Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 3.1.1.23 - acylglycerol lipase and Organism(s) Homo sapiens and UniProt Accession Q99685

for references in articles please use BRENDA:EC3.1.1.23
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
     3 Hydrolases
         3.1 Acting on ester bonds
             3.1.1 Carboxylic-ester hydrolases
                3.1.1.23 acylglycerol lipase
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Homo sapiens
UNIPROT: Q99685 not found.
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Homo sapiens
The expected taxonomic range for this enzyme is: Eukaryota, Bacteria, Archaea
Reaction Schemes
Synonyms
monoacylglycerol lipase, monoglyceride lipase, mag lipase, rv0183, monoacylglycerol hydrolase, monoglyceride hydrolase, yju3p, mag hydrolase, acylglycerol lipase, mtbmgl, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
monoglyceride lipase
-
fatty acyl monoester lipase
-
-
-
-
monoacylglycerol hydrolase
-
-
-
-
monoacylglycerol lipase
monoglycerid lipase
-
-
monoglyceridase
-
-
-
-
monoglyceride hydrolase
-
-
-
-
monoglyceride lipase
monoglyceridyllipase
-
-
-
-
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
hydrolysis
-
hydrolysis of carboxylic ester
-
-
-
-
PATHWAY SOURCE
PATHWAYS
-
-, -
SYSTEMATIC NAME
IUBMB Comments
glycerol-ester acylhydrolase
-
CAS REGISTRY NUMBER
COMMENTARY hide
9040-75-9
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
1-arachidonoylglycerol + H2O
glycerol + arachidonic acid
show the reaction diagram
best substrate
-
-
?
1-decanoyl-rac-glycerol + H2O
glycerol + decanoic acid
show the reaction diagram
-
-
-
?
2-(15-deoxy-DELTA12,14-prostaglandin J2)-glycerol + H2O
?
show the reaction diagram
highest preference
-
-
?
2-arachidonoylglycerol + H2O
arachidonic acid + glycerol
show the reaction diagram
2-arachidonoylglycerol + H2O
arachidonoate + glycerol
show the reaction diagram
-
-
-
?
2-arachidonoylglycerol + H2O
glycerol + arachidonic acid
show the reaction diagram
2-oleoylglycerol + H2O
oleic acid + glycerol
show the reaction diagram
-
-
-
?
4-methylumbelliferyl butyrate + H2O
4-methylumbelliferol + butyrate
show the reaction diagram
-
-
-
?
4-nitrophenyl acetate + H2O
4-nitrophenol + acetate
show the reaction diagram
-
-
-
?
7-hydroxycoumarinyl arachidonate + H2O
7-hydroxycoumarin + arachidonate
show the reaction diagram
7-hydroxyresorufinyl arachidonate + H2O
7-hydroxyresorufin + arachidonate
show the reaction diagram
a red fluorogenic substrate, 7-HRA, that is stable in 10% DMSO for at least 36 h at room temperature and for at least 6 months at 4°C, synthesis, overview
-
-
?
arachidonoyl-7-hydroxy-6-methoxy-4-methylcoumarin ester + H2O
arachidonic acid + 7-hydroxy-6-methoxy-4-methylcoumarin
show the reaction diagram
-
-
-
?
prostaglandin D2-glycerol + H2O
?
show the reaction diagram
-
-
-
?
prostaglandin E2-glycerol + H2O
?
show the reaction diagram
-
-
-
?
prostaglandin F2alpha-glycerol + H2O
?
show the reaction diagram
-
-
-
?
umbelliferyl arachidonate + H2O
umbelliferol + arachidonic acid
show the reaction diagram
-
-
-
?
1,3-dihydroxypropan-2-yl 4-pyren-1-ylbutanoate + H2O
pyrenylbutanoic acid + glycerol
show the reaction diagram
-
-
-
-
?
1-arachidonoylglycerol + H2O
glycerol + arachidonic acid
show the reaction diagram
-
-
-
-
?
1-capryloyl-rac-glycerol + H2O
glycerol + caprylic acid
show the reaction diagram
-
-
-
-
?
1-decanoyl-rac-glycerol + H2O
glycerol + decanoic acid
show the reaction diagram
-
best substrate
-
-
?
1-lauroyl-rac-glycerol + H2O
glycerol + lauric acid
show the reaction diagram
-
-
-
-
?
1-linoleoylglycerol + H2O
glycerol + linoleic acid
show the reaction diagram
-
-
-
-
?
1-myristoyl-rac-glycerol + H2O
glycerol + myristic acid
show the reaction diagram
-
-
-
-
?
1-palmitoyl-2-lysophosphatidylcholine + H2O
palmitic acid + glycerophosphorylcholine
show the reaction diagram
-
-
-
-
?
2-(15-deoxy-DELTA12,14-prostaglandin J2)-glycerol + H2O
?
show the reaction diagram
-
-
-
-
?
2-arachidonoylglycerol + H2O
arachidonic acid + glycerol
show the reaction diagram
2-arachidonoylglycerol + H2O
glycerol + arachidonic acid
show the reaction diagram
-
-
-
-
?
2-linoleoylglycerol + H2O
glycerol + linoleic acid
show the reaction diagram
-
-
-
-
?
2-monoolein + H2O
?
show the reaction diagram
-
-
-
-
?
2-oleoylglycerol + H2O
glycerol + oleic acid
show the reaction diagram
-
-
-
-
?
2-oleoylglycerol + H2O
oleic acid + glycerol
show the reaction diagram
-
-
-
-
?
2-palmitoylglycerol + H2O
glycerol + palmitic acid
show the reaction diagram
-
-
-
-
?
4-nitrophenyl acetate + H2O
4-nitrophenol + acetate
show the reaction diagram
-
-
-
-
?
7-hydroxycoumarinyl arachidonate
arachidonic acid + 7-hydroxycoumarin
show the reaction diagram
-
-
-
-
?
arachidonoyl-7-hydroxy-6-methoxy-4-methylcoumarin ester + H2O
arachidonic acid + 7-hydroxy-6-methoxy-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
ethyl oleate + H2O
oleic acid + ethanol
show the reaction diagram
-
-
-
-
?
monooleoylglycerol + H2O
oleic acid + glycerol
show the reaction diagram
-
preferred substrate
-
-
?
prostaglandin D2-glycerol + H2O
?
show the reaction diagram
-
-
-
-
?
prostaglandin E2-glycerol + H2O
?
show the reaction diagram
-
-
-
-
?
sn-2-monoolein + H2O
glycerol + oleic acid
show the reaction diagram
-
-
-
-
?
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
1-arachidonoylglycerol + H2O
glycerol + arachidonic acid
show the reaction diagram
best substrate
-
-
?
2-arachidonoylglycerol + H2O
arachidonic acid + glycerol
show the reaction diagram
MGL modulates endocannabinoid signaling in vivo by inactivating 2-arachidonoylglycerol (2-AG), the main endogenous agonist for central CB1 and peripheral CB2 cannabinoid receptors
-
-
?
