Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

Reference on EC 3.1.13.1 - exoribonuclease II

Please use the Reference Search for a specific query.
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Spahr, P.F.
Purification and properties of ribonuclease II from Escherichia coli
J. Biol. Chem.
239
3716-3726
1964
Escherichia coli
Manually annotated by BRENDA team
Nossal, N.G.; Singer, M.F.
The processive degradation of individual polyribonucleotide chains. I. Escherichia coli ribonuclease II
J. Biol. Chem.
243
913-922
1968
Escherichia coli
Manually annotated by BRENDA team
Schmidt, F.J.; McClain, W.H.
An Escherichia coli ribonuclease which removes an extra nucleotide from a biosynthetic intermediate of bacteriophage T4 proline transfer RNA
Nucleic Acids Res.
5
4129-4139
1978
Escherichia coli
Manually annotated by BRENDA team
Gupta, R.S.; Kasai, T.; Schlessinger, D.
Purification and some novel properties of Escherichia coli RNase II
J. Biol. Chem.
252
8945-8949
1977
Escherichia coli
Manually annotated by BRENDA team
Ning Kwan, C.
A cytoplasmic exoribonuclease from HeLa cells
Biochim. Biophys. Acta
479
322-331
1977
Homo sapiens
Manually annotated by BRENDA team
Stevens, A.
An exoribonuclease from Saccharomyces cerevisiae: effect of modifications of 5'-end groups on the hydrolysis of substrates to 5'-mononucleotides
Biochem. Biophys. Res. Commun.
81
656-661
1978
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Keir, H.M.; Mathog, R.H.; Carter, C.E.
Purification of a potassium ion-activated RNA, 5'-phosphodiesterase from Lactobacillus casei
Biochemistry
3
1188-1193
1964
Lacticaseibacillus casei
Manually annotated by BRENDA team
Sporn, M.B.; Lazarus, H.M.; Smith, J.M.; Henderson, W.R.
Studies on nuclear exoribonucleases. 3. Isolation and properties of the enzyme from normal and malignant tissues of the mouse
Biochemistry
8
1698-1706
1969
Mus musculus
Manually annotated by BRENDA team
Kumagai, H.; Igarshi, K.; Tanaka, K.; Nakao, H.; Hirose, S.
A microsomal exoribonuclease from rat liver
Biochim. Biophys. Acta
566
192-199
1979
Rattus norvegicus
Manually annotated by BRENDA team
Kumagai, H.; Nakamura, M.; Ozaki, N.; Igarashi, K.; Hirose, S.
Purification and mode of action of a microsomal exoribonuclease from rat liver
Biochim. Biophys. Acta
827
431-438
1985
Rattus norvegicus
Manually annotated by BRENDA team
Cannistraro, V.J.; Kennell, D.
The reaction mechanism of ribonuclease II and its interaction with nucleic acid secondary structures
Biochim. Biophys. Acta
1433
170-187
1999
Escherichia coli
Manually annotated by BRENDA team
Piedade, J.; Zilhao, R.; Arraiano, C.M.
Construction and characterisation of an absolute deletion mutant of Escherichia coli ribonuclease II
FEMS Microbiol. Lett.
127
187-194
1995
Escherichia coli
Manually annotated by BRENDA team
Coburn, G.A.; Mackie, G.A.
Overexpression, purification, and properties of Escherichia coli ribonuclease II
J. Biol. Chem.
271
1048-1053
1996
Escherichia coli
Manually annotated by BRENDA team
Li, Z.; Deutscher, M.P.
The role of individual exoribonucleases in processing at the 3end of Escherichia coli tRNA precursors
J. Biol. Chem.
269
6064-6071
1994
Escherichia coli
Manually annotated by BRENDA team
Caruccio, N.; Ross, J.
Purification of a human polyribosome-associated 3'-5'exoribonuclease
J. Biol. Chem.
269
31814-31821
1994
Homo sapiens
Manually annotated by BRENDA team
Hsu-Ching, C.; Stern, D.B.
Specific ribonuclease activities in spinach chloroplasts promote mRNA maturation and degradation
J. Biol. Chem.
266
24205-24211
1991
Spinacia oleracea
Manually annotated by BRENDA team
Guarneros, G.; Portier, C.
