o-aminobenzoyl-TSAVLQSGFRK-2,4-dinitrophenyl amide
-
mutant enzyme DELTA(305-306)
0.38
-
o-aminobenzoyl-TSAVLQSGFRY(NO2)G
-
-
1.68
-
PHTVLQAVGAC
-
pH 7.3, room temperature
1.6
-
SAVLQMGFRK
-
wild type enzyme, at 37C
16.2
-
SAVLQMGFRK
-
mutant enzyme T25G, at 37C
0.027
-
Ser-Ala-Val-Leu-Gln-Met-Gly-Phe-Arg-Lys
-
wild-type protein
0.27
-
Ser-Ala-Val-Leu-Gln-Met-Gly-Phe-Arg-Lys
-
T25G mutant protein
2.55
-
SGVTFQGKFKK
-
pH 7.3, room temperature
0.86
-
SITSAVLQ-p-nitroanilide
-
-
0.6
-
SITSAVLQ-p-nitrophenyl ester
-
-
8.5
-
SITSAVLQSGFRKMA
-
-
0.847
-
TFTRLQSLENV
-
pH 7.3, room temperature
0.1
-
Thr-Ser-Ala-Val-Leu-Gln-p-nitroanilide
-
R298A mutant protein
0.31
-
Thr-Ser-Ala-Val-Leu-Gln-p-nitroanilide
-
E166A mutant protein
0.48
-
Thr-Ser-Ala-Val-Leu-Gln-p-nitroanilide
-
R298L mutant protein
0.63
-
Thr-Ser-Ala-Val-Leu-Gln-p-nitroanilide
-
wild-type protein
12.2
-
TSAVLQSGFRK-NH2
-
pH 7.3, room temperature
4753
-
TSAVLQSGFRK-NH2
-
pH 7.5, 37C, mutant enzyme R188I
0.14
-
[4-(4-dimethylaminophenylazo)benzoic acid]-KNSTLQSGLRKE-[5-[2'-(aminoethyl)amino]-naphthalenesulfonic acid]
-
mutant enzyme Q189A
0.16
-
[4-(4-dimethylaminophenylazo)benzoic acid]-KNSTLQSGLRKE-[5-[2'-(aminoethyl)amino]-naphthalenesulfonic acid]
-
wild-type enzyme
1.5
-
[4-(4-dimethylaminophenylazo)benzoic acid]-KTSAVLQSGFRKME-5-[2'-(aminoethyl)amino]-naphthalenesulfonic acid
-
-
455
-
KVATVQSKMSD-NH2
-
pH 7.5, 37C, mutant enzyme R188I
additional information
-
additional information
-
steady-state analysis of the solvent isotope effects on kcat
-
kcat/KM VALUE [1/mMs-1]
kcat/KM VALUE [1/mMs-1] Maximum
SUBSTRATE
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
IMAGE
0.13
-
Abz-LQxSGFRK(Dnp)NH2
-
in the absence of sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
0
12
-
Abz-LQxSGFRK(Dnp)NH2
-
in the presence of 1 M sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
0
560
-
Abz-LYQPPQTSITSAVLQSGFRK(Dnp)NH2
-
in the presence of 1 M sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
0
545
-
Abz-QTSITSAVLQSGFRK(Dnp)NH2
-
in the presence of 1 M sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
0
4.4
-
Abz-SAVLQSGFRK(Dnp)NH2
-
in the absence of sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
0
1440
-
Abz-SAVLQSGFRK(Dnp)NH2
-
in the presence of 1 M sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
0
1500
-
Abz-SAVLQSGFRKMAK(Dnp)NH2
-
in the presence of 1 M sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
0
0.31
-
Abz-SAVLQSGK(Dnp)NH2
-
in the absence of sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
0
69
-
Abz-SAVLQSGK(Dnp)NH2
-
in the presence of 1 M sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
0
2250
-
Abz-SAVLQxSGFRKMAFPSGK(Dnp)NH2
-
in the presence of 1 M sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
0
345
-
Abz-SGADVLYQPPQTSITSAVLQSGFRK(Dnp)NH2
-
in the presence of 1 M sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
0
1.2
-
Abz-VLQSGFRK(Dnp)NH2
-
in the absence of sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
0
592
-
Abz-VLQSGFRK(Dnp)NH2
-
in the presence of 1 M sodium sulfate, pH 7.5 in 50 mM Tris-HCl buffer with 1 mM dithiothreitol, at 25C
0
0.012
-
Dabcyl-KTSAVLQSGFRKME-Edans
-
mutant enzyme N28A, in 10 mM sodium phosphate, 10 mM sodium chloride, 1 mM EDTA, 1 mM TCEP, pH 7.4, at 25C
272980
0.643
-
Dabcyl-KTSAVLQSGFRKME-Edans
-
wild type enzyme, in 10 mM sodium phosphate, 10 mM sodium chloride, 1 mM EDTA, 1 mM TCEP, pH 7.4, at 25C
272980
0.06
-
Thr-Ser-Ala-Val-Leu-Gln-p-nitroanilide
-
His-tagged artificial polyprotein (cyan fluorescent protein-SARS-CoV 3CLpro-yellow fluorescent protein)
302623
0.11
-
Thr-Ser-Ala-Val-Leu-Gln-p-nitroanilide
-
His-tagged artificial polyprotein (SARS-CoV 3CLpro-yellow fluorescent protein)
302623
0.53
-
Thr-Ser-Ala-Val-Leu-Gln-p-nitroanilide
-
SARS-CoV 3CLpro
302623
0.877
-
Thr-Ser-Ala-Val-Leu-Gln-p-nitroanilide
-
E166A mutant protein
302623
2.83
-
Thr-Ser-Ala-Val-Leu-Gln-p-nitroanilide
-
wild-type protein
302623
Ki VALUE [mM]
Ki VALUE [mM] Maximum
INHIBITOR
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
IMAGE
0.00017
-
1-hydroxypyridine-2-thione zinc
-
-
0.0000229
-
1-[(1H-benzimidazol-5-ylcarbonyl)oxy]-1H-1,2,3-benzotriazole
-
-
0.0000123
-
1-[(1H-indol-2-ylcarbonyl)oxy]-1H-1,2,3-benzotriazole
-
-
0.0000075
-
1-[(1H-indol-5-ylcarbonyl)oxy]-1H-1,2,3-benzotriazole
-
-
0.061
-
1-[bis(4-chlorophenyl)methyl]-3-[2-[(2,4-dichlorobenzyl)oxy]-2-(2,4-dichlorophenyl)ethyl]-1H-imidazol-3-ium
-
-
0.0000138
-
1-[[(5-fluoro-1H-indol-2-yl)carbonyl]oxy]-1H-1,2,3-benzotriazole
-
-
0.00034
-
2,5-bis[[(benzyloxy)carbonyl]amino]-1,2,5,6-tetradeoxy-1,6-di-1H-indol-3-yl-L-iditol
-
-
0.0006
-
2-([N-[(benzyloxy)carbonyl]-L-alanyl-L-valyl]amino)-5-[[(2S,5S)-5-[[(benzyloxy)carbonyl]amino]-2-(1-methylethyl)-4-oxohexanoyl]amino]-1,2,5,6-tetradeoxy-1,6-diphenyl-L-iditol
-
-
0.0000195
-
2-[(1H-1,2,3-benzotriazol-1-yloxy)carbonyl]aniline
-
-
0.0022
-
4,5-anhydro-2-([N-[(benzyloxy)carbonyl]-L-phenylalanyl]amino)-1,2-dideoxy-D-erythro-pent-3-ulose
-
-
0.0000111
-
4-[(1H-1,2,3-benzotriazol-1-yloxy)carbonyl]-N,N-diethylaniline
-
-
0.0000174
-
4-[(1H-1,2,3-benzotriazol-1-yloxy)carbonyl]-N,N-dimethylaniline
