Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 2.4.1.227 - undecaprenyldiphospho-muramoylpentapeptide beta-N-acetylglucosaminyltransferase and Organism(s) Escherichia coli and UniProt Accession P17443

for references in articles please use BRENDA:EC2.4.1.227
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
IUBMB Comments
The enzyme also works when the lysine residue is replaced by meso-2,6-diaminoheptanedioate (meso-2,6-diaminopimelate, A2pm) combined with adjacent residues through its L-centre, as it is in Gram-negative and some Gram-positive organisms. The undecaprenol involved is ditrans,octacis-undecaprenol (for definitions, {iupac/misc/prenol#p6::click here}).
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Escherichia coli
UNIPROT: P17443
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
The taxonomic range for the selected organisms is: Escherichia coli
The expected taxonomic range for this enzyme is: Bacteria, Eukaryota, Archaea
Synonyms
translocase ii, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
acetylglucosaminyltransferase, uridine diphosphoacetylglucosamine-acetylmuramoylpentapeptide pyrophospholipid
-
-
-
-
gene murG enzyme
-
-
-
-
gene murG proteins
-
-
-
-
Lipid I acetylglucosaminyltransferase
-
-
-
-
MurG glycosyltransferase
-
-
-
-
MurG transferase
peptidoglycan glycosyltransferase
-
-
proteins, gene murG
-
-
-
-
translocase II
-
-
UDP-acetylglucosamine-acetylmuramoylpentapeptide pyrophospholipid acetylglucosaminyltransferase
-
-
-
-
REACTION
REACTION DIAGRAM
COMMENTARY hide
ORGANISM
UNIPROT
LITERATURE
UDP-N-acetyl-alpha-D-glucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol = UDP + beta-D-GlcNAc-(1->4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
show the reaction diagram
MurG utilizes an ordered Bi Bi mechanism in which the donor binds first
-
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
transfer of alpha-N-acetylglucosamine
-
transfer of alpha-N-acetylglucosamine
PATHWAY SOURCE
PATHWAYS
-
-, -, -, -, -
SYSTEMATIC NAME
IUBMB Comments
UDP-N-acetyl-D-glucosamine:N-acetyl-alpha-D-muramyl(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol 4-beta-N-acetylglucosaminlytransferase
The enzyme also works when the lysine residue is replaced by meso-2,6-diaminoheptanedioate (meso-2,6-diaminopimelate, A2pm) combined with adjacent residues through its L-centre, as it is in Gram-negative and some Gram-positive organisms. The undecaprenol involved is ditrans,octacis-undecaprenol (for definitions, {iupac/misc/prenol#p6::click here}).
CAS REGISTRY NUMBER
COMMENTARY hide
60976-26-3
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
dUDP-N-acetyl-alpha-D-glucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
?
show the reaction diagram
-
-
-
?
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
UDP + GlcNAc-(1-4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
show the reaction diagram
-
-
-
?
UDP-N-acetylglucosamine + MurNAc(Neta-dansylpentapeptide)-diphosphoryl (R,S-alpha-dihydroheptaprenol)
?
show the reaction diagram
-
-
-
?
UDP-N-acetyl-alpha-D-glucosamine + biotinylated citronellyl-lipid I
?
show the reaction diagram
-
-
-
-
?
UDP-N-acetylglucosamine + biotin-labelled lipid I analogue
?
show the reaction diagram
-
-
-
-
?
UDP-N-acetylglucosamine + citronellyl-lipid I
UDP + N-acetylglucosamine-citronellyl-lipid I
show the reaction diagram
UDP-N-acetylglucosamine + lipid I
UDP + lipid II
show the reaction diagram
-
i.e. Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
i.e. N-acetylglucosamine-(1-4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
-
?
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphospho-(6E,10E,14Z)-2,6,10,14-tetramethyl-hexadeca-2,6,10,14-tetraene
UDP + GlcNAcbeta(1-4)Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphospho-(6E,10E,14Z)-2,6,10,14-tetramethyl-hexadeca-2,6,10,14-tetraene
show the reaction diagram
-
-
-
-
?
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphospho-(7S)-2,7-dimethyloct-2-ene
UDP + GlcNAcbeta(1-4)Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphospho-(7S)-2,7-dimethyloct-2-ene
show the reaction diagram
-
-
-
-
?