Different specificities of ribonuclease II and polynucleotide phosphorylase in 3'-mRNA decay
Biochimie
73
543-549
1991
Escherichia coli
Manually annotated by BRENDA team
Mitchell, P.; Petfalski, E.; Shevchenko, A.; Mann, M.; Tollervey, D.
The exosome: A conserved eukaryotic RNA processing complex containing multiple 3'- to 5'-exoribonucleases
Cell
91
457-466
1997
Escherichia coli
Manually annotated by BRENDA team
Krishna, R.V.; Ko, T.S.; Meyhack, B.; Apirion, D.
On the localization of ribonucleases in bacteria
FEBS Lett.
29
105-108
1973
Escherichia coli
Manually annotated by BRENDA team
Gagliardi, D.; Perrin, R.; Marechal-Drouard, L.; Grienenberger, J.M.; Leaver, C.J.
Plant mitochondrial polyadenylated mRNAs are degraded by a 3'- to 5'-exoribonuclease activity, which proceeds unimpeded by stable secondary structures
J. Biol. Chem.
276
43541-43547
2001
Solanum tuberosum
Manually annotated by BRENDA team
Oussenko, I.A.; Bechhofer, D.H.
The yvaJ gene of Bacillus subtilis encodes a 3-to-5exoribonuclease and is not essential in a strain lacking polynucleotide phosphorylase
J. Bacteriol.
182
2639-2642
2000
Bacillus subtilis
Manually annotated by BRENDA team
Stevens, A.
5'-Exoribonuclease 1: Xrn1
Methods Enzymol.
342
251-259
2001
Saccharomyces cerevisiae, Saccharomyces cerevisiae BJ5464
Manually annotated by BRENDA team
Cannistraro, V.J.; Kennell, D.
Escherichia coli ribonuclease II
Methods Enzymol.
342
309-330
2001
Escherichia coli
Manually annotated by BRENDA team
Burkard, K.T.D.; Butler, J.S.
A nuclear 3'-5' exonuclease involved in mRNA degradation interacts with poly(A) polymerase and the hnRNA protein Np13p
Mol. Cell. Biol.
20
604-616
2000
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Andrulis, E.D.; Werner, J.; Nazarian, A.; Erdjument-Bromage, H.; Tempst, P.; Lis, J.T.
The RNA processing exosome is linked to elongating RNA polymerase II in Drosophila
Nature
420
837-841
2002
Drosophila melanogaster
Manually annotated by BRENDA team
Chekanova, J.A.; Dutko, J.A.; Mian, I.S.; Belostotsky, D.A.
Arabidopsis thaliana exosome subunit AtRrp4p is a hydrolytic 3' -> 5' exonuclease containing S1 and KH RNA-binding domains
Nucleic Acids Res.
30
695-700
2002
Arabidopsis thaliana
Manually annotated by BRENDA team
Jiang, T.; Altman, S.
A protein subunit of human RNase P, Rpp14, and its interacting partner, OIP2, have 3'->5' exoribonuclease activity
Proc. Natl. Acad. Sci. USA
99
5295-5300
2002
Homo sapiens
Manually annotated by BRENDA team
Amblar, M.; Arraiano, C.M.
A single mutation in Escherichia coli ribonuclease II inactivates the enzyme without affecting RNA binding
FEBS J.
272
363-374
2005
Escherichia coli, no activity in Escherichia coli, no activity in Escherichia coli SK4803, Escherichia coli JM109
Manually annotated by BRENDA team
Espert, L.; Eldin, P.; Gongora, C.; Bayard, B.; Harper, F.; Chelbi-Alix, M.K.; Bertrand, E.; Degols, G.; Mechti, N.
The exonuclease ISG20 mainly localizes in the nucleolus and the Cajal (Coiled) bodies and is associated with nuclear SMN protein-containing complexes
J. Cell. Biochem.
98
1320-1333
2006
Homo sapiens
Manually annotated by BRENDA team
Espert, L.; Degols, G.; Lin, Y.L.; Vincent, T.; Benkirane, M.; Mechti, N.
Interferon-induced exonuclease ISG20 exhibits an antiviral activity against human immunodeficiency virus type 1
J. Gen. Virol.
86
2221-2229
2005
Homo sapiens
Manually annotated by BRENDA team
Brecht, M.; Niemann, M.; Schluter, E.; Muller, U.F.; Stuart, K.; Goringer, H.U.