2-arachidonoylglycerol + H2O
glycerol + arachidonic acid
show the reaction diagram
arachidonoyl-7-hydroxy-6-methoxy-4-methylcoumarin ester + H2O
arachidonic acid + 7-hydroxy-6-methoxy-4-methylcoumarin
show the reaction diagram
-
-
-
?
2-arachidonoylglycerol + H2O
arachidonic acid + glycerol
show the reaction diagram
-
the enzyme is responsible for degradation of 2-arachidonoylglycerol in HeLa cells
-
-
?
additional information
?
-
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
(3R)-1-(3,4-dimethylphenyl)-5-oxo-N-[(4-oxo-3,4-dihydrophthalazin-1-yl)methyl]pyrrolidine-3-carboxamide
51.85% residual activity at 0.1 mM
(3R)-N-(3,5-dimethylphenyl)-1-[2-(5-fluoro-1H-indol-3-yl)ethyl]-5-oxopyrrolidine-3-carboxamide
18.61% residual activity at 0.1 mM
(3S)-N-(1,3-benzodioxol-4-ylmethyl)-1-[4-[(2-chlorobenzyl)oxy]phenyl]-5-oxopyrrolidine-3-carboxamide
51.09% residual activity at 0.1 mM
(4-(4-chlorobenzoyl)piperidin-1-yl)(4-methoxyphenyl)-methanone
-
(4-[4-chlorobenzoyl]piperidin-1-yl)(4-methoxyphenyl)-methanone
-
12-deacetylsplendidin C
poor inhibition
1H-benzotriazol-1-yl(4-benzylpiperazin-1-yl)methanone
-
1H-benzotriazol-1-yl[4-(4-bromobenzyl)piperazin-1-yl]methanone
-
1H-benzotriazol-1-yl[4-(4-nitrobenzyl)piperazin-1-yl]methanone
-
1H-benzotriazol-1-yl[4-(naphthalen-2-ylmethyl)piperazin-1-yl]methanone
-
1H-benzotriazol-1-yl[4-[(2E)-3-phenylprop-2-en-1-yl]piperazin-1-yl]methanone
-
2-(4-hydroxyphenyl)ethyl alpha-L-rhamnopyranosyl-(1->3)-[alpha-L-rhamnopyranosyl-(1->6)]-2-O-acetyl-4-O-(4-coumaroyl)-beta-D-glucopyranoside
-
2-(4-hydroxyphenyl)ethyl alpha-L-rhamnopyranosyl-(1->3)-[alpha-L-rhamnopyranosyl-(1->6)]-2-O-acetyl-4-O-beta-D-glucopyranoside
the inhibitor is selective for hMAGL over hLDH, modeling of the binding mode in the MAGL active site. The sugar moiety lies in the wide lipophilic cavity of the protein forming lipophilic interactions with L148, L213, L241, and V183, whereas the 4-hydroxyphenyl-ethyl ring lies into the small pocket of the binding site and forms lipophilic interactions with residues Y194 and V270. A high number of H-bonds stabilizes the binding disposition of the compound
2-(4-hydroxyphenyl)ethyl alpha-L-rhamnopyranosyl-(1->3)-[alpha-L-rhamnopyranosyl-(1->6)]-beta-D-glucopyranoside
-
2-(7-methoxy-2-oxo-2H-chromen-3-yl)-N-(2-methoxyphenyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-6-carboxamide
-
2-dehydroxysalvileucanthsin A
poor inhibition
3-[(4S)-1-[2-(5-fluoro-1H-indol-3-yl)ethyl]-2,5-dioxoimidazolidin-4-yl]-N-[(1R,2R)-2-methylcyclohexyl]propanamide
57.6% residual activity at 0.1 mM
5-[(biphenyl-4-yl)methyl]-N,N-dimethyl-2H-tetrazole-2-carboxamide
AM6701, conforms to the L shape of the binding site, contacts with the binding site are similar to those seen with the 2-arachidonoylglycerol docking pose. The close contacts with A164 and K165 are lost as the subpocket is not occupied. Instead the biphenyl moiety, which extends further up the binding pocket, makes additional contacts with A156, T157 and K160, thus AM6701 is a non-selective inhibitor
benzyl [4-(5-methoxy-2-oxo-1,3,4-oxadiazol-3(2H)-yl)-2-methylphenyl]carbamate
5.12% residual activity at 0.1 mM
brandioside
-
eriodictyol
-
jewenol A
reversible inhibitor, catalytic site binding structure, overview
JZL184
LY2183240
is less potent than JZL184
methyl arachidonyl fluorophosphonate
N-arachidonylmaleimide
Cys201 is the crucial residue in MAGL inhibition by N-arachidonylmaleimide
N-[3-(4-fluorophenyl)-6-oxopyrazolo[5,1-c]pyrido[4,3-e][1,2,4]triazin-7(6H)-yl]-2-(naphthalen-2-yloxy)acetamide
72.3% residual activity at 0.1 mM
N-[4-(1,3-benzothiazol-2-yl)phenyl]-2-(1H-benzotriazol-1-yl)acetamide
14.28% residual activity at 0.1 mM
oleanolic acid
-
pedalitin
-
phenylmethylsulfonyl fluoride
PMSF is able to produce an irreversible MAGL-PMSF adduct and hydrofluoric acid (HF), by specifically binding to the hydroxyl group of the serine residue in the active site of the serine protease, thereby inhibiting its enzymatic activity
pinoresinol 4-O-beta-D-glucopyranoside
-
Protocatechualdehyde
-
pseudorosmaricin
poor inhibition
[4-[bis(1,3-benzodioxol-5-yl)methyl]-1-piperidinyl](1H-1,2,4-triazol-1-yl)methanone
a highly potent selective inhibitor
(3S)-3-[1(R)-(biphenylacetyloxy)-ethyl]-azetidin-2-one
-
16% inhibition, with 0.1 mM of inhibitor, at 37°C for 10 min, in 10 mM Tris-HCl buffer, 1 mM EDTA, 0.1% (w/v) bovine serum albumin, pH 8.0
1-(3-phenylpropanoyl)-(3R,4R)-3-[1(R)-(3-phenylpropanoyloxy)-ethyl]-4-(acetoxy)-azetidin-2-one
-
100% inhibition, with 0.1 mM of inhibitor, at 37°C for 10 min, in 10 mM Tris-HCl buffer, 1 mM EDTA, 0.1% (w/v) bovine serum albumin, pH 8.0
1-(3-phenylpropanoyl)-(3R,4R)-3-[1(R)-(4-phenylbutanoyloxy)-ethyl]-4-(acetoxy)-azetidin-2-one
-
100% inhibition, with 0.1 mM of inhibitor, at 37°C for 10 min, in 10 mM Tris-HCl buffer, 1 mM EDTA, 0.1% (w/v) bovine serum albumin, pH 8.0