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphospho-p-nitrophenol
UDP + GlcNAcbeta(1-4)Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphospho-p-nitrophenol
show the reaction diagram
-
-
-
-
?
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphobutane
UDP + GlcNAcbeta(1-4)Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphobutane
show the reaction diagram
-
-
-
-
?
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphododecane
UDP + GlcNAcbeta(1-4)Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphododecane
show the reaction diagram
-
-
-
-
?
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoicosane
UDP + GlcNAcbeta(1-4)Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoicosane
show the reaction diagram
-
-
-
-
?
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphotetradecane
UDP + GlcNAcbeta(1-4)Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphotetradecane
show the reaction diagram
-
-
-
-
?
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
UDP + GlcNAc-(1-4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
show the reaction diagram
-
-
-
-
?
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
UDP + GlcNAc-(1->4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
show the reaction diagram
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
UDP + N-acetylglucosamine-(1-4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
show the reaction diagram
UDP-N-acetylglucosamine + MurNAc(Nepsilon-dansylpentapeptide)-pyrophosphoryl (R,S)-alpha-dihydrodecaprenol
UDP + N-acetylglucosamine-MurNAc(Nepsilon-dansylpentapeptide)-pyrophosphoryl (R,S)-alpha-dihydrodecaprenol
show the reaction diagram
-
very poor substrate
-
?
UDP-N-acetylglucosamine + MurNAc(Nepsilon-dansylpentapeptide)-pyrophosphoryl (R,S)-alpha-dihydroheptaprenol
UDP + N-acetylglucosamine-MurNAc(Nepsilon-dansylpentapeptide)-pyrophosphoryl (R,S)-alpha-dihydroheptaprenol
show the reaction diagram
-
-
-
r
UDP-N-acetylglucosamine + synthetic substrate analogue 2
?
show the reaction diagram
-
synthetic substrate analogue 2: a 10 carbon citronellyl derivative
-
-
?
UDP-N-acetylglucosamine + synthetic substrate analogue 7
?
show the reaction diagram
-
synthetic substrate analogue 7: a derivative containing a 20 carbon chain with a cis-allylic double bond
-
-
?
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
UDP + GlcNAc-(1-4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
show the reaction diagram
-
-
-
?
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
UDP + GlcNAc-(1-4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
show the reaction diagram
-
-
-
-
?
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
UDP + GlcNAc-(1->4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
show the reaction diagram
-
lipid I
lipid II
-
?
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
UDP + N-acetylglucosamine-(1-4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
show the reaction diagram
additional information
?
-
-
role of enzyme in peptidoglycan biosynthesis pathway
-
-
?
METALS and IONS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
Mg2+
-
activates
Mn2+
-
activating compound
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
