Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 1.14.13.8 - flavin-containing monooxygenase and Organism(s) Homo sapiens and UniProt Accession P31513

for references in articles please use BRENDA:EC1.14.13.8
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
IUBMB Comments
A flavoprotein. A broad spectrum monooxygenase that accepts substrates as diverse as hydrazines, phosphines, boron-containing compounds, sulfides, selenides, iodide, as well as primary, secondary and tertiary amines [3,4]. This enzyme is distinct from other monooxygenases in that the enzyme forms a relatively stable hydroperoxy flavin intermediate [4,5]. This microsomal enzyme generally converts nucleophilic heteroatom-containing chemicals and drugs into harmless, readily excreted metabolites. For example, N-oxygenation is largely responsible for the detoxification of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) [2,6]
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Homo sapiens
UNIPROT: P31513
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Homo sapiens
The expected taxonomic range for this enzyme is: Eukaryota, Bacteria
Synonyms
fmo, flavin-containing monooxygenase, flavin monooxygenase, flavin-dependent monooxygenase, flavin-containing monooxygenase 3, fad-containing monooxygenase, flavoprotein monooxygenase, hfmo3, flavin-containing mono-oxygenase, flavin-containing monooxygenase 1, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
flavin containing monooxygenase 3
-
flavin-containing monooxygenase
-
flavin-containing monooxygenase 3
-
dimethylaniline monooxygenase (N-oxide-forming)
-
-
-
-
dimethylaniline monooxygenase [N-oxide-forming] 1
UniProt
dimethylaniline N-oxidase
-
-
-
-
dimethylaniline oxidase
-
-
-
-
DMA oxidase
-
-
-
-
FAD-containing monooxygenase
-
-
-
-
FAD-containing monooxygenase 3
-
-
flavin mono-oxygenase
-
-
flavin monooxygenase
-
-
-
-
flavin-containing monooxygenase
flavin-containing monooxygenase 1
flavin-containing monooxygenase 3
-
-
flavin-containing monooxygenase 5
-
flavin-containing monooxygenase-3
-
-
flavin-containing-monooxygenase
-
-
flavoprotein monooxygenase
-
-
FMO 1A1
-
-
-
-
FMO 1B1
-
-
-
-
FMO 1C1
-
-
-
-
FMO 1D1
-
-
-
-
FMO 1E1
-
-
-
-
FMO-I
-
-
-
-
FMO-II
-
-
-
-
hFMO3
-
-
mixed-function amine oxidase
-
-
-
-
N,N-dimethylaniline monooxygenase
-
-
-
-
oxygenase, dimethylaniline mono- (N-oxide-forming)
-
-
-
-
oxygenase, methylphenyltetrahydropyridine N-mono-
-
-
-
-
additional information
REACTION
REACTION DIAGRAM
COMMENTARY hide
ORGANISM
UNIPROT
LITERATURE
N,N-dimethylaniline + NADPH + H+ + O2 = N,N-dimethylaniline N-oxide + NADP+ + H2O
show the reaction diagram
catalytic cycle, reaction mechanism and structure-function relationship, overview
N,N-dimethylaniline + NADPH + H+ + O2 = N,N-dimethylaniline N-oxide + NADP+ + H2O
show the reaction diagram
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
redox reaction
-
-
-
-
oxidation
-
-
-
-
reduction
-
-
-
-
Baeyer-Villiger reaction
oxidation
PATHWAY SOURCE
PATHWAYS
-
-, -, -
SYSTEMATIC NAME
IUBMB Comments
N,N-dimethylaniline,NADPH:oxygen oxidoreductase (N-oxide-forming)
A flavoprotein. A broad spectrum monooxygenase that accepts substrates as diverse as hydrazines, phosphines, boron-containing compounds, sulfides, selenides, iodide, as well as primary, secondary and tertiary amines [3,4]. This enzyme is distinct from other monooxygenases in that the enzyme forms a relatively stable hydroperoxy flavin intermediate [4,5]. This microsomal enzyme generally converts nucleophilic heteroatom-containing chemicals and drugs into harmless, readily excreted metabolites. For example, N-oxygenation is largely responsible for the detoxification of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) [2,6]
CAS REGISTRY NUMBER
COMMENTARY hide
117910-56-2
-
148848-55-9
-
37256-46-5
-
37256-73-8
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
amphetamine + NADPH + H+ + O2
?
