Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 1.8.4.12 - peptide-methionine (R)-S-oxide reductase and Organism(s) Neisseria meningitidis serogroup A / serotype 4A and UniProt Accession Q9JWM8

for references in articles please use BRENDA:EC1.8.4.12
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
IUBMB Comments
The reaction occurs in the reverse direction to that shown above. The enzyme exhibits high specificity for reduction of the R-form of methionine S-oxide, with higher activity being observed with L-methionine S-oxide than with D-methionine S-oxide . While both free and protein-bound methionine (R)-S-oxide act as substrates, the activity with the peptide-bound form is far greater . The enzyme plays a role in preventing oxidative-stress damage caused by reactive oxygen species by reducing the oxidized form of methionine back to methionine and thereby reactivating peptides that had been damaged. In some species, e.g. Neisseria meningitidis, both this enzyme and EC 1.8.4.11, peptide-methionine (S)-S-oxide reductase, are found within the same protein whereas in other species, they are separate proteins [3,5]. The reaction proceeds via a sulfenic-acid intermediate [5,10]. For MsrB2 and MsrB3, thioredoxin is a poor reducing agent but thionein works well . The enzyme from some species contains selenocysteine and Zn2+.
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Neisseria meningitidis serogroup A / serotype 4A
UNIPROT: Q9JWM8
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The expected taxonomic range for this enzyme is: Bacteria, Eukaryota, Archaea
Synonyms
methionine sulfoxide reductase, msrb3, msrb1, msrb2, peptide methionine sulfoxide reductase, msra/b, msrab, cbs-1, methionine-r-sulfoxide reductase, methionine sulfoxide reductase b1, more
PATHWAY SOURCE
PATHWAYS
SYSTEMATIC NAME
IUBMB Comments
peptide-methionine:thioredoxin-disulfide S-oxidoreductase [methionine (R)-S-oxide-forming]
The reaction occurs in the reverse direction to that shown above. The enzyme exhibits high specificity for reduction of the R-form of methionine S-oxide, with higher activity being observed with L-methionine S-oxide than with D-methionine S-oxide [9]. While both free and protein-bound methionine (R)-S-oxide act as substrates, the activity with the peptide-bound form is far greater [10]. The enzyme plays a role in preventing oxidative-stress damage caused by reactive oxygen species by reducing the oxidized form of methionine back to methionine and thereby reactivating peptides that had been damaged. In some species, e.g. Neisseria meningitidis, both this enzyme and EC 1.8.4.11, peptide-methionine (S)-S-oxide reductase, are found within the same protein whereas in other species, they are separate proteins [3,5]. The reaction proceeds via a sulfenic-acid intermediate [5,10]. For MsrB2 and MsrB3, thioredoxin is a poor reducing agent but thionein works well [11]. The enzyme from some species contains selenocysteine and Zn2+.