(1R,3S,3aR,6aS)-3-((S)-1,2-dihydroxyethyl)-N-(2-((((2R,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl)amino)-2-oxoethyl)-1-methyl-4,6-dioxo-5-phenyloctahydropyrrolo[3,4-c]pyrrole-1-carboxamide
-
-
(1R,3S,3aR,6aS)-3-(2,3-dimethoxyphenyl)-N-[2-({[(2R,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methyl}amino)-2-oxoethyl]-1-methyl-4,6-dioxo-5-phenyloctahydropyrrolo[3,4-c]pyrrole-1-carboxamide
-
-
(1R,3S,3aR,6aS)-N-[2-({[(2R,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methyl}amino)-2-oxoethyl]-1-methyl-4,6-dioxo-3,5-diphenyloctahydropyrrolo[3,4-c]pyrrole-1-carboxamide
-
-
(1R,3S,3aR,6aS)-N-[2-({[(2R,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methyl}amino)-2-oxoethyl]-3-(2-methoxyphenyl)-1-methyl-4,6-dioxo-5-phenyloctahydropyrrolo[3,4-c]pyrrole-1-carboxamide
-
-
(1R,3S,3aR,6aS)-N-[2-({[(2R,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methyl}amino)-2-oxoethyl]-3-(2-methoxyphenyl)-2-methyl-4,6-dioxo-5-phenyloctahydropyrrolo[3,4-c]pyrrole-1-carboxamide
-
-
(2S)-N-{[(2R,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methyl}-1-{[(1R,3S,3aR,6aS)-3-(2-methoxyphenyl)-1-methyl-4,6-dioxo-5-phenyloctahydropyrrolo[3,4-c]pyrrol-1-yl]carbonyl}pyrrolidine-2-carboxamide
-
-
(2S)-N-{[(2R,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methyl}-1-{[(1R,3S,3aR,6aS)-5-ethyl-3-(2-methoxyphenyl)-1-methyl-4,6-dioxooctahydropyrrolo[3,4-c]pyrrol-1-yl]carbonyl}pyrrolidine-2-carboxamide
-
-
(5E)-5-[(4-tert-butylphenyl)methylidene]-3-[(4-methylpiperidin-1-yl)methyl]-2-sulfanylidene-1,3-thiazolidin-4-one
-
-
(5E)-5-[(5-bromofuran-2-yl)methylidene]-1-(4-chlorophenyl)-1,3-diazinane-2,4,6-trione
-
-
2-[(5Z)-5-(1-benzyl-5-bromo-2-oxo-1,2-dihydro-3H-indol-3-ylidene)-4-oxo-2-sulfanylidene-1,3-thiazolidin-3-yl]ethane-1-sulfonic acid
-
-
3-[[(3E)-3-[[5-(4-bromophenyl)furan-2-yl]methylidene]-2-oxo-5-phenyl-2,3-dihydro-1H-pyrrol-1-yl]methyl]benzoic acid
-
-
5'-({[(2R,3R,3aR,6aR)-3-carboxy-2-(2,3-dihydroxypropyl)-6a-methyl-4,6-dioxohexahydropyrrolo[3,4-b]pyrrol-5(1H)-yl]acetyl}amino)-5'-deoxyuridine
-
-
5'-({[(2S,3R,3aR,6aR)-3-carboxy-2-(2-methoxyphenyl)-6a-methyl-4,6-dioxohexahydropyrrolo[3,4-b]pyrrol-5(1H)-yl]acetyl}amino)-5'-deoxyuridine
-
-
5'-({[(2S,3R,3aS,6aR)-3-carboxy-2-(2,3-dimethoxyphenyl)-6a-methyl-4,6-dioxohexahydropyrrolo[3,4-b]pyrrol-5(1H)-yl]acetyl}amino)-5'-deoxyuridine
-
-
5'-({[(2S,3R,3aS,6aR)-3-carboxy-2-(2-methoxyphenyl)-6a-methyl-4,6-dioxohexahydropyrrolo[3,4-b]pyrrol-5(1H)-yl]acetyl}amino)-5'-deoxyuridine
-
-
5'-({[(2S,3R,3aS,6aR)-3-carboxy-2-(3,4-dimethoxyphenyl)-6a-methyl-4,6-dioxohexahydropyrrolo[3,4-b]pyrrol-5(1H)-yl]acetyl}amino)-5'-deoxyuridine
-
-
5'-({[(2S,3R,3aS,6aR)-3-carboxy-6a-methyl-4,6-dioxo-2-phenylhexahydropyrrolo[3,4-b]pyrrol-5(1H)-yl]acetyl}amino)-5'-deoxyuridine
-
-
5'-O-(3-{[(1R,3S,3aR,6aS)-3-(2-methoxyphenyl)-1-methyl-4,6-dioxo-5-phenyloctahydropyrrolo[3,4-c]pyrrol-1-yl]methoxy}-3-oxopropanoyl)uridine
-
-
5'-O-(4-{[(1R,3S,3aR,6aS)-3-(2-methoxyphenyl)-1-methyl-4,6-dioxo-5-phenyloctahydropyrrolo[3,4-c]pyrrol-1-yl]methoxy}-4-oxobutanoyl)uridine
-
-
5'-[(1-{[(2R,3R,4R,5S)-3,4-bis(methoxycarbonyl)-5-(2-methoxyphenyl)-2-methylpyrrolidin-2-yl]carbonyl}-L-prolyl)amino]-5'-deoxyuridine