show the reaction diagram
benzydamine + NADPH + H+ + O2
benzydamine N-oxide + NADP+ + H2O
show the reaction diagram
chlorpromazine + NADPH + H+ + O2
chlorpromazine N-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
?
clomiphene + NADPH + H+ + O2
clomiphene N-oxide + NADP+ + H2O
show the reaction diagram
clomipramine + NADPH + H+ + O2
clomipramine N-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
?
clozapine + NADPH + H+ + O2
clozapine N-oxide + NADP+ + H2O
show the reaction diagram
dasatinib + NADPH + H+ + O2
dasatinib N-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
?
deprenyl + NADPH + H+ + O2
?
show the reaction diagram
ethionamide + NADPH + H+ + O2
?
show the reaction diagram
GSK5182 + NADPH + H+ + O2
GSK5182 N-oxide + NADP+ + H2O
show the reaction diagram
itopride + NADPH + H+ + O2
itopride N-oxide + NADP+ + H2O
show the reaction diagram
K11777 + NADPH + H+ + O2
K11777 N-oxide + NADP+ + H2O
show the reaction diagram
a cysteine protease inhibitor against Trypanosoma cruzi, is converted to the N-oxide
-
-
?
loxapine + NADPH + H+ + O2
loxapine N-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
?
methamphetamine + NADPH + H+ + O2
?
show the reaction diagram
methimazole + NADPH + H+ + O2
?
show the reaction diagram
a thyroperoxidase inhibitor, is converted to the S-oxide
-
-
?
MK-0767 methyl sulfide + NADPH + H+ + O2
?
show the reaction diagram
a peroxisome proliferator receptor activator, is converted to the S-oxide
-
-
?
N,N-dimethylaniline + NADPH + H+ + O2
N,N-dimethylaniline N-oxide + NADP+ + H2O
show the reaction diagram
N-deacetyl ketoconazole + NADPH + H+ + O2
?
show the reaction diagram
an antifungal agent, is converted to the N-hydroxyl
-
-
?
nicotine + NADPH + H+ + O2
nicotine N-oxide + NADP+ + H2O
show the reaction diagram
a stimulant, is converted to the trans-N-oxide
-
-
?
olopatadine + NADPH + H+ + O2
olopatadine N-oxide + NADP+ + H2O
show the reaction diagram
an antihistamininc drug, is converted to the N-oxide
-
-
?
pyrazolacridine + NADPH + H+ + O2
pyrazolacridine N-oxide + NADP+ + H2O
show the reaction diagram
an antitumor drug, is converted to the N-oxide
-
-
?
ranitidine + NADPH + H+ + O2
?
show the reaction diagram
an antihistamininc drug, is converted to the N-oxide and/or S-oxide
-
-
?
S-methyl esonarimod + NADPH + H+ + O2
?
show the reaction diagram
a cytokine production inhibitor, is converted to the S-oxide
-
-
?
S16020 + NADPH + H+ + O2
S16020 N-oxide + NADP+ + H2O
show the reaction diagram
a topoisomerase II inhibitor and antitumor drug, is converted to the N-oxide
-
-
?
sulindac sulfide + NADPH + H+ + O2
sulindac + NADP+ + H2O
show the reaction diagram
a nonsteroidal antiinflammatory drug, is converted to the S-oxide
-
-
?
sulindac sulfide + NADPH + H+ + O2
sulindac sulfide S-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
?
tamoxifen + NADPH + H+ + O2
tamoxifen N-oxide + NADP+ + H2O
show the reaction diagram
tazarotenic acid + NADPH + H+ + O2
?
show the reaction diagram
a retinoic acid receptor modulator, is converted to the S-oxide
-
-
?
thiacetazone + NADPH + H+ + O2
?
show the reaction diagram
tozasertib + NADPH + H+ + O2
tozasertib N-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
?
trimethylamine + NADPH + H+ + O2
trimethylamine N-oxide + NADP+ + H2O
show the reaction diagram
xanomeline + NADPH + H+ + O2
xanomeline N-oxide + NADP+ + H2O
show the reaction diagram
(R)-metamphetamine + NADPH + H+ + O2
(R)-metamphetamine N-oxide + NADP+ + H2O
show the reaction diagram
-
substrate of isoform FMO1
-
-
?
(S)-metamphetamine + NADPH + H+ + O2
(S)-metamphetamine N-oxide + NADP+ + H2O
show the reaction diagram
-
substrate of isoforms FMO1 and FMO3
-
-
?