1-(3-phenylpropanoyl)-(3R,4R)-3-[1(R)-(biphenylacetyloxy)-ethyl]-4-(acetoxy)-azetidin-2-one
1-(3-phenylpropanoyl)-(3S)-3-[1(R)-(3-phenylpropanoyloxy)-ethyl]-azetidin-2-one
-
100% inhibition, with 0.1 mM of inhibitor, at 37°C for 10 min, in 10 mM Tris-HCl buffer, 1 mM EDTA, 0.1% (w/v) bovine serum albumin, pH 8.0
1-(3-phenylpropanoyl)-(3S)-3-[1(R)-(4-phenylbutanoyloxy)-ethyl]-azetidin-2-one
-
100% inhibition, with 0.1 mM of inhibitor, at 37°C for 10 min, in 10 mM Tris-HCl buffer, 1 mM EDTA, 0.1% (w/v) bovine serum albumin, pH 8.0
1-(3-phenylpropanoyl)-(3S)-3-[1(R)-(5-phenylpentanoyloxy)-ethyl]-azetidin-2-one
-
100% inhibition, with 0.1 mM of inhibitor, at 37°C for 10 min, in 10 mM Tris-HCl buffer, 1 mM EDTA, 0.1% (w/v) bovine serum albumin, pH 8.0
1-(3-phenylpropanoyl)-(3S)-3-[1(R)-(biphenylacetyloxy)-ethyl]-azetidin-2-one
-
31% inhibition, with 0.1 mM of inhibitor, at 37°C for 10 min, in 10 mM Tris-HCl buffer, 1 mM EDTA, 0.1% (w/v) bovine serum albumin, pH 8.0
1-(4-phenylbutanoyl)-(3R,4R)-3-[1(R)-(4-phenylbutanoyloxy)-ethyl]-4-(acetoxy)-azetidin-2-one
-
100% inhibition, with 0.1 mM of inhibitor, at 37°C for 10 min, in 10 mM Tris-HCl buffer, 1 mM EDTA, 0.1% (w/v) bovine serum albumin, pH 8.0
1-(4-phenylbutanoyl)-(3R,4R)-3-[1(R)-hydroxyethyl]-4-(acetoxy)-azetidin-2-one
-
61% inhibition, with 0.1 mM of inhibitor, at 37°C for 10 min, in 10 mM Tris-HCl buffer, 1 mM EDTA, 0.1% (w/v) bovine serum albumin, pH 8.0
1-(4-phenylbutanoyl)-(3S)-3-[1(R)-(3-phenylpropanoyloxy)-ethyl]-azetidin-2-one
-
54% inhibition, with 0.1 mM of inhibitor, at 37°C for 10 min, in 10 mM Tris-HCl buffer, 1 mM EDTA, 0.1% (w/v) bovine serum albumin, pH 8.0
1-(4-phenylbutanoyl)-(3S)-3-[1(R)-(4-phenylbutanoyloxy)-ethyl]-azetidin-2-one
-
100% inhibition, with 0.1 mM of inhibitor, at 37°C for 10 min, in 10 mM Tris-HCl buffer, 1 mM EDTA, 0.1% (w/v) bovine serum albumin, pH 8.0
1-(4-phenylbutanoyl)-(3S)-3-[1(R)-(5-phenylpentanoyloxy)-ethyl]-azetidin-2-one
-
59% inhibition, with 0.1 mM of inhibitor, at 37°C for 10 min, in 10 mM Tris-HCl buffer, 1 mM EDTA, 0.1% (w/v) bovine serum albumin, pH 8.0
1-(5-phenylpentanoyl)-(3S)-3-[1(R)-(4-phenylbutanoyloxy)-ethyl]-azetidin-2-one
-
39% inhibition, with 0.1 mM of inhibitor, at 37°C for 10 min, in 10 mM Tris-HCl buffer, 1 mM EDTA, 0.1% (w/v) bovine serum albumin, pH 8.0
1-(5-phenylpentanoyl)-(3S)-3-[1(R)-(biphenylacetyloxy)-ethyl]-azetidin-2-one
-
25% inhibition, with 0.1 mM of inhibitor, at 37°C for 10 min, in 10 mM Tris-HCl buffer, 1 mM EDTA, 0.1% (w/v) bovine serum albumin, pH 8.0
1-(hexa-5-enoyl)-(3S)-3-[1(R)-(4-phenylbutanoyloxy)-ethyl]-azetidin-2-one
-
85% inhibition, with 0.1 mM of inhibitor, at 37°C for 10 min, in 10 mM Tris-HCl buffer, 1 mM EDTA, 0.1% (w/v) bovine serum albumin, pH 8.0
1-(hexa-5-enoyl)-(3S)-3-[1(R)-(biphenylacetyloxy)-ethyl]-azetidin-2-one
-
67% inhibition, with 0.1 mM of inhibitor, at 37°C for 10 min, in 10 mM Tris-HCl buffer, 1 mM EDTA, 0.1% (w/v) bovine serum albumin, pH 8.0
1-(pent-4-enoyl)-(3R,4R)-3-[1(R)-(pent-4-enoyloxy)-ethyl]-4-(acetoxy)-azetidin-2-one
-
99% inhibition, with 0.1 mM of inhibitor, at 37°C for 10 min, in 10 mM Tris-HCl buffer, 1 mM EDTA, 0.1% (w/v) bovine serum albumin, pH 8.0
1-(pent-4-enoyl)-(3R,4R)-3-[1(R)-hydroxyethyl]-4-(acetoxy)-azetidin-2-one
1-(pent-4-enoyl)-(3S)-3-[1(R)-(4-phenylbutanoyloxy)-ethyl]-azetidin-2-one
-
89% inhibition, with 0.1 mM of inhibitor, at 37°C for 10 min, in 10 mM Tris-HCl buffer, 1 mM EDTA, 0.1% (w/v) bovine serum albumin, pH 8.0
1-(pent-4-enoyl)-(3S)-3-[1(R)-(biphenylacetyloxy)-ethyl]-azetidin-2-one
-
91% inhibition, with 0.1 mM of inhibitor, at 37°C for 10 min, in 10 mM Tris-HCl buffer, 1 mM EDTA, 0.1% (w/v) bovine serum albumin, pH 8.0
1-(pent-4-enoyl)-(3S)-3-[1(R)-(hexa-5-enoyloxy)-ethyl]-azetidin-2-one
-
8% inhibition, with 0.1 mM of inhibitor, at 37°C for 10 min, in 10 mM Tris-HCl buffer, 1 mM EDTA, 0.1% (w/v) bovine serum albumin, pH 8.0
1-(pent-4-enoyl)-(3S)-3-[1(R)-(pent-4-enoyloxy)-ethyl]-azetidin-2-one
-
99% inhibition, with 0.1 mM of inhibitor, at 37°C for 10 min, in 10 mM Tris-HCl buffer, 1 mM EDTA, 0.1% (w/v) bovine serum albumin, pH 8.0
1-(pent-4-enoyl)-(3S)-3-[1(R)-hydroxyethyl]-azetidin-2-one
-
89% inhibition, with 0.1 mM of inhibitor, at 37°C for 10 min, in 10 mM Tris-HCl buffer, 1 mM EDTA, 0.1% (w/v) bovine serum albumin, pH 8.0
15-deoxy-DELTA12,14-prostaglandin J2
-
-
2-arachidonoylglycerol
-
-
4-chloromercuribenzoic acid
-
-
4-nitrophenyl 4-[bis(1,3-benzodioxol-5-yl)hydroxymethyl]piperidine-1-carboxylate
-
JZL184
6-methyl-2-p-tolylamino-benzo[d] [1,3]oxazin-4-one
-
i.e. URB754
AM404
-
-
AM6580
-
irreversible inhibitor, i.e. [4-(9H-fluoren-9-yl)-piperazin-1-yl][1,2,3]triazolo[4,5-b]pyridin-1-ylmethanone
AM6701
AM6702
-
-
apolipoprotein A-1
-
-
-
arachidonoyltrifluoromethyl ketone
-
i.e. ATFMK
arachidonoyltrifluoromethylketone
-
-
benzylphenylcarbamate
-
-