-
-
5'-[(1-{[(2R,3S,4R,5S)-3,4-bis(methoxycarbonyl)-5-(2-methoxyphenyl)-2-methylpyrrolidin-2-yl]carbonyl}-L-prolyl)amino]-5'-deoxyuridine
-
-
5'-{[(3S,4R,5S)-3,4-bis(methoxycarbonyl)-5-(2-methoxyphenyl)-2-methyl-D-prolylglycyl]amino}-5'-deoxyuridine
-
-
5'-{[(3S5'-{[(3S,4R,5S)-3,4-bis(methoxycarbonyl)-2-methyl-5-phenyl-D-prolylglycyl]amino}-5'-deoxyuridine,4R,5S)-3,4-bis(methoxycarbonyl)-2-methyl-5-phenyl-D-prolylglycyl]amino}-5'-deoxyuridine
-
-
5-(3-[(E)-[1-(3-chlorophenyl)-2,4,6-trioxo-1,3-diazinan-5-ylidene]methyl]-2,5-dimethyl-1H-pyrrol-1-yl)benzene-1,3-dicarboxylic acid
-
-
5-([3-[2-(4-tert-butylphenoxy)ethoxy]phenyl]methylidene)-2-sulfanylidene-1,3-diazinane-4,6-dione
-
-
cephalosporin C
-
50% inhibition at 0.014 mg/ml
methanol
-
-
Moenomycin
-
50% inhibition at 0.0106 mM
N-p-chlorobiphenyl-vancomycin
-
50% inhibition at 0.00125 mM
NG-p-chlorobiphenyl-vancomycin
-
50% inhibition at 0.0214 mM
nisin
-
50% inhibition at 0.016 mg/ml
ramoplanin
trifluoroethanol
-
-
tunicamycin
Vancomycin
[(5E)-5-[(3-bromo-5-chloro-2-hydroxyphenyl)methylidene]-4-oxo-2-sulfanylidene-1,3-thiazolidin-3-yl]acetic acid
-
-
additional information
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
cardiolipin
-
the activity of MurG is increased in the presence of cardiolipin
dimethyl sulfoxide
-
-
DMSO
-
high concentration (35%) of dimethylsulfoxide is necessary for maximal enzyme activity
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
1.5
2'-dUDP-N-acetyl-alpha-D-glucosamine
-
0.0028 - 0.011
MurNAc(Neta-dansylpentapeptide)-diphosphoryl (R,S-alpha-dihydroheptaprenol)
0.053
synthetic substrate analogue 7
-
-
0.0098 - 1.03
UDP-GlcNAc
0.0028 - 0.037
biotin-labelled lipid I analogue
-
0.036 - 0.044
biotinylated citronellyl-lipid I
0.053
Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphospho-(6E,10E,14Z)-2,6,10,14-tetramethyl-hexadeca-2,6,10,14-tetraene
-
pH 7.9, 37°C
0.047
Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphospho-(7S)-2,7-dimethyloct-2-ene
-
pH 7.9, 37°C
0.024
Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphospho-p-nitrophenol
-
pH 7.9, 37°C
0.022
Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphobutane
-
pH 7.9, 37°C
0.029
Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphododecane
-
pH 7.9, 37°C
0.052
Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoicosane
-
pH 7.9, 37°C
0.039
Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphotetradecane
-
pH 7.9, 37°C
0.02
Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
-
pH 7.9, 37°C
0.0028
MurNAc(Nepsilon-dansylpentapeptide)-pyrophosphoryl (R,S)-alpha-dihydroheptaprenol
-
-
0.553
synthetic substrate analogue 2
-
10 carbon citronellyl derivative
-
0.053
synthetic substrate analogue 7
-
derivative containing a 20 carbon chain with a cis-allylic double bond
-
0.045 - 0.15
UDP-N-acetylglucosamine
additional information
additional information
-
continous fluorescence coupled enzyme assay method
-
TURNOVER NUMBER [1/s]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
14
synthetic substrate analogue 7
-
-
0.001 - 0.72
UDP-GlcNAc
0.123 - 0.317
biotinylated citronellyl-lipid I
0.933
MurNAc(Nepsilon-dansylpentapeptide)-pyrophosphoryl (R,S)-alpha-dihydroheptaprenol