(S)-nicotine + NADPH + H+ + O2
?
show the reaction diagram
-
-
-
-
?
(S)-nicotine + NADPH + O2
(S)-nicotine N1-oxide + NADP+ + H2O
show the reaction diagram
-
(S)-nicotine N-1'-oxygenation
-
-
?
10-(N,N-dimethylaminooctyl)2-(trifluoromethyl)phenothiazene + NADPH + H+ + O2
? + NADP+ + H2O
show the reaction diagram
-
-
-
?
10-(N,N-dimethylaminopentyl)-2-(trifluoromethyl)phenothiazine + NADPH + O2
?
show the reaction diagram
10-([N,N-dimethylaminopentyl]-2-trifluoromethyl)phenothiazine + NADPH + O2
?
show the reaction diagram
-
-
-
-
?
10-N-(n-octylamino)-2-(trifluoromethyl) phenothiazine + NADPH + O2
10-N-(n-octylamino)-2-(trifluoromethyl) phenothiazine N-oxide + NADP+ + H2O
show the reaction diagram
10-[(N,N-dimethylaminooctyl)-2-(trifluoromethyl)]phenothiazine + NADPH + H+ + O2
10-[(N,N-dimethylaminooctyl)-2-(trifluoromethyl)]phenothiazine N-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
-
?
10-[(N,N-dimethylaminopentyl)-2-(trifluoromethyl)]phenothiazine + NADPH + O2
?
show the reaction diagram
-
i.e. 5-DPT or diethylenetriaminepentaacetic acid
-
-
?
3-hydroxy-nabumetone + NADPH + H+ + O2
? + NADP+ + H2O
show the reaction diagram
activation reaction
-
-
?
4-aminobenzoic acid hydrazide + NADPH + O2
?
show the reaction diagram
-
-
-
?
5,6-dimethylxanthenone-4-acetic acid + NADPH + H+ + O2
?
show the reaction diagram
-
substrate of isoform FMO3, methyl hydroxylation
-
-
?
5-[[3-(dimethylamino)propyl]amino]-8-hydroxy-6H-[1,2,3]triazolo[4,5,1-de]acridin-6-one + NADPH + H+ + O2
5-[[3-(dimethylnitroryl)propyl]amino]-8-hydroxy-6H-[1,2,3]triazolo[4,5,1-de]acridin-6-one + NADP+ + H2O
show the reaction diagram
i.e. C-1305
-
-
?
5-[[3-(dimethylamino)propyl]amino]-8-methoxy-6H-[1,2,3]triazolo[4,5,1-de]acridin-6-one + NADPH + H+ + O2
5-[[3-(dimethylnitroryl)propyl]amino]-8-methoxy-6H-[1,2,3]triazolo[4,5,1-de]acridin-6-one + NADP+ + H2O
show the reaction diagram
9-hydroxy-5,6-dimethyl-N-(2-(dimethylamino)ethyl)-6H-pyrido(4,3-B)-carbazole-1-carboxamide + NADPH + H+ + O2
2-(9-hydroxy-5,6-dimethyl-6H-pyrido[4,3-b]carbazole-1-carboxamido)-N,N-dimethylethan-1-amine oxide + NADP+ + H2O
show the reaction diagram
-
substrate of isoform FMO3
-
-
?
albendazole + NADPH + H+ + O2
albendazole S-oxide + NADP+ + H2O
show the reaction diagram
-
substrate of isoform FMO3
-
-
?
almotriptan + NADPH + H+ + O2
almotriptan N-oxide + NADP+ + H2O
show the reaction diagram
-
substrate of isoform FMO3
-
-
?
ammonia + NADPH + H+ + O2
? + NADP+ + H2O
show the reaction diagram
-
-
-
-
?
amphetamine + NADPH + H+ + O2
amphetamine N-oxide + NADP+ + H2O
show the reaction diagram
-
substrate of isoform FMO3
-
-
?
amphetamine + NADPH + O2
amphetamine N-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
-
?
benzydamine + NADPH + H+ + O2
?
show the reaction diagram
-
i.e. 3-(1-benzyl-1H-indazol-3-yloxy)-N,N-dimethylpropan-1-amine
-
-
?