-
-
0.0000121
-
4-[(1H-1,2,3-benzotriazol-1-yloxy)carbonyl]-N-methylaniline
-
-
0.00226
-
4-[2-(2-benzyloxycarbonylamino-3-methyl-butyrylamino)-3-phenyl-propionylamino]-5-(2-oxo-pyrrolidin-3-yl)-pent-2-enoic acid ethyl ester
-
-
0.00066
-
4-[2-(2-benzyloxycarbonylamino-3-methyl-butyrylamino)-4-methyl-pentanoylamino]-5-(2-oxo-pyrrolidin-3-yl)-pent-2-enoic acid ethyl ester
-
-
0.000058
-
4-[2-(2-benzyloxycarbonylamino-3-tert-butoxy-butyrylamino)-4-methyl-pentanoylamino]-5-(2-oxo-pyrrolidin-3-yl)-pent-2-enoic acid ethyl ester
-
-
0.000053
-
benzyl (2S,3S)-3-tert-butoxy-1-((S)-3-cyclohexyl-1-oxo-1-((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-ylamino)propan-2-ylamino)-1-oxobutan-2-ylcarbamate
-
-
0.0006
-
benzyl (2S,3S)-3-tert-butoxy-1-((S)-3-cyclohexyl-1-oxo-1-((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-ylamino)propan-2-ylamino)-1-oxobutan-2-ylcarbamate
-
-
0.000306
-
benzyl [(1S)-1-benzyl-3-chloro-2-oxopropyl]carbamate
-
-
0.00038
-
benzyl [(1S)-3-chloro-1-(4-fluorobenzyl)-2-oxopropyl]carbamate
-
-
0.000371
-
benzyl [(1S)-3-chloro-1-(naphthalen-2-ylmethyl)-2-oxopropyl]carbamate
-
-
0.0006
-
benzyl [(1S,4S,7S,8R,9R,10S,13S,16S)-7,10-dibenzyl-8,9-dihydroxy-1,16-dimethyl-4,13-bis(1-methylethyl)-2,5,12,15,18-pentaoxo-20-phenyl-19-oxa-3,6,11,14,17-pentaazaicos-1-yl]carbamate
-
-
0.159
-
benzyl [(2S)-1-[[(2S)-1-(1,3-benzothiazol-2-yl)-5-(diethylamino)-1,5-dioxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]carbamate
-
-
0.0493
-
benzyl [(2S)-1-[[(2S)-1-[[(2S)-1-(1,3-benzothiazol-2-yl)-5-(diethylamino)-1,5-dioxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]carbamate
-
-
0.112
-
benzyl [(2S)-1-[[(2S)-1-[[(2S)-5-(diethylamino)-1,5-dioxo-1-(1,3-thiazol-2-yl)pentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]carbamate
-
-
0.614
-
benzyl [(2S)-1-[[(2S)-5-(diethylamino)-1,5-dioxo-1-(1,3-thiazol-2-yl)pentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]carbamate
-
-
-
0.462
-
benzyl [(2S)-1-[[(2S)-5-(diethylamino)-1,5-dioxo-1-(1,3-thiazol-2-yl)pentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]carbamate
-
-
0.000073
-
benzyl [(7S,8R,9R,10S)-8,9-dihydroxy-7,10-bis(1H-indol-3-ylmethyl)-1,16-dimethyl-4,13-bis(1-methylethyl)-2,5,12,15,18-pentaoxo-20-phenyl-19-oxa-3,6,11,14,17-pentaazaicos-1-yl]carbamate
-
-
0.0082
-
betulinic acid
-
-
0.0042
-
celastrol
-
-
0.0005
-
ethyl (2E)-4-[(N-[(2E)-3-[4-(dimethylamino)phenyl]prop-2-enoyl]-L-phenylalanyl)amino]-5-phenylpent-2-enoate
-
-
0.0137
-
Hexachlorophene
-
-
0.0005
-
Hg2+
-
-
0.0008
-
iguesterin
-
-
8.7e-17
-
lopinavir
-
in silico binding studies
0.000512
-
methyl 3-([N-[(benzyloxy)carbonyl]-L-valyl]amino)-5-fluoro-4-oxopentanoate
-
-
0.00003
-
N-(2-chloro-4-nitrophenyl)-Nalpha-[[4-(dimethylamino)phenyl]carbonyl]phenylalaninamide
-
-
0.04124
-
N-acetyl-DSFDQ
-
in 40 mM Tris-HCl buffer, pH 7.3, temperature not specified in the publication
-
0.00827
-
N-acetyl-ESTLQ
-
in 40 mM Tris-HCl buffer, pH 7.3, temperature not specified in the publication
-
0.04098
-
N-acetyl-NSFSQ
-
in 40 mM Tris-HCl buffer, pH 7.3, temperature not specified in the publication
-
0.07273
-
N-acetyl-NSTSQ
-
in 40 mM Tris-HCl buffer, pH 7.3, temperature not specified in the publication
-
0.001
-
N-ethyl-N-phenyldithiocarbamic acid zinc
-
-
0.00224
-
N-[(2S)-1-oxo-3-phenylpropan-2-yl]-Na-[(2E)-3-phenylprop-2-enoyl]-L-phenylalaninamide
-
in 40 mM Tris-HCl buffer, pH 7.3, temperature not specified in the publication
0.000038
-
N-[(benzyloxy)carbonyl]-3-[(2,2-dimethylpropanoyl)amino]-L-alanyl-N-[(1S,2E)-4-oxo-1-[[(3S)-2-oxopyrrolidin-3-yl]methyl]pent-2-en-1-yl]-L-leucinamide
-
-
0.297
-
N-[(benzyloxy)carbonyl]-L-alanyl-L-valyl-N-[(3S)-6-(dipropylamino)-1,1,1-trifluoro-2,6-dioxohexan-3-yl]-L-leucinamide
-
-
-
0.135
-
N-[(benzyloxy)carbonyl]-L-alanyl-L-valyl-N-[(3S)-6-amino-1,1,1-trifluoro-2,6-dioxohexan-3-yl]-L-leucinamide
-
-
0.0452
-
N-[(benzyloxy)carbonyl]-L-valyl-N-[(2S)-1,5-dioxo-1,5-di(1,3-thiazol-2-yl)pentan-2-yl]-L-leucinamide
-
-
0.0022
-
N-[(benzyloxy)carbonyl]-L-valyl-N-[(2S)-1-oxo-3-[(3S)-2-oxopyrrolidin-3-yl]-1-(1,3-thiazol-2-yl)propan-2-yl]-L-leucinamide
-
-
0.478
-
N-[(benzyloxy)carbonyl]-L-valyl-N-[(2S)-5-(morpholin-4-yl)-1,5-dioxo-1-(1,3-thiazol-2-yl)pentan-2-yl]-L-leucinamide
-
-
0.021
-
N-[(benzyloxy)carbonyl]-L-valyl-N-[(3S)-1,1,1-trifluoro-6-(morpholin-4-yl)-2,6-dioxohexan-3-yl]-L-leucinamide
-
-
0.116
-
N-[(benzyloxy)carbonyl]-L-valyl-N-[(3S)-5-carboxy-1,1,1-trifluoro-2-oxopentan-3-yl]-L-leucinamide
-
-
0.363
-
N-[(benzyloxy)carbonyl]-L-valyl-N-[(3S)-6-(dipropylamino)-1,1,1-trifluoro-2,6-dioxohexan-3-yl]-L-leucinamide
-
-
0.0341
-
N-[(benzyloxy)carbonyl]-L-valyl-N-[(3S)-6-[benzyl(methyl)amino]-1,1,1-trifluoro-2,6-dioxohexan-3-yl]-L-leucinamide
-
-
0.000054
-
N-[(benzyloxy)carbonyl]-O-tert-butylthreonyl-N-[(1S)-1-formyl-2-[(3S)-2-oxopyrrolidin-3-yl]ethyl]-L-phenylalaninamide
-
-
0.000099
-
N-[(benzyloxy)carbonyl]-O-tert-butylthreonyl-N-[(1S,2E)-4-cyclopropyl-4-oxo-1-[[(3S)-2-oxopyrrolidin-3-yl]methyl]but-2-en-1-yl]-L-leucinamide
-
-
0.000058
-
N-[(benzyloxy)carbonyl]-O-tert-butylthreonyl-N-[(1S,2E)-4-ethoxy-4-oxo-1-[[(3S)-2-oxopyrrolidin-3-yl]methyl]but-2-en-1-yl]-L-leucinamide