-
-
2.23
synthetic substrate analogue 2
-
10 carbon citronellyl derivative
-
14
synthetic substrate analogue 7
-
derivative containing a 20 carbon chain with a cis-allylic double bond
-
0.27 - 0.93
UDP-N-acetylglucosamine
IC50 VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.0014
(5E)-5-[(4-tert-butylphenyl)methylidene]-3-[(4-methylpiperidin-1-yl)methyl]-2-sulfanylidene-1,3-thiazolidin-4-one
Escherichia coli
-
pH 7.9, temperature not specified in the publication
0.0064
(5E)-5-[(5-bromofuran-2-yl)methylidene]-1-(4-chlorophenyl)-1,3-diazinane-2,4,6-trione
Escherichia coli
-
pH 7.9, temperature not specified in the publication
0.0035
2-[(5Z)-5-(1-benzyl-5-bromo-2-oxo-1,2-dihydro-3H-indol-3-ylidene)-4-oxo-2-sulfanylidene-1,3-thiazolidin-3-yl]ethane-1-sulfonic acid
Escherichia coli
-
pH 7.9, temperature not specified in the publication
0.0054
3-[[(3E)-3-[[5-(4-bromophenyl)furan-2-yl]methylidene]-2-oxo-5-phenyl-2,3-dihydro-1H-pyrrol-1-yl]methyl]benzoic acid
Escherichia coli
-
pH 7.9, temperature not specified in the publication
0.0014
5-(3-[(E)-[1-(3-chlorophenyl)-2,4,6-trioxo-1,3-diazinan-5-ylidene]methyl]-2,5-dimethyl-1H-pyrrol-1-yl)benzene-1,3-dicarboxylic acid
Escherichia coli
-
pH 7.9, temperature not specified in the publication
0.004
5-([3-[2-(4-tert-butylphenoxy)ethoxy]phenyl]methylidene)-2-sulfanylidene-1,3-diazinane-4,6-dione
Escherichia coli
-
pH 7.9, temperature not specified in the publication
0.0034
[(5E)-5-[(3-bromo-5-chloro-2-hydroxyphenyl)methylidene]-4-oxo-2-sulfanylidene-1,3-thiazolidin-3-yl]acetic acid
Escherichia coli
-
pH 7.9, temperature not specified in the publication
SPECIFIC ACTIVITY [µmol/min/mg]
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
0.000019
mutant N127A
0.000063
mutant E268A
0.00026
mutant H18A
0.00028
mutant Q288A
0.00043
mutant E125A
0.00053
mutant T15A
0.00067
mutant H124A
0.0023
mutant R260A
0.0025
mutant S191A
0.0064
mutant N291A
0.0135
mutant N198A
0.071
mutant Y105A
0.37
wild type enzyme
0.000000096
-
thermosensitive murG mutant strain GS58, 40°C
0.000000336
-
thermosensitive murG mutant strain GS58, 30°C
0.0000016
-
parental strain, 30°C
0.000002
-
parental strain, 40°C
0.0000064
-
murG gene under the control of the lac promotor
0.0000141
-
-
additional information
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
7.5
MurG activity assay
8.3
-
Hepes buffer
pH RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
TEMPERATURE OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
37
MurG activity assay
37
-
enzyme assay
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
additional information
-
MurG becomes polarly localized when expressed at high cellular concentrations, only at levels that saturate MurGs cellular requirement for growth, the polar MurG is not active
-
Manually annotated by BRENDA team
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
metabolism
physiological function
additional information
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
43000
determined by SDS-PAGE
37640
-
calculated from the nucleotide sequence, gel filtration
37800
38000
76000
-
gel filtration
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
?