benzydamine + NADPH + H+ + O2
benzydamine N-oxide + NADP+ + H2O
show the reaction diagram
benzylamine + [reduced NADPH-hemoprotein reductase] + O2
benzylamine N-oxide + [oxidized NADPH-hemoprotein reductase] + H2O
show the reaction diagram
-
-
-
-
?
chlorpromazine + NADPH + H+ + O2
chlorpromazine N-oxide + NADP+ + H2O
show the reaction diagram
chlorpromazine + NADPH + O2
chlorpromazine N-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
-
?
cimetidine + NADPH + H+ + O2
cimetidine S-oxide + NADP+ + H2O
show the reaction diagram
cimetidine + NADPH + O2
cimetidine S-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
-
?
clomiphene + NADPH + H+ + O2
?
show the reaction diagram
-
i.e. 2-[4-[2-chloro-1,2-diphenylethenyl]phenoxy]-N,N-diethylethanamine
-
-
?
clozapine + NADPH + H+ + O2
?
show the reaction diagram
-
-
-
-
?
clozapine + NADPH + H+ + O2
clozapine N-oxide + NADP+ + H2O
show the reaction diagram
clozapine + NADPH + O2
?
show the reaction diagram
-
-
-
-
?
contezolid + NADPH + H+ + O2
contezolid N-oxide + NADP+ + H2O
show the reaction diagram
-
substrate of isoform FMO5
-
-
?
cysteamine + NADPH + H+ + O2
?
show the reaction diagram
-
-
-
-
?
cysteamine + NADPH + O2
cysteamine N-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
-
?
danusertib + NADPH + H+ + O2
danusertib N-oxide + NADP+ + H2O
show the reaction diagram
-
substrate of isoform FMO3
-
-
?
dapsone + NADPH + O2
?
show the reaction diagram
dasatinib + NADPH + H+ + O2
4-(6-((5-((2-chloro-6-methylphenyl)carbamoyl)thiazol-2-yl)amino)-2-methylpyrimidin-4-yl)-1-(2-hydroxyethyl)piperazine 1-oxide + NADP+ + H2O
show the reaction diagram
-
substrate of isoform FMO3
-
-
?
demeton-O + NADPH + O2
demeton-O sulfoxide + NADP+ + H2O
show the reaction diagram
deprenyl + NADPH + H+ + O2
?
show the reaction diagram
a monoamine oxidase type B inhibitor, is converted to the hydroxylamine
-
-
?
deprenyl + NADPH + H+ + O2
deprenyl N-oxide + NADP+ + H2O
show the reaction diagram
-
substrate of isoforms FMO1 and FMO3
-
-
?
disulfoton + NADPH + H+ + O2
?
show the reaction diagram
E-7016 + NADPH + H+ + O2
?
show the reaction diagram
-
substrate of isoform FMO5, Bayer Villiger oxidation
-
-
?
esonarimod + NADPH + H+ + O2
S-methyl esonarimod + NADP+ + H2O
show the reaction diagram
a antirheumatic drug, is converted to the S-oxide
-
-
?
ethiofencarb + NADPH + O2
ethiofencarb sulfoxide + NADP+ + H2O
show the reaction diagram
ethionamide + NADPH + H+ + O2
ethionamide N-oxide + NADP+ + H2O
show the reaction diagram
an antibiotic agent
-
-
?
ethionamide + NADPH + H+ + O2
ethionamide S-oxide + NADP+ + H2O
show the reaction diagram
ethionamide + NADPH + O2 + H+
2-ethyl-N-hydroxypyridine-4-carbothioamide + NADP+ + H2O
show the reaction diagram
ethylene thiourea + NADPH + H+ + O2
?
show the reaction diagram
-
-
-
-
?
ethylenethiourea + NADPH + O2
ethylenethiourea S-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
-
?
etionamide + NADPH + H+ + O2
etionamide S-oxide + NADP+ + H2O
show the reaction diagram
substrate of FMO1, FMO3, and FMO2.1
-
-
?
fenthion + NADPH + O2
fenthion sulfoxide + NADP+
show the reaction diagram
-
-
74% (+)-sulfoxide
-
?
fenthion + NADPH + O2
fenthion sulfoxide + NADP+ + H2O
show the reaction diagram
GSK5182 + NADPH + H+ + O2
(Z)-2-(4-(5-hydroxy-1-(4-hydroxyphenyl)-2-phenylpent-1-en-1-yl)phenoxy)-N,N-dimethylethan-1-amine oxide + NADP+ + H2O
show the reaction diagram
-
substrate of isoforms FMO1 and FMO3
-
-
?