-
-
2.1e-16
-
N-[3-[(E)-(tert-butoxyimino)methyl]-4-chlorophenyl]-2-methylfuran-3-carboxamide
-
in silico binding studies
0.584
-
N2-[(benzyloxy)carbonyl]-N-[(3S)-6-(dipropylamino)-1,1,1-trifluoro-2,6-dioxohexan-3-yl]-L-leucinamide
-
-
0.0007
-
phenylmercuric acetate
-
-
0.0003
-
Phenylmercuric nitrate
-
-
0.0031
-
pristimerin
-
-
6e-18
-
promazine
-
in silico binding studies
0.0091
-
savinin
-
-
0.0004
-
tert-butyl (3S)-3-[[(benzyloxy)carbonyl]amino]-5-bromo-4-oxopentanoate
-
-
0.000058
-
TG-0203770
-
in 10 mM MES, pH 6.5, and 25C
0.000038
-
TG-0204998
-
in 10 mM MES, pH 6.5, and 25C
0.000054
-
TG-0205221
-
in 10 mM MES, pH 6.5, and 25C
0.000099
-
TG-0205486
-
in 10 mM MES, pH 6.5, and 25C
0.0024
-
thimerosal
-
-
0.004
-
tingenone
-
-
0.0014
-
toluene-3,4-dithiolato zinc
-
-
-
0.0011
-
Zn2+
-
-
0.016
-
[3-([[3-(dihydroxyboranyl)benzyl]oxy]carbonyl)-5-nitrophenyl]boronic acid
-
-
0.00004
-
[benzene-1,2-diylbis[methanediylcarbamoyl(5-nitrobenzene-3,1-diyl)]]diboronic acid
-
-
0.006
-
[benzene-1,2-diylbis[methanediyloxycarbonyl(5-nitrobenzene-3,1-diyl)]]diboronic acid
-
-
0.006
-
[benzene-1,3-diylbis[oxycarbonyl(5-nitrobenzene-3,1-diyl)]]diboronic acid
-
-
0.00004
-
[benzene-1,4-diylbis[carbamoyl(5-nitrobenzene-3,1-diyl)]]diboronic acid
-
-
0.0045
-
[benzene-1,4-diylbis[oxycarbonyl(5-nitrobenzene-3,1-diyl)]]diboronic acid
-
-
IC50 VALUE [mM]
IC50 VALUE [mM] Maximum
INHIBITOR
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
IMAGE
0.0006
-
(S)-2-((2S,3R)-2-((S)-2-acetamido-3-methylbutanamido)-3-(benzyloxy)butanamido)-4-methyl-N-((S)-4-(5-nitro-1,4-dioxo-3,4-dihydrophthalazin-2(1H)-yl)-3-oxo-1-((S)-2-oxopyrrolidin-3-yl)butan-2-yl)pentanamide
-
-
0.025
-
1,1'-sulfonylbis(4-nitrobenzene)
-
-
0.00095
-
1-(1-benzothiophen-2-ylmethyl)-5-iodo-1H-indole-2,3-dione
-
-
0.00037
-
1-(2-naphthylmethyl)-2,3-dioxoindoline-5-carboxamide
-
-
0.00037
-
1-(2-naphthylmethyl)isatin-5-carboxamide
-
-
0.0081
-
1-butyl-N-[4-(3,5-diphenyl-4,5-dihydro-1H-pyrazol-1-yl)benzyl]-1H-benzimidazol-2-amine
-
-
0.0002
-
1-[(1H-indol-5-ylcarbonyl)oxy]-1H-benzotriazole
-
-
0.012
-
1-[(4-chlorophenyl)sulfonyl]-2-nitro-4-(trifluoromethyl)benzene
-
-
0.06279
-
1-[2-(dimethylamino)ethyl]-3-hydroxy-5-(4-hydroxy-3-methoxyphenyl)-4-[2-methyl-4-(2-methylpropoxy)benzoyl]-1,5-dihydro-2H-pyrrol-2-one
-
pH and temperature not specified in the publication
0.018
-
2',5'-dimethyl-3-(methylthio)-4'-nitro-5-(2-thienyl)-2'H-1,3'-bipyrazole-4-carbonitrile
-
-
0.0003
-
2,4-dichloro-5-methylphenyl 2,6-dinitro-4-(trifluoromethyl)phenyl sulfone
-
-
0.032
-
2-(3',4'-dihydroxyphenyl)-5,7-dihydroxy-3-beta-D-arabinosyl-4H-chromen-4-one
-
-
0.043
-
2-(3',4'-dihydroxyphenyl)-5,7-dihydroxy-3-beta-D-galactosyl-4H-chromen-4-one
-
-
0.049
-
2-(3',4'-dihydroxyphenyl)-5,7-dihydroxy-3-beta-D-glucosyl-4H-chromen-4-one
-
-
0.024
-
2-(3',4'-dihydroxyphenyl)-5,7-dihydroxy-3-beta-L-fucosyl-4H-chromen-4-one
-
-
0.061
-
2-(3',4'-dihydroxyphenyl)-5-hydroxy-3,7-di(beta-D-galactosyl)-4H-chromen-4-one
-
-
0.04
-
2-(4,5-dihydro-1,3-thiazol-2-yl)-1-(1,3-thiazol-2-yl)ethanone
-
-
0.0043
-
2-(4-aminophenyl)-6-methyl-1H-benzimidazole-7-sulfonic acid
-
-
0.075
-
2-(5-bromopyridin-3-yl)-1-(2-(4-chlorophenyl)oxazol-5-yl)ethanone
-
-
-
0.057
-
2-(5-bromopyridin-3-yl)-1-(5-(4-chlorophenyl)furan-2-yl)-2,2-difluoroethanone
-
-
-
0.028
-
2-(5-bromopyridin-3-yl)-1-(5-(4-chlorophenyl)furan-2-yl)-2-fluoroethanone
-
-
0.0098
-
2-acetyl-3-(3-iodophenyl)-7-methoxy-3,3a,4,5-tetrahydro-2H-benzo[g]indazole
-
-
0.007
-
2-benzyl-2H-isoindole-4,7-dione
-
-
0.0025
-
2-phenylethyl 2-methyl-4-(2-nitrophenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate
-
-
0.016
-
2-[(2-acetylphenyl)sulfonyl]benzoic acid
-
-
0.0182
-
2-[(2-cyclohexylquinazolin-4-yl)sulfanyl]-N-(furan-2-ylmethyl)acetamide
-
-
0.015
-
2-[(4-chlorophenyl)sulfonyl]-5-nitropyridine 1-oxide
-
-
0.0106
-
2-[(4-nitrobenzyl)sulfanyl]-4-(3-nitrophenyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile
-
-
-
0.0353
-
2-[(4-nitrobenzyl)sulfanyl]-6-oxo-4-phenyl-1,6-dihydropyrimidine-5-carbonitrile
-
-
-
0.007
-
3,4-dichloro-5-[2-(5-chloro-3-methyl-1-benzothien-2-yl)-2-oxoethyl]furan-2(5H)-one
-
-
0.0025
-
3,4-dichloro-5-[2-(5-chloro-3-methyl-1-benzothiophen-2-yl)-2-oxoethyl]furan-2(5H)-one
-
-
0.0025
-
3-(4-bromophenyl)-5-(4-chlorophenyl)-1-(3,4-dichlorophenyl)-4-(1H-imidazol-1-yl)-4,5-dihydro-1H-pyrazole
-
-
0.05
-
3-(N-L-gamma-Glu-L-Ala)-1,1,1-trifluoropropan-2-one
-
-
0.0172
-
3-benzyl-1-[(6,7-dimethyl-2-oxo-1,2-dihydroquinolin-3-yl)methyl]-1-[2-(2-methylphenyl)ethyl]urea
-
-
0.016
-
3-[(2-furylmethyl)amino]-6,6-dimethyl-4-oxo-4,5,6,7-tetrahydro-2-benzothiophene-1-carbonitrile
-
-
0.01
-
3-[1-(4-benzyloxyphenyl)-1H-tetrazol-5-ylthio]-4-hydroxyquinolin-2-(1H)one
-
in 10 mM HEPES at pH 7.5, temperature not specified in the publication
-
0.002
-
3-[1-(4-benzyloxyphenyl)-1H-tetrazol-5-ylthio]-4-methoxyquinolin-2-(1H)one
-
in 10 mM HEPES at pH 7.5, temperature not specified in the publication
-
0.0125
-
3-[1-(4-ethoxyphenyl)-1H-tetrazol-5-ylthio]-4-hydroxyquinolin-2-(1H)one
-
in 10 mM HEPES at pH 7.5, temperature not specified in the publication