biphenyl-3-yl-carbamic acid cyclohexyl ester
-
i.e. URB602
CAY 10415
-
-
CAY 10514
-
-
CAY10499
-
-
ciglitazone
-
-
CP55,940
-
-
Diethyl p-nitrophenyl phosphate
-
-
diisopropyl fluorophosphate
-
-
Disulfiram
isopropyldodecylfluorophosphonate
-
-
JJKK-048
-
i.e. 4-[bis-(benzo[d][1,3]dioxol-5-yl)methyl]-piperidin-1-yl}(1H-1,2,4-triazol-1-yl)methanone
JZL184
Mercury chloride
-
-
methyl (5Z,8Z,11Z,14Z)-icosa-5,8,11,14- tetraenylphosphonofluoridate
-
completely inhibits 4-nitophenyl acetate hydrolysis by pure human MGL at 0.1 mM
methyl arachidonyl fluorophosphonate
methylarachidonoylfluorophosphonate
-
-
N-arachidonoyl dopamine
-
-
N-arachidonoylmaleimide
N-arachidonyl maleimide
-
potent irreversible inhibitor of MAGL, inhibits in a dose-dependent manner
N-arachidonylmaleimide
-
-
N-benzoylthiocarbamic cyclohexylethyl ester
-
-
N-ethylmaleimide
-
-
NaCl
-
1 M, 63% loss of activity
phenylmethylsulfonyl fluoride
-
inhibits MGL only at very high concentrations
PMSF
-
-
pristimerin
-
-
rosiglitazone
-
-
SAR629
-
substrate mimic
tetrahydrolipstatin
-
-
troglitazone
-
-
URB602
[4-(5-methoxy-2-oxo-1,3,4-oxadiazol-3-yl)-2-methylphenyl]carbamic acid benzyl ester
-
CAY10499
additional information
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
bovine serum albumin
-
MAGL activity increases with increasing concentration up to 1%
-
additional information
-
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.02
1-decanoyl-rac-glycerol
at pH 7.4 and 37°C
0.0122
2-(15-deoxy-DELTA12,14-prostaglandin J2)-glycerol
at pH 7.4 and 37°C
0.0097 - 0.122
2-arachidonoylglycerol
0.084 - 0.162
4-Methylumbelliferyl butyrate
0.0088
arachidonoyl-7-hydroxy-6-methoxy-4-methylcoumarin ester
recombinant enzyme, in TME buffer, at 37°C
0.27
1(3)-monooleoylglycerol
-
-
0.01 - 0.016
2-(15-deoxy-DELTA12,14-prostaglandin J2)-glycerol
0.044
2-arachidonoylglycerol
-
pH and temperature not specified in the publication
0.2
4-nitrophenyl acetate
-
-
0.0098
7-hydroxycoumarinyl arachidonate
-
at pH 8 and 25°C, in 10% dimethyl sulfoxide
0.47
ethyl oleate
-
-
0.49
sn-2-monooleoylglycerol
-
-
additional information
additional information
-
TURNOVER NUMBER [1/s]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
11 - 570000
2-arachidonoylglycerol
0.45 - 1.17
4-Methylumbelliferyl butyrate
kcat/KM VALUE [1/mMs-1]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
917 - 1933700
2-arachidonoylglycerol
3.3 - 13.8
4-Methylumbelliferyl butyrate
1.5 - 1.7
umbelliferyl arachidonate
IC50 VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.1
(3R)-1-(3,4-dimethylphenyl)-5-oxo-N-[(4-oxo-3,4-dihydrophthalazin-1-yl)methyl]pyrrolidine-3-carboxamide
Homo sapiens
IC50 around 0.1 mM, pH and temperature not specified in the publication
0.000039
(3R)-N-(3,5-dimethylphenyl)-1-[2-(5-fluoro-1H-indol-3-yl)ethyl]-5-oxopyrrolidine-3-carboxamide
Homo sapiens
pH and temperature not specified in the publication
0.1
(3S)-N-(1,3-benzodioxol-4-ylmethyl)-1-[4-[(2-chlorobenzyl)oxy]phenyl]-5-oxopyrrolidine-3-carboxamide
Homo sapiens
IC50 around 0.1 mM, pH and temperature not specified in the publication
0.0117
(4-(4-chlorobenzoyl)piperidin-1-yl)(4-methoxyphenyl)-methanone
Homo sapiens
pH 7.2, temperature not specified in the publication
0.2
12-deacetylsplendidin C
Homo sapiens
above, pH 7.2, temperature not specified in the publication
0.1139
2-(4-hydroxyphenyl)ethyl alpha-L-rhamnopyranosyl-(1->3)-[alpha-L-rhamnopyranosyl-(1->6)]-2-O-acetyl-4-O-(4-coumaroyl)-beta-D-glucopyranoside
Homo sapiens
pH 7.4, temperature not specified in the publication
0.088
2-(4-hydroxyphenyl)ethyl alpha-L-rhamnopyranosyl-(1->3)-[alpha-L-rhamnopyranosyl-(1->6)]-2-O-acetyl-4-O-beta-D-glucopyranoside
Homo sapiens
pH 7.4, temperature not specified in the publication
0.1174
2-(4-hydroxyphenyl)ethyl alpha-L-rhamnopyranosyl-(1->3)-[alpha-L-rhamnopyranosyl-(1->6)]-beta-D-glucopyranoside
Homo sapiens
pH 7.4, temperature not specified in the publication
0.2
2-dehydroxysalvileucanthsin A
Homo sapiens
above, pH 7.2, temperature not specified in the publication
0.1
3-[(4S)-1-[2-(5-fluoro-1H-indol-3-yl)ethyl]-2,5-dioxoimidazolidin-4-yl]-N-[(1R,2R)-2-methylcyclohexyl]propanamide
Homo sapiens
IC50 above 0.1 mM, pH and temperature not specified in the publication
0.000424
benzyl [4-(5-methoxy-2-oxo-1,3,4-oxadiazol-3(2H)-yl)-2-methylphenyl]carbamate
Homo sapiens
pH and temperature not specified in the publication
0.0468
jewenol A
Homo sapiens
pH 7.2, temperature not specified in the publication
0.0002177
JZL184
Homo sapiens
pH 7.4, 22°C
0.0000054
methyl arachidonyl fluorophosphonate
Homo sapiens
pH 7.4, 22°C
5.38 - 6.64
N-arachidonylmaleimide
0.1
N-[3-(4-fluorophenyl)-6-oxopyrazolo[5,1-c]pyrido[4,3-e][1,2,4]triazin-7(6H)-yl]-2-(naphthalen-2-yloxy)acetamide
Homo sapiens
IC50 above 0.1 mM, pH and temperature not specified in the publication
0.00001
N-[4-(1,3-benzothiazol-2-yl)phenyl]-2-(1H-benzotriazol-1-yl)acetamide