TbMP42, a protein component of the RNA editing complex in african trypanosomes, has endo-exoribonuclease activity
Mol. Cell
17
621-630
2005
Trypanosoma brucei, Trypanosoma brucei 427
Manually annotated by BRENDA team
Kennedy, S.; Wang, D.; Ruvkun, G.
A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans
Nature
427
645-649
2004
Caenorhabditis elegans, Homo sapiens
Manually annotated by BRENDA team
Bollenbach, T.J.; Schuster, G.; Stern, D.B.
Cooperation of endo- and exoribonucleases in chloroplast mRNA turnover
Prog. Nucleic Acid Res. Mol. Biol.
78
305-337
2004
Synechocystis sp., Saccharomyces cerevisiae, Caenorhabditis elegans, Chlamydomonas sp., Drosophila sp. (in: flies), Escherichia coli, Haloferax volcanii, Embryophyta, Homo sapiens, Mammalia, no activity in archaebacteria, Streptomyces coelicolor, uncultured Gammaproteobacteria bacterium
Manually annotated by BRENDA team
Amblar, M.; Barbas, A.; Gomez-Puertas, P.; Arraiano, C.M.
The role of the S1 domain in exoribonucleolytic activity: substrate specificity and multimerization
RNA
13
317-327
2007
Escherichia coli (P30850), Escherichia coli
Manually annotated by BRENDA team
McVey, C.E.; Amblar, M.; Barbas, A.; Cairrao, F.; Coelho, R.; Romao, C.; Arraiano, C.M.; Carrondo, M.A.; Frazao, C.
Expression, purification, crystallization and preliminary diffraction data characterization of Escherichia coli ribonuclease II (RNase II)
Acta Crystallogr. Sect. F
62
684-687
2006
Escherichia coli (P30850), Escherichia coli
Manually annotated by BRENDA team
Amblar, M.; Barbas, A.; Fialho, A.M.; Arraiano, C.M.
Characterization of the functional domains of Escherichia coli RNase II
J. Mol. Biol.
360
921-933
2006
Escherichia coli
Manually annotated by BRENDA team
Zuo, Y.; Vincent, H.A.; Zhang, J.; Wang, Y.; Deutscher, M.P.; Malhotra, A.
Structural basis for processivity and single-strand specificity of RNase II
Mol. Cell
24
149-156
2006
Escherichia coli
Manually annotated by BRENDA team
Schneider, C.; Anderson, J.T.; Tollervey, D.
The exosome subunit Rrp44 plays a direct role in RNA substrate recognition
Mol. Cell
27
324-331
2007
Saccharomyces cerevisiae (P39112), Saccharomyces cerevisiae
Manually annotated by BRENDA team
Dziembowski, A.; Lorentzen, E.; Conti, E.; Seraphin, B.
A single subunit, Dis3, is essentially responsible for yeast exosome core activity
Nat. Struct. Mol. Biol.
14
15-22
2007
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Frazao, C.; McVey, C.E.; Amblar, M.; Barbas, A.; Vonrhein, C.; Arraiano, C.M.; Carrondo, M.A.
Unravelling the dynamics of RNA degradation by ribonuclease II and its RNA-bound complex
Nature
443
110-114
2006
Escherichia coli (P30850), Escherichia coli
Manually annotated by BRENDA team
Mohanty, B.K.; Kushner, S.R.
Ribonuclease P processes polycistronic tRNA transcripts in Escherichia coli independent of ribonuclease E
Nucleic Acids Res.
35
7614-7625
2007
Escherichia coli
Manually annotated by BRENDA team
Murakami, H.; Goto, D.B.; Toda, T.; Chen, E.S.; Grewal, S.I.; Martienssen, R.A.; Yanagida, M.
Ribonuclease activity of Dis3 is required for mitotic progression and provides a possible link between heterochromatin and kinetochore function
PLoS ONE
2
e317
2007
Schizosaccharomyces pombe (P37202), Schizosaccharomyces pombe
Manually annotated by BRENDA team
Wang, H.W.; Wang, J.; Ding, F.; Callahan, K.; Bratkowski, M.A.; Butler, J.S.; Nogales, E.; Ke, A.