-
0.015
-
3-[N-(N-benzyloxycarbonyl-L-Leu)]-4-phenyl-1,1,1-trifluorobutan-2-one
-
-
0.02
-
3-[N-(N-benzyloxycarbonyl-L-Phe)]-4-phenyl-1,1,1-trifluorobutan-2-one
-
-
0.04
-
3-[N-(N-tert-butoxycarbonyl)-L-Leu]-1,1,1-trifluorobutan-2-one
-
-
0.01
-
3-[N-[N-benzyloxycarbonyl-L-Ala-L-Val-L-Leu]]-4-phenyl-1,1,1-trifluorobutan-2-one
-
-
0.05
-
3-[N-[N-decanoyl-L-Leu]]-4-phenyl-1,1,1-trifluorobutan-2-one
-
-
0.04
-
3-[N-[N-tert-butoxycarbonyl-L-gamma-Glu(OtBu)-L-Ala]]-1,1,1-trifluoropropan-2-one
-
-
0.013
-
4,6-dimethyl-2-[(4-methylphenyl)sulfonyl]-5-nitronicotinonitrile
-
-
0.0061
-
4-(4-chlorophenyl)-2-[(4-nitrobenzyl)sulfanyl]-6-oxo-1,6-dihydropyrimidine-5-carbonitrile
-
-
0.0169
-
4-(4-chlorophenyl)-6-oxo-2-[(2-phenylethyl)sulfanyl]-1,6-dihydropyrimidine-5-carbonitrile
-
-
-
0.0263
-
4-(4-methoxyphenyl)-2-[(4-nitrobenzyl)sulfanyl]-6-oxo-1,6-dihydropyrimidine-5-carbonitrile
-
-
0.018
-
4-(5-chloro-2-thienyl)-2-[(2-thienylsulfonyl)methyl]-1,3-thiazole
-
-
0.05835
-
4-([[4-cyclohexyl-5-(naphthalen-1-yl)-4H-1,2,4-triazol-3-yl]sulfanyl]methyl)-1,3-thiazol-2-amine
-
pH and temperature not specified in the publication
0.0125
-
4-benzyloxy-3-[1-(4-benzyloxyphenyl)-1H-tetrazol-5-ylthio]quinolin-2-(1H)one, 4-benzyloxy-3-[1-(4-ethoxyphenyl)-1H-tetrazol-5-ylthio]quinolin-2-(1H)one, 4-benzyloxy-3-[1-(4-methoxyphenyl)-1H-tetrazol-5-ylthio]quinolin-2-(1H)one, 4-hydroxy-3-[1-(4-hydroxyphenyl)-1H-tetrazol-5-ylthio]quinolin-2-(1H)one, 4-hydroxy-3-[1-(4-methoxyphenyl)-1H-tetrazol-5-ylthio]quinolin-2-(1H)one
-
in 10 mM HEPES at pH 7.5, temperature not specified in the publication
-
0.0072
-
4-methoxy-6-[([1,3]thiazolo[5,4-b]pyridin-2-ylsulfinyl)methyl]-2H-pyran-2-one
-
-
0.1014
-
4-[(2,4-dimethyl-1,3-thiazol-5-yl)carbonyl]-3-hydroxy-1-[3-(morpholin-4-yl)propyl]-5-(3-nitrophenyl)-1,5-dihydro-2H-pyrrol-2-one
-
pH and temperature not specified in the publication
0.016
-
4-[(3,5-dibromo-4-hydroxyphenyl)sulfonyl]benzoic acid
-
-
0.0033
-
4-[(E)-[(2-methoxyphenyl)imino]methyl]-2-phenyl-1,3-oxazol-5-yl acetate
-
-
0.0125
-
5,7-dichloro-4-hydroxy-3-[1-(4-methoxy-phenyl)-1H-tetrazol-5-ylsulfanyl]-1H-quinolin-2-one
-
in 10 mM HEPES at pH 7.5, temperature not specified in the publication
-
0.01
-
5,7-dichloro-4-hydroxy-3-[[1-(4-hydroxyphenyl)-1H-tetrazol-5-yl]sulfanyl]quinolin-2(1H)-one
-
in 10 mM HEPES at pH 7.5, temperature not specified in the publication
0.0106
-
5,7-dichloro-4-hydroxy-3-[[1-(4-hydroxyphenyl)-1H-tetrazol-5-yl]sulfanyl]quinolin-2(1H)-one
-
-
0.005
-
5-(1,3-dimethyl-1H-pyrazol-5-yl)-N-(3-methyl-4-nitroisoxazol-5-yl)thiophene-2-carboxamide
-
-
0.00014
-
5-chloropyridin-3-yl (3S)-2-acetyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylate
-
-
0.00108
-
5-chloropyridin-3-yl 1-acetyl-1H-indole-4-carboxylate
-
-
0.0004
-
5-chloropyridin-3-yl 1-acetyl-1H-indole-5-carboxylate
-
-
0.000124
-
5-chloropyridin-3-yl 1-naphthoate
-
-
0.000089
-
5-chloropyridin-3-yl 1-[(3-nitrophenyl)sulfonyl]-1H-indole-5-carboxylate
-
-
0.00037
-
5-chloropyridin-3-yl 1-[(4-methylphenyl)sulfonyl]-1H-indole-5-carboxylate
-
-
0.00003
-
5-chloropyridin-3-yl 1H-indole-4-carboxylate
-
-
0.00031
-
5-chloropyridin-3-yl 1H-indole-5-carboxylate
-
-
0.00023
-
5-chloropyridin-3-yl 1H-indole-6-carboxylate
-
-
0.00008
-
5-chloropyridin-3-yl 1H-indole-7-carboxylate
-
-
0.000333
-
5-chloropyridin-3-yl 2-nitrobenzoate
-
-
0.000108
-
5-chloropyridin-3-yl 2-oxo-2H-chromene-3-carboxylate
-
-
0.000648
-
5-chloropyridin-3-yl 3-nitrobenzoate
-
-
0.000434
-
5-chloropyridin-3-yl 4-chlorobenzoate
-
-
0.000208
-
5-chloropyridin-3-yl 5-(2-nitrophenyl)-2-furoate
-
-
0.0005
-
5-chloropyridin-3-yl 5-(3-nitrophenyl)-2-furoate
-
-
0.000122
-
5-chloropyridin-3-yl 5-(4-chloro-2-nitrophenyl)-2-furoate
-
-
0.000063
-
5-chloropyridin-3-yl 5-(4-chlorophenyl)-2-furoate
-
-
0.00006
-
5-chloropyridin-3-yl 5-(4-nitrophenyl)-2-furoate
-
-
0.000164
-
5-chloropyridin-3-yl isonicotinate
-
-
0.000697
-
5-chloropyridin-3-yl nicotinate
-
-
0.0005
-
5-chloropyridin-3-yl thiophene-2-carboxylate
-
-
0.155
-
acetyl-Ala-Val-Leu-NHCH(CH2CH2CON(CH3)2)-CHO
-
-
0.037
-
acetyl-Ser-Ala-Val-Leu-NHCH(CH2CH2CON(CH3)2)-CHO
-
-
0.026
-
acetyl-Thr-Ser-Ala-Val-Leu-NHCH(CH2CH2CON(CH3)2)-CHO
-
-
6
-
acetyl-Val-Leu-NHCH(CH2CH2CON(CH3)2)-CHO
-
-
0.01
-
betulinic acid
-
-
0.0026
-
bis[1,3]thiazolo[4,5-b:5',4'-e]pyridine-2,6-diamine
-
-
0.0103
-
celastrol
-
-
0.323
-
cinanserin
-
-
0.0235
-
curcumin
-
-
0.04
-
curcumin
-
-
0.016
-
diethyl (2E,2'E)-3,3'-[sulfonylbis(benzene-4,1-diylimino)]bis(2-cyanoprop-2-enoate)
-
-
0.0217
-
dihydrocelastrol
-
-
0.046
-
esculetin-4-carboxylic acid ethyl ester
-
-
0.87
-
ethyl (2E,4S)-4-[[(2R,5S)-2-benzyl-6-methyl-5-[[(5-methylisoxazol-3-yl)carbonyl]amino]-4-oxoheptanoyl]amino]-5-[(3S)-3-methyl-2-oxopyrrolidin-3-yl]pent-2-enoate
-
-
0.08
-
ethyl (2E,4S)-4-[[(2R,5S)-5-[(N-tert-butyl-L-seryl)amino]-6-methyl-2-(3-methylbut-2-en-1-yl)-4-oxoheptanoyl]amino]-5-[(3S)-3-methyl-2-oxopyrrolidin-3-yl]pent-2-enoate
-
-
0.8
-
ethyl (2E,4S)-4-[[(2R,5S)-6-methyl-2-(3-methylbut-2-en-1-yl)-5-[[(5-methylisoxazol-3-yl)carbonyl]amino]-4-oxoheptanoyl]amino]-5-[(3S)-3-methyl-2-oxopyrrolidin-3-yl]pent-2-enoate
-
-