hypotaurine + NADH + H+ + O2
taurine + NAD+ + H2O
show the reaction diagram
S-oxygenation
-
-
?
hypotaurine + NADPH + H+ + O2
taurine + NADP+ + H2O
show the reaction diagram
S-oxygenation
-
-
?
hypotaurine + O2 + NADH + H+
taurine + NAD+ + H2O
show the reaction diagram
-
-
-
?
hypotaurine + O2 + NADPH + H+
taurine + NADP+ + H2O
show the reaction diagram
-
-
-
?
imipramine + NADPH + H+ + O2
imipramine N-oxide + NADP+ + H2O
show the reaction diagram
imipramine + NADPH + O2
?
show the reaction diagram
-
-
-
-
?
imipramine + NADPH + O2
imipramine N-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
-
?
itopride + NADPH + H+ + O2
itopride N-oxide + NADP+ + H2O
show the reaction diagram
itopride + NADPH + O2
?
show the reaction diagram
-
-
-
-
?
K11777 + NADPH + H+ + O2
K11777 N-oxide + NADP+ + H2O
show the reaction diagram
-
substrate of isoform FMO3
-
-
?
L-775,606 + NADPH + H+ + O2
4-(3-(5-(4H-1,2,4-triazol-4-yl)-1H-indol-3-yl)propyl)-1-(3-fluorophenethyl)piperazine 1-oxide + NADP+ + H2O
show the reaction diagram
-
substrate of isoform FMO3
-
-
?
L-Met-Phe + NADPH + O2
(L-Met-S-oxide)-Phe + NADP+ + H2O
show the reaction diagram
-
isozymes FMO1-FMO4
-
-
?
L-Met-Val + NADPH + O2
(L-Met-S-oxide)-Val + NADP+ + H2O
show the reaction diagram
-
isozymes FMO1-FMO4, low activity by isozyme FMO1
-
-
?
L-methionine + NADPH + H+ + O2
?
show the reaction diagram
-
-
-
?
L-methionine + NADPH + H+ + O2
L-methionine S-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
-
?
L-methionine + NADPH + O2
L-methionine S-oxide + NADP+ + H2O
show the reaction diagram
lipoic acid + NADPH + O2
?
show the reaction diagram
-
-
-
-
?
lorcaserin + NADPH + H+ + O2
lorcaserin N-oxide + NADP+ + H2O
show the reaction diagram
-
substrate of isoform FMO1
-
-
?
loxapine + NADPH + H+ + O2
4-(2-chlorodibenzo[b,f][1,4]oxazepin-11-yl)-1-methylpiperazine 1-oxide + NADP+ + H2O
show the reaction diagram
-
substrate of isoform FMO3
-
-
?
mercaptoimidazole + NADPH + O2
mercaptoimidazole S-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
-
?
methamphetamine + NADPH + H+ + O2
methamphetamine N-oxide + NADP+ + H2O
show the reaction diagram
a psychostimulant, is converted to the hydroxylamine
-
-
?
methimazole + NADH + H+
?
show the reaction diagram
-
-
-
?
methimazole + NADPH + H+
?
show the reaction diagram
-
-
-
?
methimazole + NADPH + H+ + O2
?
show the reaction diagram
methimazole + NADPH + H+ + O2
methimazole N-oxide + NADP+ + H2O
show the reaction diagram
methimazole + NADPH + H+ + O2
methimazole S-oxide + NADP+ + H2O
show the reaction diagram
methimazole + NADPH + O2
?
show the reaction diagram
methimazole + NADPH + O2
N-methylmethimidazole-2-sulfinic acid + NADP+ + H2O
show the reaction diagram
methiocarb + NADPH + O2
methiocarb sulfoxide + NADP+ + H2O
show the reaction diagram
methyl 4-tolyl sulfide + NADPH + O2
methyl 4-tolyl sulfoxide + NADP+ + H2O
show the reaction diagram
-
-
-
-
?
methyl p-tolyl sulfide + NADPH + H+ + O2
?
show the reaction diagram
-
-
-
?
methyl p-tolyl sulfide + NADPH + O2
methyl p-tolyl sulfoxide + NADP+ + H2O
show the reaction diagram
-
-
-
-
?
methyl-4-tolyl sulfide + NADPH + H+ + O2
?
show the reaction diagram
-
-
-
-
?
methylmercaptan + NADPH + H+ + O2
? + NADP+ + H2O
show the reaction diagram
-
-
-
-
?