-
x * 38000, SDS-PAGE
dimer
-
2 * 38000, SDS-PAGE
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
hanging-drop vapor-diffusion method, X-ray structure
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
E125A
amino acid substitution for evaluation of its role in the active site of MurG
E268A
amino acid substitution for evaluation of its role in the active site of MurG
H124A
amino acid substitution for evaluation of its role in the active site of MurG
H18A
amino acid substitution for evaluation of its role in the active site of MurG
N127A
amino acid substitution for evaluation of its role in the active site of MurG
N134A
amino acid substitution for evaluation of its role in the active site of MurG
N198A
amino acid substitution for evaluation of its role in the active site of MurG
N291A
amino acid substitution for evaluation of its role in the active site of MurG
Q288A
amino acid substitution for evaluation of its role in the active site of MurG
R260A
amino acid substitution for evaluation of its role in the active site of MurG
S191A
amino acid substitution for evaluation of its role in the active site of MurG
T15A
amino acid substitution for evaluation of its role in the active site of MurG
Y105A
amino acid substitution for evaluation of its role in the active site of MurG
E268A
-
site-directed mutagenesis, in contrast to wild-type MurG, the MurG lipid interaction mutant often localizes to a single pole
L79E/F82E
-
site-directed mutagenesis, the mutant does not bind anionic phospholipids but can localize to the cell poles
GENERAL STABILITY
ORGANISM
UNIPROT
LITERATURE
additon of 20% glycerol required for storage at -20°C
-
STORAGE STABILITY
ORGANISM
UNIPROT
LITERATURE
4°C, stable for at least one month
-
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
using Ni2+-nitrilotriacetate-agarose
native MurG is extracted from inner membrane vesicles of Escherichia coli cells, His-tagged MurG is purified by Ni-affinity chromatography using His-bind resin
-
Ni2+ affinity column chromatography
-
overexpression in Escherichia coli with His-tag
-
recombinant His6-tagged enzyme from Escherichia coli strain C43 by nickel affinity chromatography
-
when overexpressed, enzyme copurifies with lipid vesicles deriving from intracellular vesicular mebranes
-
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
expressed in Escherichia coli cells BL21-DE3-pLysS
into the vector pQE60 for expression of MurG in Escherichia coli JM109 cells
expressed in Escherichia coli cells BL21-DE3-pLysS
-
gene murG, expression as His6-tagged enzyme in Escherichia coli strain C43
-
MurG can be displayed in its active form on phage. Cloned from a pET-21a expression vector (Novagen) into the pFAB5cHis.TT.HUI phagemid vector as a fusion to the 3’-end of a pelB leader sequence and the 5’-end of a truncated gIII
-
the coding sequence is amplified from the Escherichia coli K12 chromosome and cloned for expression of His-tagged MurG in JM109 cells
-
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
biotechnology
-
MurG is interesting to evaluate as a potential antibiotic target, as it has no counterpart in mammalian cells
drug development
-
MurG is a target for development of antibacterial agents
synthesis
-
overexpression of enzyme results in formation of vesicular intracellular membranes enriched in cardiolipin. Cardiolipin content of cell is about 7fold increased
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Mengin-Lecreulx, D.; Textier, L.; Rousseau, M.; van Heijenoort, J.
The murG gene of Escherichia coli codes for the UDP-N-acetylglucosamine:N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase involved in the membrane steps of peptidoglycan synthesis
J. Bacteriol.
173
4625-4636
1991
Escherichia coli
Manually annotated by BRENDA team
Ha, S.; Chang, E.; Lo, M.C.; Men, H.; Park, P.; Ge, M.; Walker, S.
The kinetik characterization of Escherichia coli MurG using synthetic substrate analogues
J. Am. Chem. Soc.
121
84158426
1999
Escherichia coli
-
Manually annotated by BRENDA team
Branstrom, A.A.; Midha, S.; Longley, C.B.; Han, K.; Baizman, E.R.; Axelrod, H.R.
Assay for identification of inhibitors for bacterial MraY translocase or MurG transferase
Anal. Biochem.
280
315-319
2000
Escherichia coli, Escherichia coli OV58-pUG18
Manually annotated by BRENDA team
Cudic, P.; Behenna, D.C.; Yu, M.K.; Kruger, R.G.; Szewczuk, L.M.; McCafferty, D.G.
Synthesis of P1-citronellyl-P2-alpha-D-pyranosyl pyrophosphates as potential substrates for the E. coli undecaprenyl-pyrophosphoryl-N-acetylglucoseaminyl transferase MurG
Bioorg. Med. chem. Lett.
11
3107-3110
2001
Escherichia coli
Manually annotated by BRENDA team
Men, H.; Park, P.; Walker, S.
Substrate synthesis and activity assay for MurG
J. Am. Chem. Soc.
120
2484-2485
1998
Escherichia coli
-
Manually annotated by BRENDA team
Ha, S.; Gross.B.; Walker, S.
E. coli MurG: A paradigm for a superfamily of glycosyltransferases
Curr. Drug Targets Infect. Disord.
1
201-213
2001
Escherichia coli
Manually annotated by BRENDA team
Chen, L.; Men, H.; Ha, S.; Ye, X.Y.; Brunner, L.; Hu, Y.; Walker, S.