0.0026
-
iguesterin
-
-
0.02
-
N-(2,2'-bithien-5-ylmethyl)-1,3-dimethyl-4-nitro-1H-pyrazol-5-amine
-
-
0.0197
-
N-(2-allylthiophenyl)cinnamide
-
-
0.206
-
N-(2-benzylthiophenyl)cinnamide
-
-
0.0135
-
N-(2-carbomethoxyethylthiophenyl)cinnamide
-
-
0.00006
-
N-(2-chloro-4-nitrophenyl)-Nalpha-[[4-(dimethylamino)phenyl]carbonyl]phenylalaninamide
-
-
0.00106
-
N-(2-cinnamoylthiophenyl)cinnamide
-
-
0.062
-
N-(2-[2-[(2S)-1-cyclohexyl-3-oxopropan-2-yl]hydrazinyl]-4-methylpentanoyl)valyl-N-(1-hydroxy-3,4-dioxopentan-2-yl)alaninamide
-
in 10 mM Tris-HCl buffer, pH 7.5, containing 7 mM dithiothreitol, at 37C
3
-
N-(2-[2-[(2S)-3,3-dimethyl-1-oxobutan-2-yl]hydrazinyl]-4-methylpentanoyl)valyl-N-(1-hydroxy-3,4-dioxopentan-2-yl)alaninamide
-
IC50 about 3 mM, in 10 mM Tris-HCl buffer, pH 7.5, containing 7 mM dithiothreitol, at 37C
0.048
-
N-(4-methyl-2-[2-[(2S)-1-oxo-3-(thiophen-2-yl)propan-2-yl]hydrazinyl]pentanoyl)valyl-N-(1-hydroxy-3,4-dioxopentan-2-yl)alaninamide
-
in 10 mM Tris-HCl buffer, pH 7.5, containing 7 mM dithiothreitol, at 37C
2
-
N-(4-methyl-2-[2-[(2S)-1-oxo-3-phenylpropan-2-yl]hydrazinyl]pentanoyl)valyl-N-(1-hydroxy-3,4-dioxopentan-2-yl)alaninamide
-
IC50 about 2 mM, in 10 mM Tris-HCl buffer, pH 7.5, containing 7 mM dithiothreitol, at 37C
0.09072
-
N-(furan-2-ylmethyl)-2-[[5-(morpholin-4-yl)-1,2,3,4-tetrahydropyrimido[4',5':4,5]thieno[2,3-c]isoquinolin-8-yl]sulfanyl]acetamide
-
pH and temperature not specified in the publication
0.00027
-
N-acetyl-Ala-Val-Cha-His
-
in 10 mM Tris-HCl buffer, pH 7.5, containing 7 mM dithiothreitol, at 37C
-
0.01
-
N-acetyl-Asn-Val-Cha-His
-
in 10 mM Tris-HCl buffer, pH 7.5, containing 7 mM dithiothreitol, at 37C
-
0.000065
-
N-acetyl-Ser-Ala-Val-Cha-His
-
in 10 mM Tris-HCl buffer, pH 7.5, containing 7 mM dithiothreitol, at 37C
-
0.0057
-
N-acetyl-Ser-Ala-Val-Leu-His
-
in 10 mM Tris-HCl buffer, pH 7.5, containing 7 mM dithiothreitol, at 37C
-
0.33
-
N-acetyl-Ser-Ala-Val-Leu-NHCH(CH2CH2CON(CH3)2)-CH-CHCOOEt
-
in 10 mM Tris-HCl buffer, pH 7.5, containing 7 mM dithiothreitol, at 37C
-
0.037
-
N-acetyl-Ser-Ala-Val-Leu-NHCH-(CH2CH2CON(CH3)2)-CHO
-
in 10 mM Tris-HCl buffer, pH 7.5, containing 7 mM dithiothreitol, at 37C
-
0.00039
-
N-acetyl-Ser-Ala-Val-Phe-His
-
in 10 mM Tris-HCl buffer, pH 7.5, containing 7 mM dithiothreitol, at 37C
-
0.00034
-
N-acetyl-Ser-Val-Cha-His
-
in 10 mM Tris-HCl buffer, pH 7.5, containing 7 mM dithiothreitol, at 37C
-
0.00098
-
N-acetyl-Thr-Val-Cha-His
-
in 10 mM Tris-HCl buffer, pH 7.5, containing 7 mM dithiothreitol, at 37C
-
0.015
-
N-tert-butyl-L-seryl-L-valyl-N-[(1S,2E)-4-ethoxy-1-[[(3S)-3-methyl-2-oxopyrrolidin-3-yl]methyl]-4-oxobut-2-en-1-yl]-L-phenylalaninamide
-
-
0.01
-
N-tert-butyl-L-seryl-L-valyl-N-[(1S,2E)-4-ethoxy-4-oxo-1-[2-(2-oxopyrrolidin-3-yl)ethyl]but-2-en-1-yl]-L-leucinamide
-
-
0.07709
-
N-[(1E)-3-[(2E)-2-(4-hydroxy-3,5-dimethoxybenzylidene)hydrazinyl]-3-oxo-1-phenylprop-1-en-2-yl]benzamide
-
pH and temperature not specified in the publication
0.04139
-
N-[(1Z)-3-[[3-(dimethylamino)propyl]amino]-1-[5-(2-nitrophenyl)furan-2-yl]-3-oxoprop-1-en-2-yl]-4-methylbenzamide
-
pH and temperature not specified in the publication
0.03857
-
N-[(1Z)-3-[[3-(dimethylamino)propyl]amino]-1-[5-(3-nitrophenyl)furan-2-yl]-3-oxoprop-1-en-2-yl]-4-methylbenzamide
-
pH and temperature not specified in the publication
0.2
-
N-[(5-methyl-4,5-dihydro-1H-pyrazol-3-yl)carbonyl]-L-valyl-N-[(1S,2E)-4-ethoxy-1-[[(3S)-3-methyl-2-oxopyrrolidin-3-yl]methyl]-4-oxobut-2-en-1-yl]-L-leucinamide
-
-
0.3
-
N-[(5-methyl-4,5-dihydro-1H-pyrazol-3-yl)carbonyl]-L-valyl-N-[(1S,2E)-4-ethoxy-1-[[(3S)-3-methyl-2-oxopyrrolidin-3-yl]methyl]-4-oxobut-2-en-1-yl]-L-phenylalaninamide
-
-
0.0437
-
N-[2-(2-cyanocinnamoylthio)phenyl]-2-cyanocinnamide
-
-
0.293
-
N-[2-(2-pyridylmethylthio)phenyl]cinnamide
-
-
0.125
-
N-[2-(3-dimethylaminopropylthio)phenyl]-2-cyanocinnamide
-
-
0.347
-
N-[2-(3-pyridylmethylthio)phenyl]cinnamide
-
-
0.01
-
N-[3-(5-tert-butyl-2-methyl-3-furyl)-1H-pyrazol-5-yl]thiophene-2-sulfonamide
-
-
0.0084
-
N-[4-(3,5-diphenyl-4,5-dihydro-1H-pyrazol-1-yl)benzyl]-1-ethyl-1H-benzimidazol-2-amine
-
-
0.008
-
N-[4-(3,5-diphenyl-4,5-dihydro-1H-pyrazol-1-yl)benzyl]-1-propyl-1H-benzimidazol-2-amine
-
-
0.015
-
N-[4-[(4-chlorophenyl)sulfonyl]-3-(methylthio)-1H-pyrazol-5-yl]thiophene-2-carboxamide
-
-
0.04
-
niclosamide
-
-
-
0.0055
-
pristimerin
-
-
0.003
-
S-[5-(trichloromethyl)-4H-1,2,4-triazol-3-yl] 5-(phenylethynyl)furan-2-carbothioate
-
-
0.025
-
savinin
-
-
0.0009
-
sulfonyldi-4,1-phenylene bis(2,3,3-trichloroacrylate)
-
-
0.032
-
tetraethyl 2,2'-[sulfonylbis(benzene-4,1-diyliminomethylylidene)]dipropanedioate
-
-
0.0099
-
tingenone
-
-
0.013
-
2-(5-bromopyridin-3-yl)-1-(5-(4-chlorophenyl)furan-2-yl)ethanone
-
-
additional information
-
2-(benzylsulfanyl)-4-(3-chlorophenyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile, 2-(benzylsulfanyl)-4-(4-methoxyphenyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile, 2-(benzylsulfanyl)-4-(4-methylphenyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile, 2-(benzylsulfanyl)-6-oxo-4-phenyl-1,6-dihydropyrimidine-5-carbonitrile
-
IC50 above 0.05 mM