MK-0457 + NADPH + H+ + O2
MK-0457 N-oxide + NADP+ + H2O
show the reaction diagram
-
substrate of isoforms FMO1 and FMO3
-
-
?
MK-0767 methyl sulfide + NADPH + H+ + O2
?
show the reaction diagram
-
substrate of isoforms FMO1 and FMO3
-
-
?
moclobemide + NADPH + H+ + O2
moclobemide N-oxide + NADP+ + H2O
show the reaction diagram
-
substrate of isoform FMO3
-
-
?
N,N,N-trimethylamine + NADPH + H+ + O2
N,N,N-trimethylamine N-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
?
N,N-diallyltryptamine + NADPH + H+ + O2
N,N-diallyltryptamine N-oxide + NADP+ + H2O
show the reaction diagram
-
substrate of isoform FMO3
-
-
?
N,N-dimethylamphetamine + NADPH + H+ + O2
N,N-dimethylamphetamine N-oxide + NADP+ + H2O
show the reaction diagram
N-oxygenation mainly by isozyme FMO1, low activity with isozyme FMO3
-
-
?
N,N-dimethylaniline + NADH + H+ + O2
N,N-dimethylaniline N-oxide + NAD+ + H2O
show the reaction diagram
-
-
-
-
?
N,N-dimethylaniline + NADPH + H+ + O2
N,N-dimethylaniline N-oxide + NADP+ + H2O
show the reaction diagram
N,N-dimethylaniline + NADPH + O2
N,N-dimethylaniline N-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
-
?
N-(3R)-1-azabicyclo[2.2.2]oct-3-ylfuro[2,3-c]pyridine-5-carboxamide + NADPH + H+ + O2
(R)-3-(furo[2,3-c]pyridine-5-carboxamido)quinuclidine 1-oxide + NADP+ + H2O
show the reaction diagram
-
substrate of isoforms FMO1 and FMO3
-
-
?
N-deacetyl ketoconazole + NADPH + H+ + O2
N-deacetyl ketoconazole N-oxide + NADP+ + H2O
show the reaction diagram
N-methyl-tamoxifen + NADPH + O2
N-methyl-tamoxifen N-oxide + NADP+ + H2O
show the reaction diagram
-
recombinant isozymes FMO1 and FMO3
-
-
?
n-octylamine + NADPH + O2
1-nitrosooctane + NADP+ + H2O
show the reaction diagram
-
recombinant protein expressed in E. coli
-
-
?
naphthylthiourea + NADPH + O2
naphthylthiourea S-oxide + NADP+ + H2O
show the reaction diagram
-
isozyme FMO2
-
-
?
nicotine + NADPH + H+ + O2
(S)-nicotine N1-oxide + NADP+ + H2O
show the reaction diagram
-
substrate of isoform FMO3
-
-
?
nomifensine + NADPH + H+ + O2
?
show the reaction diagram
-
substrate of isoforms FMO3 and FMO5
-
-
?
NSC645809 + NADPH + H+ + O2
N,N-diethyl-2-((8-hydroxy-6-oxo-6H-imidazo[4,5,1-de]acridin-5-yl)amino)ethan-1-amine oxide + NADP+ + H2O
show the reaction diagram
-
substrate of isoforms FMO1 and FMO3
-
-
?
olanzapine + NADPH + H+ + O2
1-methyl-4-(2-methyl-10H-benzo[b]thieno[2,3-e][1,4]diazepin-4-yl)piperazine 1-oxide + NADP+ + H2O
show the reaction diagram
-
substrate of isoform FMO3
-
-
?
olopatadine + NADPH + H+ + O2
olopatadine N-oxide + NADP+ + H2O
show the reaction diagram
orphenadrine + NADPH + H+ + O2
orphenadrine N-oxide + NADP+ + H2O
show the reaction diagram
an anticholinergic drug
-
-
?
p-tolyl sulfide + NADPH + O2
p-tolyl sulfoxide + NADP+ + H2O
show the reaction diagram
-
S-oxidase activity
-
-
?
pargyline + NADPH + H+ + O2
pargyline N-oxide + NADP+ + H2O
show the reaction diagram
-
substrate of isoforms FMO1 and FMO3
-
-
?