Architecture of the yeast Rrp44 exosome complex suggests routes of RNA recruitment for 3 end processing
Proc. Natl. Acad. Sci. USA
104
16844-16849
2007
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Katekaew, S.; Torikata, T.; Araki, T.
The complete amino acid sequence of green turtle (Chelonia mydas) egg white ribonuclease
Protein J.
25
316-327
2006
Chelonia mydas
Manually annotated by BRENDA team
Awano, N.; Inouye, M.; Phadtare, S.
RNase activity of polynucleotide phosphorylase is critical at low temperature in Escherichia coli and is complemented by RNase II
J. Bacteriol.
190
5924-5933
2008
Escherichia coli, Escherichia coli JM83
Manually annotated by BRENDA team
Fonseca, P.; Moreno, R.; Rojo, F.
Genomic analysis of the role of RNase R in the turnover of Pseudomonas putida mRNAs
J. Bacteriol.
190
6258-6263
2008
Pseudomonas putida (Q88DE8), Pseudomonas putida, Pseudomonas putida KT 2240 (Q88DE8)
Manually annotated by BRENDA team
Barbas, A.; Matos, R.G.; Amblar, M.; Lpez-Vinas, E.; Gomez-Puertas, P.; Arraiano, C.M.
New insights into the mechanism of RNA degradation by ribonuclease II identification of the residue responsible for setting the RNase II end product
J. Biol. Chem.
283
13070-13076
2008
Homo sapiens, Escherichia coli (P30850), Escherichia coli
Manually annotated by BRENDA team
Ueki, M.; Takeshita, H.; Fujihara, J.; Takatsuka, H.; Yuasa, I.; Iida, R.; Yasuda, T.
Three single nucleotide polymorphisms leading to non-synonymous amino acid substitution in the human ribonuclease 2 and angiogenin genes exhibit markedly less genetic heterogeneity in six populations
Cell Biochem. Funct.
26
718-722
2008
Homo sapiens
Manually annotated by BRENDA team
Nordick, K.; Hoffman, M.G.; Betz, J.L.; Jaehning, J.A.
Direct interactions between the Paf1 complex and a cleavage and polyadenylation factor are revealed by dissociation of Paf1 from RNA polymerase II
Eukaryot. Cell
7
1158-1167
2008
Saccharomyces cerevisiae, Saccharomyces cerevisiae YJJ
Manually annotated by BRENDA team
Charpentier, X.; Faucher, S.P.; Kalachikov, S.; Shuman, H.A.
Loss of RNase R induces competence development in Legionella pneumophila
J. Bacteriol.
190
8126-8136
2008
Legionella pneumophila, Legionella pneumophila JR32
Manually annotated by BRENDA team
Vincent, H.A.; Deutscher, M.P.
The roles of individual domains of RNase R in substrate binding and exoribonuclease activity. The nuclease domain is sufficient for digestion of structured RNA
J. Biol. Chem.
284
486-494
2009
Escherichia coli
Manually annotated by BRENDA team
Arraiano, C.M.; Barbas, A.; Amblar, M.
Characterizing ribonucleases in vitro examples of synergies between biochemical and structural analysis
Methods Enzymol.
447
131-160
2008
Escherichia coli, Escherichia coli SK4803
Manually annotated by BRENDA team
Lorentzen, E.; Basquin, J.; Tomecki, R.; Dziembowski, A.; Conti, E.
Structure of the active subunit of the yeast exosome core, Rrp44: diverse modes of substrate recruitment in the RNase II nuclease family
Mol. Cell
29
717-728
2008
Saccharomyces cerevisiae (Q08162), Saccharomyces cerevisiae
Manually annotated by BRENDA team
Domingues, S.; Matos, R.G.; Reis, F.P.; Fialho, A.M.; Barbas, A.; Arraiano, C.M.
Biochemical characterization of the RNase II family of exoribonucleases from the human pathogens Salmonella typhimurium and Streptococcus pneumoniae
Biochemistry
48
11848-11857
2009
Salmonella enterica subsp. enterica serovar Typhimurium, Streptococcus pneumoniae (C6GKN7)
Manually annotated by BRENDA team
Barbas, A.; Matos, R.G.; Amblar, M.; Lopez-Vinas, E.; Gomez-Puertas, P.; Arraiano, C.M.