-
0.013
-
4,6-dimethyl-5-nitro-2-(phenylsulfonyl)nicotinonitrile
-
-
additional information
-
4-(3-nitrophenyl)-6-oxo-2-[(2-phenylethyl)sulfanyl]-1,6-dihydropyrimidine-5-carbonitrile
-
IC50 above 0.05 mM
0.0203
-
4-(4-methoxyphenyl)-6-oxo-2-[(2-phenylethyl)sulfanyl]-1,6-dihydropyrimidine-5-carbonitrile
-
-
additional information
-
4-(4-methylphenyl)-2-[(4-nitrobenzyl)sulfanyl]-6-oxo-1,6-dihydropyrimidine-5-carbonitrile
-
IC50 above 0.05 mM
additional information
-
4-(4-methylphenyl)-6-oxo-2-[(2-phenylethyl)sulfanyl]-1,6-dihydropyrimidine-5-carbonitrile
-
IC50 above 0.05 mM
0.006
-
5-[(4-chlorophenyl)sulfonyl]pyrimidine-2,4-diamine
-
-
additional information
-
6-oxo-4-phenyl-2-[(2-phenylethyl)sulfanyl]-1,6-dihydropyrimidine-5-carbonitrile
-
IC50 above 0.05 mM
0.007
-
methyl 4-hydroxy-6-(trifluoromethyl)furo[2,3-b]pyridine-2-carboxylate
-
-
additional information
-
additional information
-
extracts of Rheum palmatum show IC50 values between 0.014 mg/ml and 0.059 mg/ml
-
pH OPTIMUM
pH MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
7
-
-
substrate: TSAVLQSGFRK-NH2
7.4
-
-
wild-type enzyme
7.6
-
-
mutant enzyme C145S
pH RANGE
pH RANGE MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
6
9
-
pH 6: about 50% of maximal activity, pH 9: about 65% of maximal activity, substrate: TSAVLQSGFRK-NH2
6.3
8.7
-
pH 6.3: about 55% of maximal activity, pH 8.7: about 45% of maximal activity, wild-type enzyme
6.3
9.3
-
pH 6.3: about 55% of maximal activity, pH 9.3: about 45% of maximal activity, mutant enzyme C145S
6.5
8.5
-
-
TEMPERATURE OPTIMUM
TEMPERATURE OPTIMUM MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
pI VALUE
pI VALUE MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
6.24
-
-
mutant enzyme R188I, calculated from sequence
MOLECULAR WEIGHT
MOLECULAR WEIGHT MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
33760
-
-
determined by MALDI
SUBUNITS
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
dimer
-
one monomer per asymmetric unit, dimer is generated through the crystallographic twofold
dimer
-
the SARS coronavirus main proteinase is a homodimer. Investigation of the monomer-dimer equilibrium
dimer
-
the enzyme exists as a mixture of monomer and dimer at a higher protein concentration (4 mg/ml) and exclusively as a monomer at a lower protein concentration
dimer
-
dimerization is important for enzyme activity and only one active protomer in the dimer is enough for the catalysis
dimer
-
by comparing molecular dynamics simulation of dimer and monomer, the indirect reasons for the inactivation of the monomer are found, that is the conformational variations of the active site in the monomer relative to dimer
dimer
-
wild type and DELTA(300306) proteases exist with dimer as the major form. The major form becomes monomeric in DELTA(299306), DELTA(298306) and DELTA(297306)
dimer
-
a mixture of monomer and dimer at a protein concentration of 4 mg/ml and mostly monomer at 0.2 mg/ml. The dimer may be the biological functional form of the protein
dimer
-
in solution the wild type protease exhibits both forms of monomer and dimer and the amount of the monomer is almost equal to that of the dimeric form
dimer
-
SARS-CoV Mpro exists in solution as an equilibrium of both monomeric and dimeric forms, and the dimeric form is the enzymatically active form
dimer
-
is only enzymatically active as a homodimer. Arg298 serves as a key component for maintaining dimerization, and consequently, its mutation will trigger a cooperative switch from a dimer to a monomer. The monomeric enzyme is irreversibly inactivated because its catalytic machinery is frozen in the collapsed state, characteristic of the formation of a short 310-helix from an active-site loop. Dimerization appears to be coupled to catalysis in 3CLpro through the use of overlapped residues for two networks, one for dimerization and another for the catalysis
homodimer
-
x-ray crystallography
homodimer
-
analytical ultracentrifugation, gel filtration
homodimer
-
tendency of substrate induced dimer formation, gel filtration, analytic ultracentrifugation
homodimer
P0C6U8
only the dimeric enzyme is active
homodimer
-
2 * 34000
monomer
-
the enzyme exists as a mixture of monomer and dimer at a higher protein concentration (4 mg/ml) and exclusively as a monomer at a lower protein concentration
monomer
-
by comparing molecular dynamics simulation of dimer and monomer, the indirect reasons for the inactivation of the monomer are found, that is the conformational variations of the active site in the monomer relative to dimer
monomer
-
wild type and DELTA(300306) proteases exist with dimer as the major form. The major form becomes monomeric in DELTA(299306), DELTA(298306) and DELTA(297306)
monomer
-
a mixture of monomer and dimer at a protein concentration of 4 mg/ml and mostly monomer at 0.2 mg/ml. The dimer may be the biological functional form of the protein
monomer
-
in solution the wild type protease exhibits both forms of monomer and dimer and the amount of the monomer is almost equal to that of the dimeric form
Crystallization/COMMENTARY
ORGANISM
UNIPROT ACCESSION NO.