phenethylamine + NADPH + O2
phenethylamine N-oxide + NADP+ + H2O
show the reaction diagram
-
isozyme FMO3
-
-
?
phenylthiourea + NADPH + O2
phenylthiourea S-oxide + NADP+ + H2O
show the reaction diagram
-
isozyme FMO2
-
-
?
phorate + NADPH + H+ + O2
?
show the reaction diagram
a thioether-containing organophosphate insecticide
-
-
?
phospho-sulindac + NADPH + H+ + O2
?
show the reaction diagram
-
substrate of isoforms FMO1, FMO3, and FMO5
-
-
?
primaquine + NADPH + H+ + O2
?
show the reaction diagram
-
substrate of isoform FMO3
-
-
?
pyrazolacridine + NADPH + H+ + O2
pyrazolacridine N-oxide + NADP+ + H2O
show the reaction diagram
-
substrate of isoform FMO3
-
-
?
pyrazoloacridine + NADPH + O2
pyrazoloacridine N-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
-
?
quazepam + NADPH + H+ + O2
7-chloro-5-(2-fluorophenyl)-1-(2,2,2-trifluoroethyl)-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one + NADP+ + H2O
show the reaction diagram
-
substrate of isoform FMO1
-
-
?
ranitidine + NADPH + H+ + O2
?
show the reaction diagram
-
substrate of isoforms FMO3 and FMO5, S-oxygenation and N-oxygenation
-
-
?
ranitidine + NADPH + O2
?
show the reaction diagram
-
-
-
-
?
S-allyl-L-cysteine + NADPH + H+ + O2
?
show the reaction diagram
-
-
-
?
S-methyl esonarimod + NADPH + H+ + O2
S-methyl esonarimod S-oxide + NADP+ + H2O
show the reaction diagram
S-methyl N,N-diethyldithiocarbamate + NADPH + H+ + O2
(diethylnitroryl)(methylsulfanyl)methanethione + NADP+ + H2O
show the reaction diagram
-
substrate of isoform FMO1 and FMO3
-
-
?
selegiline + NADPH + H+ + O2
?
show the reaction diagram
-
i.e. (2R)-N-methyl-1-phenyl-N-prop-2-ynylpropan-2-amine
-
-
?
selenomethionine + NADPH + H+ + O2
seleno-L-methionine Se-oxide + NADP+ + H2O
show the reaction diagram
-
substrate of isoform FMO3
-
-
?
SNI-2011 + NADPH + H+ + O2
?
show the reaction diagram
a muscarinic receptor antagonist, is converted to the N-oxide
-
-
?
SNI-2011 + NADPH + H+ + O2
SNI-2011 N-oxide + NADP+ + H2O
show the reaction diagram
-
substrate of isoform FMO1
-
-
?
sulfamethoxazole + NADPH + O2
?
show the reaction diagram
sulindac sulfide + NADPH + H+ + O2
?
show the reaction diagram
-
substrate of isoforms FMO1 and FMO3
-
-
?
sulindac sulfide + NADPH + H+ + O2
sulindac + NADP+ + H2O
show the reaction diagram
-
S-oxidation
-
-
?
sulindac sulfide + NADPH + O2
(S,R)-sulindac + NADP+ + H2O
show the reaction diagram
-
-
-
-
?
tamoxifen + NADPH + H+ + O2
?
show the reaction diagram
tamoxifen + NADPH + H+ + O2
tamoxifen N-oxide + NADP+ + H2O
show the reaction diagram
tamoxifen + NADPH + O2
tamoxifen N-oxide + NADP+ + H2O
show the reaction diagram
tazarotenic acid + NADPH + H+ + O2
tazarotenate N-oxide + NADP+ + H2O
show the reaction diagram
TG100435 + NADPH + H+ + O2
1-(2-(4-((7-(2,6-dichlorophenyl)-5-methylbenzo[e][1,2,4]triazin-3-yl)amino)phenoxy)ethyl)pyrrolidine 1-oxide + NADP+ + H2O
show the reaction diagram
-
substrate of isoform FMO3
-
-
?