Homo sapiens
pH and temperature not specified in the publication
0.0032 - 0.0033
phenylmethylsulfonyl fluoride
0.2
pseudorosmaricin
Homo sapiens
above, pH 7.2, temperature not specified in the publication
0.0091
URB602
Homo sapiens
pH 7.4, 22°C
0.0000002
[4-[bis(1,3-benzodioxol-5-yl)methyl]-1-piperidinyl](1H-1,2,4-triazol-1-yl)methanone
Homo sapiens
at pH 7.4 and 37°C
0.00851
1-(hexa-5-enoyl)-(3S)-3-[1(R)-(4-phenylbutanoyloxy)-ethyl]-azetidin-2-one
Homo sapiens
-
at 37°C for 10 min, in 10 mM Tris-HCl buffer, 1 mM EDTA, 0.1% (w/v) bovine serum albumin, pH 8.0
0.0146
1-(hexa-5-enoyl)-(3S)-3-[1(R)-(biphenylacetyloxy)-ethyl]-azetidin-2-one
Homo sapiens
-
at 37°C for 10 min, in 10 mM Tris-HCl buffer, 1 mM EDTA, 0.1% (w/v) bovine serum albumin, pH 8.0
0.133
1-(pent-4-enoyl)-(3R,4R)-3-[1(R)-(pent-4-enoyloxy)-ethyl]-4-(acetoxy)-azetidin-2-one
Homo sapiens
-
at 37°C for 10 min, in 10 mM Tris-HCl buffer, 1 mM EDTA, 0.1% (w/v) bovine serum albumin, pH 8.0
0.00406
1-(pent-4-enoyl)-(3S)-3-[1(R)-(4-phenylbutanoyloxy)-ethyl]-azetidin-2-one
Homo sapiens
-
at 37°C for 10 min, in 10 mM Tris-HCl buffer, 1 mM EDTA, 0.1% (w/v) bovine serum albumin, pH 8.0
0.00184
1-(pent-4-enoyl)-(3S)-3-[1(R)-(biphenylacetyloxy)-ethyl]-azetidin-2-one
Homo sapiens
-
at 37°C for 10 min, in 10 mM Tris-HCl buffer, 1 mM EDTA, 0.1% (w/v) bovine serum albumin, pH 8.0
0.00472
1-(pent-4-enoyl)-(3S)-3-[1(R)-(hexa-5-enoyloxy)-ethyl]-azetidin-2-one
Homo sapiens
-
at 37°C for 10 min, in 10 mM Tris-HCl buffer, 1 mM EDTA, 0.1% (w/v) bovine serum albumin, pH 8.0
0.0233
1-(pent-4-enoyl)-(3S)-3-[1(R)-(pent-4-enoyloxy)-ethyl]-azetidin-2-one
Homo sapiens
-
at 37°C for 10 min, in 10 mM Tris-HCl buffer, 1 mM EDTA, 0.1% (w/v) bovine serum albumin, pH 8.0
0.00021 - 0.0037
4-nitrophenyl 4-[bis(1,3-benzodioxol-5-yl)hydroxymethyl]piperidine-1-carboxylate
0.0031
AM404
Homo sapiens
-
pH and temperature not specified in the publication
0.0000009 - 0.0000017
AM6701
0.0001 - 0.0028
AM6702
0.00184
arachidonoyltrifluoromethylketone
Homo sapiens
-
-
0.0004 - 0.0005
CAY10499
0.0049
CP55,940
Homo sapiens
-
pH and temperature not specified in the publication
0.0008
Disulfiram
Homo sapiens
-
-
0.000076
methyl (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraen-1-ylphosphonofluoridate
Homo sapiens
-
-
0.000033 - 0.00016
methyl arachidonyl fluorophosphonate
0.00078
N-arachidonoyl dopamine
Homo sapiens
-
pH and temperature not specified in the publication
0.000155
N-arachidonyl maleimide
Homo sapiens
-
in 50 mM HEPES buffer, pH 8, 1 mM EDTA, and 10% dimethyl sulfoxide at 25°C for 60 min
0.0000091 - 0.0105
N-arachidonylmaleimide
0.005 - 0.02
N-benzoylthiocarbamic cyclohexylethyl ester
0.028
N-ethylmaleimide
Homo sapiens
-
-
0.00046
tetrahydrolipstatin
Homo sapiens
-
-
0.0011
troglitazone
Homo sapiens
-
pH and temperature not specified in the publication
0.0031
URB602
Homo sapiens
-
in 50 mM HEPES buffer, pH 8, 1 mM EDTA, and 10% dimethyl sulfoxide at 25°C for 60 min
0.00048 - 0.0011
[4-(5-methoxy-2-oxo-1,3,4-oxadiazol-3-yl)-2-methylphenyl]carbamic acid benzyl ester
additional information
additional information
Homo sapiens
-
-
-
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
8 - 9
assay at
7.4
-
assay at
8
-
assay at
pH RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
8 - 10
-
activity peak of 7-hydroxycoumarinyl-arachidonate hydrolysis by MAGL
TEMPERATURE OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
22
assay at room temperature
30
assay at
23
-
assay at
25
-
assay at
37
-
assay at
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
expression of macrophage MGLL is decreased in cancer tissues and positively correlated with the survival of cancer patients
Manually annotated by BRENDA team
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
evolution
malfunction
deficiency of monoacylglycerol lipase (MGLL) results in lipid overload in tumor-associated macrophages. MGLL deficiency promotes CB2/TLR4-dependent macrophage activation, which further suppresses the function of tumor-associated CD8+ T cells, and contributes to lipid accumulation. Treatment with CB2 antagonists delays tumor progression in inoculated and genetic cancer models
physiological function
malfunction
-
disruption of MAGL expression and activity impairs cancer pathogenicity. impairments in MAGL-dependent tumor growth are rescued by a high-fat diet, indicating that exogenous sources of fatty acids can contribute to malignancy in cancers lacking MAGL activity
physiological function
-
monoacylglycerol lipase (MAGL) regulates a fatty acid network that promotes cancer pathogenesis. MAGL, through hydrolysis of monoacylglycerols, controls free fatty acid levels in cancer cells
additional information
UNIPROT
ENTRY NAME
ORGANISM
NO. OF AA
NO. OF TRANSM. HELICES
MOLECULAR WEIGHT[Da]
SOURCE
SEQUENCE
LOCALIZATION PREDICTION?