LITERATURE
crystal structure of monomeric mutant enzyme G11A
-
1.8 A X-ray crystal structure of 3Clpro bound to an irreversible inhibitor, an alpha,beta-epoxyketone
-
complexed with inhibitors TG-0204998 and TG-0205486, sitting drop vapor diffusion method, using 3-6% (w/v) PEG 6000, 4-6% (v/v) DMSO or methyl-2,4-pentanediol, 1 mM dithiothreitol, 0.1 M MES, pH 6.5; crystal structures of 3Cpro from CVB3 and 3CLpro from CoV-229E and SARS-CoV in complex with inhibitors are solved
-
crystals grown in hanging-drop vapour-diffusion method
-
enzyme-inhibitor complex, hanging-drop method
-
hanging-drop vapor-diffusion method. Crystal structure of the enzyme at a resolution of 1.82 A, in space group P21 at pH 6.0. Two crystal structures of Mpro having an additional Ala at the N terminus of each protomer (M+A(-1)pro), both at a resolution of 2.00 A, in space group P43212: one unbound and one bound by a substrate-like aza-peptide epoxide
-
monomeric crystal structure of the SARS-CoV 3CLpro mutant R298A at a resolution of 1.75 A, hanging drop method
-
mutant enzyme N28A, hanging drop vapor diffusion method, using 1.0 M sodium malonate (pH 7.0), and 5-6% (v/v) isopropanol
-
mutant enzyme R188I alone or in complex with several inhibitors, sitting drop vapor diffusion method, using 9-11% (w/v) of PEG 20000, 100 mM MES, pH 6.0, and 5 mM dithiothreitol
-
SARS 3CLpro bound to two phthalhydrazide-charged peptidyl inhibitors, acetyl-valyl-(O-benzyloxy)threonyl-leucyl-ketomethyl(cycloglutamine)-phthalhydrazide and acetyl-leucylalanyl-alanyl-ketomethyl(cycloglutamine)-phthalhydrazide. The inhibitors are covalently attached to SARS 3CLpro in crystals
-
SARS-CoV Mpro in complex with Cm-FF-H, Ac-ESTLQ-H, Ac-DSFDQ-H, Ac-NSTSQ-H, Ac-NSFSQ-H, or Ac-ESTLQ-H, sitting drop vapor diffusion method, using 8% (w/v) PEG 6000, 0.1 M MES (pH 6.0), 3% (v/v) 2-methyl-2,4-pentanediol, and 3% (v/v) DMSO, at 20C
-
sitting drop diffusion method, crystallization of SARS 3CLpro-inhibitor complexes
-
structures of monomeric and dimeric forms of the C-terminal domain of Mpro (Mpro-C). Mpro-C monomer maintains the same fold as that in the crystal structure of Mpro. On the other hand, the Mpro-C dimer has a novel structure characterized by 3D domain-swapping, which provides the structural basis for the dimer stability
-
X-ray, resolution of 2.0 A for tetragonal crystals, 2.14 A for monoclinic crystals and 2.8 A for orthorhombic crystals, pH-dependent change of structure
-
hanging drop vapor diffusion method, crystals of S139A mutant are grown from the mother liquor containing 0.1 M MES pH 6.0, 10% (w/v) PEG 6000, 1 mM dithiohtreitol, and 5% (v/v) DMSO, crystals of F140A are grown at three pH values in 0.1 M MES pH 6.0/0.1 M MES pH 6.5/0.1 M Tris pH 7.6, with 10% (w/v) PEG 6000, 1 mM dithiothreitol, and 5% (v/v) DMSO
P0C6U8
TEMPERATURE STABILITY
TEMPERATURE STABILITY MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
61
-
-
Tm-value, sigmoid denaturation curve
GENERAL STABILITY
ORGANISM
UNIPROT ACCESSION NO.
LITERATURE
replacing Arg with Ile at position 188 renders the protease resistant to proteolysis
-
ORGANIC SOLVENT
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
guanidine-HCl
-
dimeric enzyme dissociates at guanidinium chloride concentration of less than 0.4 M, at which the enzymatic activity loss showes close correlation with the subunit dissociation. Further increase in guanidinium chloride induces a reversible biphasic unfolding of the enzyme. The unfolding of the C-terminal domain-truncated enzyme follows a monophasic unfolding curve. Unfolding curves of mutants of the full-length protease W31 and W207/W218 are monophasic but correspond to the first and second phases of the protease, respectively. The unfolding intermediate of the protease represents a folded C-terminal domain but an unfolded N-terminal domain, which is enzymatically inactive due to loss of regulatory properties
additional information
-
the enzyme activity is unaffected by Brij-35, Triton X-100 and Tween 20 or SDS
Purification/COMMENTARY
ORGANISM
UNIPROT ACCESSION NO.
LITERATURE
ammonium sulfate precipitation and anion-exchange column chromatography; ammonium sulfate precipitation, anion-exchange chromatography
-
commercial preparation
-
E166A mutant protein: immobilized metal ion affinity chromatography (Ni2+)
-
fused to maltose-binding protein, removing the maltose-binding protein by cleavage with factor Xa, purification by Phenyl Sepharose column chromatography
-
glutathione S-transferase column chromatography and HiTrap 26/10 QFF column chroamtography
-
immobilized metal ion affinity chromatography (Ni2+); Ni-NTA column chromatography
-
nickel affinity column chromatography and Q-Sepharose column chromatography, and Superdex 75 gel filtration
-
purification of proteolysis-resistant mutant R188I of the SARS 3CL protease
-
recombinant enzyme
-
recombinant His-tagged SARS-CoV 3CL protease
-
Resource-Q column chromatography, gel filtration
-
strong cation column chromatography connected in series to a strong anion column chromatography
-
wild-type enzyme and C-terminally truncated proteases
-
glutathione Sepharose column chromatography and Superdex 75 gel filtration
P0C6U8
Cloned/COMMENTARY
ORGANISM
UNIPROT ACCESSION NO.