Determination of key residues for catalysis and RNA cleavage specificity: one mutation turns RNase II into a "SUPER-ENZYME"
J. Biol. Chem.
284
20486-20498
2009
Escherichia coli (P30850), Escherichia coli
Manually annotated by BRENDA team
Garza-Sanchez, F.; Shoji, S.; Fredrick, K.; Hayes, C.S.
RNase II is important for A-site mRNA cleavage during ribosome pausing
Mol. Microbiol.
73
882-897
2009
Escherichia coli
Manually annotated by BRENDA team
Matos, R.G.; Barbas, A.; Arraiano, C.M.
Comparison of EMSA and SPR for the characterization of RNA-RNase II complexes
Protein J.
29
394-397
2010
Escherichia coli
Manually annotated by BRENDA team
Matos, R.G.; Barbas, A.; Gomez-Puertas, P.; Arraiano, C.M.
Swapping the domains of exoribonucleases RNase II and RNase R: conferring upon RNase II the ability to degrade ds RNA
Proteins
79
1853-1867
2011
Escherichia coli
Manually annotated by BRENDA team
Lu, F.; Taghbalout, A.
The Escherichia coli major exoribonuclease RNase II is a component of the RNA degradosome
Biosci. Rep.
34
e00166
2014
Escherichia coli (P30850), Escherichia coli
Manually annotated by BRENDA team
Lu, F.; Taghbalout, A.
Membrane association via an amino-terminal amphipathic helix is required for the cellular organization and function of RNase II
J. Biol. Chem.
288
7241-7251
2013
Escherichia coli (P30850), Escherichia coli
Manually annotated by BRENDA team
Germain, A.; Kim, S.H.; Gutierrez, R.; Stern, D.B.
Ribonuclease II preserves chloroplast RNA homeostasis by increasing mRNA decay rates, and cooperates with polynucleotide phosphorylase in 3 end maturation
Plant J.
72
96-971
2012
Arabidopsis thaliana (Q6NQJ6)
Manually annotated by BRENDA team
Matos, R.G.; Fialho, A.M.; Giloh, M.; Schuster, G.; Arraiano, C.M.
The rnb gene of Synechocystis PCC6803 encodes a RNA hydrolase displaying RNase II and not RNase R enzymatic properties
PLoS ONE
7
e32690
2012
Synechocystis sp.
Manually annotated by BRENDA team
Hsu, C.H.; Chang, C.F.; Liao, Y.D.; Wu, S.H.; Chen, C.
Solution structure and base specificity of cytotoxic RC-RNase 2 from Rana catesbeiana
Arch. Biochem. Biophys.
584
70-78
2015
Lithobates catesbeianus (A0A2G9RV63), Lithobates catesbeianus
Manually annotated by BRENDA team
Pobre, V.; Arraiano, C.
Next generation sequencing analysis reveals that the ribonucleases RNase II, RNase R and PNPase affect bacterial motility and biofilm formation in E. coli
BMC Genomics
16
72-83
2015
Escherichia coli (P21499), Escherichia coli (P30850), Escherichia coli
Manually annotated by BRENDA team
Rother, S.; Bartels, M.; Schweda, A.T.; Resch, K.; Pallua, N.; Nourbakhsh, M.
NF-kappaB-repressing factor phosphorylation regulates transcription elongation via its interactions with 5'->3' exoribonuclease 2 and negative elongation factor
FASEB J.
30
174-185
2016
Homo sapiens (Q9H0D6)
Manually annotated by BRENDA team
Reis, F.P.; Barria, C.; Gomez-Puertas, P.; Gomes, C.M.; Arraiano, C.M.
Identification of temperature-sensitive mutations and characterization of thermolabile RNase II variants
FEBS Lett.
593
352-360
2019
Escherichia coli (P30850), Escherichia coli SK5689 (P30850)
Manually annotated by BRENDA team
Song, L.; Wang, G.; Malhotra, A.; Deutscher, M.P.; Liang, W.
Reversible acetylation on Lys501 regulates the activity of RNase II
Nucleic Acids Res.
44
1979-1988
2016
Escherichia coli (P30850), Escherichia coli
Manually annotated by BRENDA team
Zhang, Q.; Scherf, A.
RNase II A new player enters the game
RNA Biol.
12
586-589
2015
Plasmodium falciparum
Manually annotated by BRENDA team