MGLL_HUMAN
303
0
33261
Swiss-Prot
other Location (Reliability: 2)
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
33000
x * 33000, SDS-PAGE
35000
SDS-PAGE
33000
-
x * 33000, MAGL-His6 protein, SDS-PAGE
34120
-
calculated from amino acid sequence
34178
-
1 * 34178, calculated from amino acid sequence
35000
68000
-
gel filtration
70000
-
1 * 70000, SDS-PAGE
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
dimer
mass spectrometry
?
-
x * 33000, MAGL-His6 protein, SDS-PAGE
monomer
additional information
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
by the hanging drop method and under oil crystallization, native enzyme or selenomethionyl derivative, at 2.2 A resolution. Belongs to I222 space group, with two molecules per asymmetric unit. Docking of 2-arachidonoylglycerol highlights a hydrophobic and a hydrophilic cavity that accommodate the lipid into the catalytic site
in complex with methyl arachidonyl fluorophosphonate, hanging drop vapor diffusion method, using 6-10% (w/v) PEGMME 5000, 100 mM Na-MES pH 6.0, 0.2% (w/v) glucopyranoside, at 22°C
apoenzyme alone or in complex with inhibitor SAR629, in 50 mM MES (pH 6.0) and 40% (v/v) 2-methyl-pentane-2,4-diol, at 4°C
-
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
C201A
substantial decrease in the inhibitory potential
C201A/C208A/C242A
no significant inhibition by N-arachidonylmaleimide
C208A
increase in the inhibiting power of N-arachidonylmaleimide
C208A/C242A
increase in the inhibiting power of N-arachidonylmaleimide
C242A
very slight decrease in N-arachidonylmaleimide inhibitory potency
G111S
site-directed mutagenesis by overlap extension PCR, inactive mutant
G115S
site-directed mutagenesis by overlap extension PCR, inactive mutant
H103A
site-directed mutagenesis, the mutant shows 20fold reduced catalytic efficiency compared to wild-type
H269A
site-directed mutagenesis, structural comparison to the wild-type enzyme by NMR spectrometry
H272A
site-directed mutagenesis, the mutant shows 13fold reduced catalytic efficiency compared to wild-type
H272S
site-directed mutagenesis, the mutant shows 58fold reduced catalytic efficiency compared to wild-type
H272Y
site-directed mutagenesis, the muant shows 12fold reduced catalytic efficiency compared to wild-type
H49A
site-directed mutagenesis, the mutant shows 5fold reduced catalytic efficiency compared to wild-type
H54A
site-directed mutagenesis, structural comparison to the wild-type enzyme by NMR spectrometry, the mutant shows a dramatic 25000fold loss in hMGL catalytic efficiency compared to wild-type
L167Q/L171Q
the mutant shows increased catalytic efficiency with 4-methylumbelliferyl butyrate compared to the wild type enzyme
L167Q/L174Q
the mutant shows increased catalytic efficiency with 4-methylumbelliferyl butyrate compared to the wild type enzyme
L169S/L176S
L169S/L176S/K160A
the mutant shows reduced catalytic efficiency with 4-methylumbelliferyl butyrate compared to the wild type enzyme
L169S/L176S/K165A
the mutant shows reduced catalytic efficiency with 4-methylumbelliferyl butyrate compared to the wild type enzyme
L169S/L176S/K226A
the mutant shows reduced catalytic efficiency with 4-methylumbelliferyl butyrate compared to the wild type enzyme
L169S/L176S/K36A
the mutant shows about wild type catalytic efficiency with 4-methylumbelliferyl butyrate
L169S/L176S/K36A/K226A
the mutant shows reduced catalytic efficiency with 4-methylumbelliferyl butyrate compared to the wild type enzyme
L171Q
the mutant shows about wild type catalytic efficiency with 4-methylumbelliferyl butyrate
L171Q/L174Q
the mutant shows increased catalytic efficiency with 4-methylumbelliferyl butyrate compared to the wild type enzyme
S113A
site-directed mutagenesis by overlap extension PCR, inactive mutant
S122C
site-directed mutagenesis, structural comparison to the wild-type enzyme by NMR spectrometry
C201A
-
the mutation causes a significant reduction in overall activity particularly skewing the balanced hydrolysis of monoacyl glycerol isomers to favor the 2-isomer over the 1-isomer
C208A
C215A
-
the mutation does not affect MGL hydrolytic activity and displays heightened N-arachidonylmaleimide sensitivity
C215A/C249A
-
the mutation does not affect MGL hydrolytic activity
C242A
C249A
-
the mutation does not affect MGL hydrolytic activity and displays reduced N-arachidonylmaleimide sensitivity
D239T
-
the mutation substantially compromises enzyme activity
Y194A
-
the mutation causes a significant reduction in overall activity
Y194A/C242A
-
the mutation causes a significant reduction in overall activity
additional information
TEMPERATURE STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
58
the midpoint of the melting transition is calculated to be 58°C for wild type enzyme
45
-
15 min, more than 60% loss of activity
55
-
15 min, complete inactivation
ORGANIC SOLVENT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
Triton X-100
-
-
STORAGE STABILITY
ORGANISM
UNIPROT
LITERATURE
-80°C, 50 mM Tris buffer, 200 mM NaCl, 0.1% lauryl dimethylamine N-oxide, pH 9.5
4°C, 8 mM CHAPS, 5-7% loss of activity per day
-
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
by a combination of streptactin and ion metal affinity chromatography
His-Trap column chromatography and Superdex 200 gel filtration
immobilized metal affinity chromatography
recombinant MBP-tagged wild-type and mutant enzymes from Escherichia coli by amylose affinity chromatography
immobilized metal affinity column chromatography
-
MAGL-His6 protein purified on nickel-nitrilotriacetic acid column, more than 90% pure
-
Ni-Sepharose column chromatography and Superdex 75 gel filtration
-
recombinant His6-tagged and streptavidin-tagged enzyme from Escherichia coli to homogeneity by Strep-tag targeting afffinity chromatography and nickel affinity chromatography
-
Talon metal affinity resin chromatography
-
TALON metal affinity resin column chromatography
-
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
expressed in Escherichia coli BL21 (DE3) cells
expressed in Escherichia coli BL21 and Rosetta cells. Expression in the baculovirus expression system produced only insoluble, aggregated protein
gene MGLL, sequence comparisons and phylogenetic analysis and tree, recombinant expression of MBP-tagged wild-type and mutant enzymes in Escherichia coli
wild-type and mutants expressed in the Escherichia coli Rosetta strain
expressed in Escherichia coli
-
expressed in Escherichia coli BL21(DE3) cells
-
expressed in HEK-293 cells
-
functional overexpression of His6-tagged and streptavidin-tagged enzyme in Escherichia coli as soluble protein in the supernatant
-
functional overexpression of Rattus norvegicus brain enzyme in HeLa cells
-
into vector pColdII with a His6 tag at the N-terminus. Expression in Escherichia coli BL21 (DE3) competent cells
-
mutant enzymes are expressed in Escherichia coli BL21 (DE3) cells
-
EXPRESSION
ORGANISM
UNIPROT
LITERATURE
monoacylglycerol lipase is highly expressed in aggressive human cancer cells and primary tumors
-
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
diagnostics
enzyme MGLL in tumor-associated macrophages predicts the survival of colorectal cancer patients
drug development
medicine
drug development
-
the enzyme is a target for design of potent and selective inhibitors
pharmacology
-
the enzyme is a therapeutic target
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Somma-Delpero, C.; Valette, A.; Lepetit-Thevenin, J.; Nobili, O.; Boyer, J.; Verine, A.