LITERATURE
mutant enzyme G11A and wild-type enzyme are expressed in Escherichia coli
-
E166A mutant protein expressed in Escherichia coli BL21(DE3)
-
expressed in E. coli BL21
-
expressed in Escherichia coli
-
expressed in Escherichia coli BL21 cells
-
expressed in Escherichia coli BL21 Star(DE3) cells
-
expressed in Escherichia coli Rosetta (DE3) cells
-
expressed in Escherichia coli; wild type and His-tagged T25G mutant are expressed in Escherichia coli cells
-
expression in Escherichia coli
-
fused to maltose-binding protein and expressed in E. coli BL21
-
high level of expression of of proteolysis-resistant mutant R188I in Escherichia coli
-
His-tagged artificial polyprotein (cyan fluorescent protein-SARS-CoV 3CLpro-yellow fluorescent protein) expressed in Escherichia coli
-
His-tagged SARS-CoV 3CL protease expressed in Escherichia coli
-
R298A protease is expressed in Escherichia coli strain BL21(DE3)
-
wild-type and mutant glutathione S-transferase-fusion constructs are transformed into Escherichia coli BL21 cell strain for overexpression
-
wild-type enzyme and C-terminally truncated proteases, expression in Escherichia coli
-
expressed in Escherichia coli BL21(DE3) cells
P0C6U8
ENGINEERING
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
G11A
-
mutation entirely abolishes activity
C145A
-
no irreversible inactivation by benzotriazole esters
C300A
-
mutant enzyme shows more than 30% of wild-type activity
E14A
-
the ratio of dimer to monomer in solution is 0.36, compared to 1 for the wild-type enzyme
E166A
-
involved in connecting the substrate binding site with the dimer interface, dimerization influenced by substrate binding
E166A/R298A
-
monomer
E288A
-
mutant enzyme retains less than 10% of the wild-type activity
F140A
-
the ratio of dimer to monomer in solution is 0.63, compared to 1 for the wild-type enzyme
F291A
-
activity is higher than that of wild-type enzyme
F3A
-
the ratio of dimer to monomer in solution is 0.93, compared to 1 for the wild-type enzyme
G283A
-
no significant activity differences from the wild-type protease
I286A
-
activity is higher than that of wild-type enzyme
N214A
-
mutant enzyme shows more than 30% of wild-type activity
N289A
-
mutant enzyme retains less than 10% of the wild-type activity
N28A
-
the mutation almost completely inactivates the enzyme and results in decreased dimerization
Q189A
-
kcat for the substrate [4-(4-dimethylaminophenylazo)benzoic acid]-KNSTLQSGLRKE-[5-[2'-(aminoethyl)amino]-naphthalenesulfonic acid] is 1.14 fold lower than wild-type value, Km-value for the substrate [4-(4-dimethylaminophenylazo)benzoic acid]-KNSTLQSGLRKE-[5-[2'-(aminoethyl)amino]-naphthalenesulfonic acid] is 1.3fold lower than the wild-type value
Q290A
-
mutant enzyme retains less than 10% of the wild-type activity
Q299A
-
mutant enzyme retains less than 10% of the wild-type activity
Q299A
-
the quaternary structures of exists in a mixture of monomeric and dimeric forms
Q299E
-
more than 90% loss of activity
Q299K
-
more than 90% loss of activity
Q299N
-
more than 90% loss of activity
R188I
-
replacing Arg with Ile at position 188 renders the protease resistant to proteolysis. The catalytic ability of 3CL-R188I protease was found to be extreme as compared to that of a mature 3CL protease containing a C-terminal His tag. The kcat values is 0.0203 per sec for mature 3CL protease and 4753 per sec for the 3CL-R188I
R188I
-
the enzymatic efficiency of the R188I mutant is increased by a factor of more than 1 million
R298A
-
mutant enzyme retains less than 10% of the wild-type activity
R298A
-
the quaternary structures of exists in a mixture of monomeric and dimeric forms
R298A
-
monomeric mutant
R298A
-
induce dimer dissociation (influenced by substrate binding), about 10fold decrease in activty
R298A/Q299A
-
mutant is present almost exclusively in the monomeric form
R298A/Q299A
-
monomer, no activity detected
R298K
-
mutation has no significant effect on activity
R298L
-
mutation destroys 85% of the enzyme activity
R298L
-
induce dimer dissociation (influenced by substrate binding), about 10fold decrease in activty
R4A
-
the ratio of dimer to monomer in solution is 0.45, compared to 1 for the wild-type enzyme
S10A
-
the ratio of dimer to monomer in solution is 0.66, compared to 1 for the wild-type enzyme
S123A
-
mutation does not destroy the enzyme activity, the dimeric structure remains intact
S123C
-
mutation does not destroy the enzyme activity, the dimeric structure remains intact
S139A
-
mutation can destroy neither the enzyme activity nor the dimeric structure; mutation does not destroy the enzyme activity, the dimeric structure remains intact
S139A
-
the ratio of dimer to monomer in solution is 0.81, compared to 1 for the wild-type enzyme
S1A
-
the ratio of dimer to monomer in solution is 1.08, compared to 1 for the wild-type enzyme
S284A
-
activity is higher than that of wild-type enzyme
S284A/T285A/I286A
-
activity is 3.7fold higher than wild-type activity
S301A
-
no significant activity differences from the wild-type protease
T25G
-
activity like wild-type (substrate DABCYL-Lys-Thr-Ser-Ala-Val-Leu-Gln-Ser-Gly-Phe-Arg-Lys-Met-Glu-EDANS), higher specific activity than wild-type protein for substrate Ser-Ala-Val-Leu-Gln-Met-Gly-Phe-Arg-Lys; the mutant enzyme has an expanded S1' space that demonstrates 43.5-fold better kcat/Km compared with wild type in cleaving substrates with a larger Met at P1', mutant enzyme T25G shows a 12fold and 8fold higher activity against the substrates with Met and Leu at P1', respectively
T25S
-
almost complete loss of activity
T280A
-
no significant activity differences from the wild-type protease
T285A
-
activity is higher than that of wild-type enzyme
F140A
P0C6U8
mutant F140A is a dimer with the most collapsed active pocket discovered so far, well-reflecting the stabilizing role of this residue, the mutant enzyme is completely inactive
S139A
P0C6U8
mutant S139A is a monomer that still retains a small fraction of dimer in solution, which may account for its remaining activity
L282A
-
mutant enzyme shows more than 30% of wild-type activity
additional information
-
truncation of C-terminus from 306 to 300 has no appreciable effect on the quaternary structure, and the enzyme remains catalytically active. Further deletion of Gln299 or Arg298 drastically decreases the enzyme activity to 12% of wild type, and the major form is a monomeric one. The catalytic constant and specificity constant (kcat/Km) of the proteases are significantly decreased in the DELTA(299306), DELTA(298306), and DELTA(297306) mutants. Wild type and DELTA(300306) proteases exist with dimer as the major form. The major form becomes monomeric in DELTA(299306), DELTA(298306) and DELTA(297306)
additional information
-
without the N-finger, SARS-CoV Mpro can no longer retain the active dimer structure. It can form a new type of dimer which is inactive. Therefore, the N-finger of SARS-CoV Mpro is not only critical for its dimerization but also essential for the enzyme to form the enzymatically active dimer
Renatured/COMMENTARY
ORGANISM
UNIPROT ACCESSION NO.
LITERATURE
reversible unfolding of SARS-CoV main protease in guanidine-HCl. In the presence of 6 M of guanidine-HCl, the enzyme is completely unfolded in 10 min. The unfolding is completely reversible. A 10fold dilution induces refolding of the enzyme to a yield of 92-95%
-
APPLICATION
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
analysis
-
developing a novel red-shifted fluorescence-based assay for 3CLpro and its application for identifying small-molecule anti-SARS agents from marine organisms
medicine
-
this enzyme is a target for the design of potential anti-SARS drugs
medicine
-
SARS-3CLpro is a viral cysteine protease critical to the life cycle of the pathogen and hence a therapeutic target of importance