Intrinsic lipid preferences and kinetic mechanism of Escherichia coli MuG
Biochemistry
41
6824-6833
2002
Escherichia coli
Manually annotated by BRENDA team
Hu, Y.; Chen, L.; Ha, S.; Gross, B.; Falcone, B.; Walker, D.; Mokhtarzadeh, M.; Walker, S.
Crystal structure of the MurG: UDP-GlcNAc complex reveals common structural principles of a superfamily of glycosyltransferases
Proc. Natl. Acad. Sci. USA
100
845-849
2003
Escherichia coli (P17443)
Manually annotated by BRENDA team
Auger, G.; van Heijenoort, J.; Mengin-Lecreulx, D.; Blanot, D.
A MurG assay which utilises a synthetic analogue of lipid I
FEMS Microbiol. Lett.
219
115-119
2003
Escherichia coli
Manually annotated by BRENDA team
Ravishankar, S.; Kumar, V.P.; Chandrakala, B.; Jha, R.K.; Solapure, S.M.; De Sousa, S.M.
Scintillation proximity assay for inhibitors of Escherichia coli MurG and, optionally, MraY
Antimicrob. Agents Chemother.
49
1410-1418
2005
Escherichia coli
Manually annotated by BRENDA team
Liu, H.; Ritter, T.K.; Sadamoto, R.; Sears, P.S.; Wu, M.; Wong, C.H.
Acceptor specificity and inhibition of the bacterial cell-wall glycosyltransferase MurG
Chembiochem
4
603-609
2003
Escherichia coli
Manually annotated by BRENDA team
van den Brink-van der Laan, E.; Boots, J.W.P.; Spelbrink, R.E.J.; Kool, G.M.; Breukink, E.; Killian, J.A.; de Kruijff, B.
Membrane interaction of the glycosyltransferase MurG: A special role for cardiolipin
J. Bacteriol.
185
3773-3779
2003
Escherichia coli
Manually annotated by BRENDA team
Love, K.R.; Swoboda, J.G.; Noren, C.J.; Walker, S.
Enabling glycosyltransferase evolution: a facile substrate-attachment strategy for phage-display enzyme evolution
Chembiochem
7
753-756
2006
Escherichia coli
Manually annotated by BRENDA team
Mohammadi, T.; Karczmarek, A.; Crouvoisier, M.; Bouhss, A.; Mengin-Lecreulx, D.; den Blaauwen, T.
The essential peptidoglycan glycosyltransferase MurG forms a complex with proteins involved in lateral envelope growth as well as with proteins involved in cell division in Escherichia coli
Mol. Microbiol.
65
1106-1121
2007
Escherichia coli
Manually annotated by BRENDA team
Crouvoisier, M.; Auger, G.; Blanot, D.; Mengin-Lecreulx, D.
Role of the amino acid invariants in the active site of MurG as evaluated by site-directed mutagenesis
Biochimie
89
1498-1508
2007
Escherichia coli (P17443)
Manually annotated by BRENDA team
Bouhss, A.; Trunkfield, A.; Bugg, T.; Mengin-Lecreulx, D.
The biosynthesis of peptidoglycan lipid-linked intermediates
FEMS Microbiol. Rev.
32
208-233
2008
Escherichia coli
Manually annotated by BRENDA team
Trunkfield, A.E.; Gurcha, S.S.; Besra, G.S.; Bugg, T.D.
Inhibition of Escherichia coli glycosyltransferase MurG and Mycobacterium tuberculosis Gal transferase by uridine-linked transition state mimics
Bioorg. Med. Chem.
18
2651-2663
2010
Escherichia coli
Manually annotated by BRENDA team
Michaelis, A.M.; Gitai, Z.
Dynamic polar sequestration of excess MurG may regulate enzymatic function
J. Bacteriol.
192
4597-4605
2010
Escherichia coli
Manually annotated by BRENDA team
Egan, A.J.; Biboy, J.; vant Veer, I.; Breukink, E.; Vollmer, W.
Activities and regulation of peptidoglycan synthases
Philos. Trans. R. Soc. Lond. B Biol. Sci.
370
20150031
2015
Escherichia coli, Micrococcus flavus
Manually annotated by BRENDA team
Nishimoto, M.
Large scale production of lacto-N-biose I, a building block of type I human milk oligosaccharides, using sugar phosphorylases
Biosci. Biotechnol. Biochem.
84
17-24
2020
Escherichia coli
Manually annotated by BRENDA team