Purification and properties of a monoacylglycerol lipase in human erythrocytes
Biochem. J.
312
519-525
1995
Homo sapiens
Manually annotated by BRENDA team
Dinh, T.P.; Kathuria, S.; Piomelli, D.
RNA interference suggests a primary role for monoacylglycerol lipase in the degradation of the endocannabinoid 2-arachidonoylglycerol
Mol. Pharmacol.
66
1260-1264
2004
Homo sapiens, Rattus norvegicus
Manually annotated by BRENDA team
Labar, G.; Bauvois, C.; Muccioli, G.G.; Wouters, J.; Lambert, D.M.
Disulfiram is an inhibitor of human purified monoacylglycerol lipase, the enzyme regulating 2-arachidonoylglycerol signaling
Chembiochem
8
1293-1297
2007
Homo sapiens
Manually annotated by BRENDA team
Chon, S.H.; Zhou, Y.X.; Dixon, J.L.; Storch, J.
Intestinal monoacylglycerol metabolism: developmental and nutritional regulation of monoacylglycerol lipase and monoacylglycerol acyltransferase
J. Biol. Chem.
282
33346-33357
2007
Homo sapiens, Mus musculus, Mus musculus C57BL/6
Manually annotated by BRENDA team
Saario, S.M.; Poso, A.; Juvonen, R.O.; Jaervinen, T.; Salo-Ahen, O.M.
Fatty acid amide hydrolase inhibitors from virtual screening of the endocannabinoid system
J. Med. Chem.
49
4650-4656
2006
Homo sapiens, Rattus norvegicus
Manually annotated by BRENDA team
Zvonok, N.; Pandarinathan, L.; Williams, J.; Johnston, M.; Karageorgos, I.; Janero, D.R.; Krishnan, S.C.; Makriyannis, A.
Covalent inhibitors of human monoacylglycerol lipase: ligand-assisted characterization of the catalytic site by mass spectrometry and mutational analysis
Chem. Biol.
15
854-862
2008
Homo sapiens
Manually annotated by BRENDA team
Muccioli, G.G.; Labar, G.; Lambert, D.M.
CAY10499, a novel monoglyceride lipase inhibitor evidenced by an expeditious MGL assay
ChemBioChem
9
2704-2710
2008
Homo sapiens
Manually annotated by BRENDA team
Zvonok, N.; Williams, J.; Johnston, M.; Pandarinathan, L.; Janero, D.R.; Li, J.; Krishnan, S.C.; Makriyannis, A.
Full mass spectrometric characterization of human monoacylglycerol lipase generated by large-scale expression and single-step purification
J. Proteome Res.
7
2158-2164
2008
Rattus norvegicus (Q8R431), Homo sapiens (Q99685), Homo sapiens
Manually annotated by BRENDA team
Holtfrerich, A.; Makharadze, T.; Lehr, M.
High-performance liquid chromatography assay with fluorescence detection for the evaluation of inhibitors against human recombinant monoacylglycerol lipase
Anal. Biochem.
399
218-224
2010
Homo sapiens, Mus musculus, Rattus norvegicus
Manually annotated by BRENDA team
Wang, Y.; Chanda, P.; Jones, P.G.; Kennedy, J.D.
A fluorescence-based assay for monoacylglycerol lipase compatible with inhibitor screening
Assay Drug Dev. Technol.
6
387-393
2008
Homo sapiens
Manually annotated by BRENDA team
Labar, G.; Bauvois, C.; Borel, F.; Ferrer, J.L.; Wouters, J.; Lambert, D.M.
Crystal structure of the human monoacylglycerol lipase, a key actor in endocannabinoid signaling
ChemBioChem
11
218-227
2010
Homo sapiens (Q99685), Homo sapiens
Manually annotated by BRENDA team
Vandevoorde, S.
Overview of the chemical families of fatty acid amide hydrolase and monoacylglycerol lipase inhibitors
Curr. Top. Med. Chem.
8
247-267
2008
Homo sapiens, Mus musculus, Rattus norvegicus
Manually annotated by BRENDA team
Bowman, A.L.; Makriyannis, A.
Refined homology model of monoacylglycerol lipase: toward a selective inhibitor
J. Comput. Aided Mol. Des.
23
799-806
2009
Homo sapiens (Q99685)
Manually annotated by BRENDA team
Feledziak, M.; Michaux, C.; Urbach, A.; Labar, G.; Muccioli, G.G.; Lambert, D.M.; Marchand-Brynaert, J.
beta-Lactams derived from a carbapenem chiron are selective inhibitors of human fatty acid amide hydrolase versus human monoacylglycerol lipase
J. Med. Chem.
52
7054-7068
2009
Homo sapiens
Manually annotated by BRENDA team
Bjoerklund, E.; Noren, E.; Nilsson, J.; Fowler, C.J.
Inhibition of monoacylglycerol lipase by troglitazone, N-arachidonoyl dopamine and the irreversible inhibitor JZL184: comparison of two different assays
Br. J. Pharmacol.
161
1512-1526
2010
Homo sapiens, Rattus norvegicus
Manually annotated by BRENDA team
Nomura, D.K.; Long, J.Z.; Niessen, S.; Hoover, H.S.; Ng, S.W.; Cravatt, B.F.
Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis
Cell
140
49-61
2010
Homo sapiens
Manually annotated by BRENDA team
Bertrand, T.; Auge, F.; Houtmann, J.; Rak, A.; Vallee, F.; Mikol, V.; Berne, P.; Michot, N.; Cheuret, D.; Hoornaert, C.; Mathieu, M.
Structural basis for human monoglyceride lipase inhibition
J. Mol. Biol.
396
663-673
2010
Homo sapiens
Manually annotated by BRENDA team
Karageorgos, I.; Tyukhtenko, S.; Zvonok, N.; Janero, D.R.; Sallum, C.; Makriyannis, A.
Identification by nuclear magnetic resonance spectroscopy of an active-site hydrogen-bond network in human monoacylglycerol lipase (hMGL): implications for hMGL dynamics, pharmacological inhibition, and catalytic mechanism
Mol. Biosyst.
6
1381-1388
2010
Homo sapiens
Manually annotated by BRENDA team
Schalk-Hihi, C.; Schubert, C.; Alexander, R.; Bayoumy, S.; Clemente, J.C.; Deckman, I.; DesJarlais, R.L.; Dzordzorme, K.C.; Flores, C.M.; Grasberger, B.; Kranz, J.K.; Lewandowski, F.; Liu, L.; Ma, H.; Maguire, D.; Macielag, M.J.; McDonnell, M.E.; Mezzasalma Haarlander, T.; Miller, R.; Milligan, C.; R, R.e.
Crystal structure of a soluble form of human monoglyceride lipase in complex with an inhibitor at 1.35 A resolution
Protein Sci.
20
670-683
2011
Homo sapiens (Q99685), Homo sapiens
Manually annotated by BRENDA team
Karageorgos, I.; Wales, T.E.; Janero, D.R.; Zvonok, N.; Vemuri, V.K.; Engen, J.R.; Makriyannis, A.
Active-site inhibitors modulate the dynamic properties of human monoacylglycerol lipase: a hydrogen exchange mass spectrometry study
Biochemistry
52
5016-5026
2013
Homo sapiens
Manually annotated by BRENDA team
Afzal, O.; Kumar, S.; Kumar, R.; Firoz, A.; Jaggi, M.; Bawa, S.
Docking based virtual screening and molecular dynamics study to identify potential monoacylglycerol lipase inhibitors
Bioorg. Med. Chem. Lett.
24
3986-3996
2014
Homo sapiens (Q99685), Homo sapiens
Manually annotated by BRENDA team
Li, C.; Vilches-Flores, A.; Zhao, M.; Amiel, S.A.; Jones, P.M.; Persaud, S.J.
Expression and function of monoacylglycerol lipase in mouse beta-cells and human islets of Langerhans
Cell. Physiol. Biochem.
30
347-358
2012
Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Laitinen, T.; Navia-Paldanius, D.; Rytilahti, R.; Marjamaa, J.J.; Ka?izkova, J.; Parkkari, T.; Pantsar, T.; Poso, A.; Laitinen, J.T.; Savinainen, J.R.
Mutation of Cys242 of human monoacylglycerol lipase disrupts balanced hydrolysis of 1- and 2-monoacylglycerols and selectively impairs inhibitor potency
Mol. Pharmacol.
85
510-519
2014
Homo sapiens
Manually annotated by BRENDA team
Savinainen, J.R.; Kansanen, E.; Pantsar, T.; Navia-Paldanius, D.; Parkkari, T.; Lehtonen, M.; Laitinen, T.; Nevalainen, T.; Poso, A.; Levonen, A.L.; Laitinen, J.T.
Robust hydrolysis of prostaglandin glycerol esters by human monoacylglycerol lipase (MAGL)
Mol. Pharmacol.
86
522-535
2014
Homo sapiens (Q99685), Homo sapiens
Manually annotated by BRENDA team
Chen, H.; Tian, R.; Ni, Z.; Zhang, Z.; Chen, H.; Guo, Q.; Saier, M.H.
Conformational transition pathway in the inhibitor binding process of human monoacylglycerol lipase
Protein J.
33
503-511
2014
Homo sapiens
Manually annotated by BRENDA team
Lauria, S.; Casati, S.; Ciuffreda, P.
Synthesis and characterization of a new fluorogenic substrate for monoacylglycerol lipase and application to inhibition studies
Anal. Bioanal. Chem.
407
8163-8167
2015
Homo sapiens (Q99685), Homo sapiens
Manually annotated by BRENDA team
Kim, R.; Suh, M.
The GxSxG motif of Arabidopsis monoacylglycerol lipase (MAGL6 and MAGL8) is essential for their enzyme activities
Appl. Biol. Chem.
59
833-840
2016
Arabidopsis thaliana (O49284), Arabidopsis thaliana (O80959), Arabidopsis thaliana (Q8H133), Homo sapiens (Q99685)
-
Manually annotated by BRENDA team
De Leo, M.; Huallpa, C.G.; Alvarado, B.; Granchi, C.; Poli, G.; De Tommasi, N.; Braca, A.
New diterpenes from Salvia pseudorosmarinus and their activity as inhibitors of monoacylglycerol lipase (MAGL)
Fitoterapia
130
251-258
2018
Homo sapiens (Q99685)
Manually annotated by BRENDA team
Tyukhtenko, S.; Karageorgos, I.; Rajarshi, G.; Zvonok, N.; Pavlopoulos, S.; Janero, D.R.; Makriyannis, A.
Specific inter-residue interactions as determinants of human monoacylglycerol lipase catalytic competency a role for global conformational chanages
J. Biol. Chem.
291
2556-2565
2016
Homo sapiens (Q99685), Homo sapiens
Manually annotated by BRENDA team
Xiang, W.; Shi, R.; Kang, X.; Zhang, X.; Chen, P.; Zhang, L.; Hou, A.; Wang, R.; Zhao, Y.; Zhao, K.; Liu, Y.; Ma, Y.; Luo, H.; Shang, S.; Zhang, J.; He, F.; Yu, S.; Gan, L.; Shi, C.; Li, Y.; Yang, W.; Liang, H.; Miao, H.
Monoacylglycerol lipase regulates cannabinoid receptor 2-dependent macrophage activation and cancer progression
Nat. Commun.
9
2574
2018
Mus musculus (O35678), Homo sapiens (Q99685), Homo sapiens
Manually annotated by BRENDA team
Beladjila, K.A.; Berrehal, D.; De Tommasi, N.; Granchi, C.; Bononi, G.; Braca, A.; De Leo, M.
New phenylethanoid glycosides from Cistanche phelypaea and their activity as inhibitors of monoacylglycerol lipase (MAGL)
Planta Med.
84
710-715
2018
Homo sapiens (Q99685)
Manually annotated by BRENDA team