TG100435 + NADPH + H+ + O2
?
show the reaction diagram
-
substrate of isoform FMO1
-
-
?
thiacetazone + 2 NADPH + 2 H+ + 2 O2
thiacetazone carbodiimide + 2 NADP+ + 2 H2O
show the reaction diagram
thiacetazone + NADPH + H+ + O2
?
show the reaction diagram
thiacetazone + NADPH + H+ + O2
thiacetazone N-oxide + NADP+ + H2O
show the reaction diagram
thiacetazone + NADPH + H+ + O2
thiacetazone S-oxide + NADP+ + H2O
show the reaction diagram
thiobenzamide + NADPH + H+ + O2
thiobenzamide N-oxide + NADP+ + H2O
show the reaction diagram
-
N-oxidation
-
-
?
thiourea + NADPH + O2
thiourea S-oxide + NADP+ + H2O
show the reaction diagram
-
isozyme FMO2
-
-
?
tozasertib + NADPH + H+ + O2
?
show the reaction diagram
triethylamine + NADPH + H+ + O2
triethylamine N-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
-
?
trifluoroperazine + NADPH + H+ + O2
2,3,4-trifluoropyridine 1-oxide + NADP+ + H2O
show the reaction diagram
-
substrate of isoform FMO3
-
-
?
trimethylamine + NADPH + H+ + O2
?
show the reaction diagram
-
-
-
-
?
trimethylamine + NADPH + H+ + O2
trimethylamine N-oxide + NADP+ + H2O
show the reaction diagram
trimethylamine + NADPH + O2
?
show the reaction diagram
-
-
-
-
?
trimethylamine + NADPH + O2
trimethylamine N-oxide + NADP+ + H2O
show the reaction diagram
tyramine + NADPH + O2
tyramine N-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
-
?
voriconazole + NADPH + H+ + O2
?
show the reaction diagram
xanomeline + NADPH + H+ + O2
xanomeline N-oxide + NADP+ + H2O
show the reaction diagram
[7-(2,6-dichloro-phenyl)-5-methyl-benzo[1,2,4]triazin-3-yl]-[4-(2-pyrrolidin-1-yl-ethoxy)-phenyl]-amine + NADPH + H+ + O2
[7-(2,6-dichlorophenyl)-5-methyl-benzo[1,2,4]triazin-3-yl]-(4-[2-(1-oxy-pyrrolidin-1-yl)-ethoxy]-phenyl)-amine + NADP+ + H2O
show the reaction diagram
-
i.e. TG100435, a multitargeted Src family kinase inhibitor with anticancer activity, FMO3 is the primary enzyme responsible for TG100855 formation, enzyme-mediated retroreduction of TG100855 back to TG100435 is observed catalyzed by a cytochrome P450 reductase, overview
i.e. TG100855, the N-oxide product is also a multitargeted Src family kinase inhibitor with anticancer activity
-
?
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
benzydamine + NADPH + H+ + O2
benzydamine N-oxide + NADP+ + H2O
show the reaction diagram
chlorpromazine + NADPH + H+ + O2
chlorpromazine N-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
?
clomiphene + NADPH + H+ + O2
clomiphene N-oxide + NADP+ + H2O
show the reaction diagram
clomiphene is used in infertility medication
-
-
?
clomipramine + NADPH + H+ + O2
clomipramine N-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
?
clozapine + NADPH + H+ + O2
clozapine N-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
?
dasatinib + NADPH + H+ + O2
dasatinib N-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
?
GSK5182 + NADPH + H+ + O2
GSK5182 N-oxide + NADP+ + H2O
show the reaction diagram
an antidiabetic lead molecule
-
-
?
itopride + NADPH + H+ + O2
itopride N-oxide + NADP+ + H2O
show the reaction diagram
loxapine + NADPH + H+ + O2
loxapine N-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
?
N,N-dimethylaniline + NADPH + H+ + O2
N,N-dimethylaniline N-oxide + NADP+ + H2O
show the reaction diagram
tamoxifen + NADPH + H+ + O2
tamoxifen N-oxide + NADP+ + H2O
show the reaction diagram
tozasertib + NADPH + H+ + O2
tozasertib N-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
?
trimethylamine + NADPH + H+ + O2
trimethylamine N-oxide + NADP+ + H2O
show the reaction diagram
xanomeline + NADPH + H+ + O2
xanomeline N-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
?
(S)-nicotine + NADPH + O2
(S)-nicotine N1-oxide + NADP+ + H2O
show the reaction diagram
-
(S)-nicotine N-1'-oxygenation
-
-
?
10-(N,N-dimethylaminopentyl)-2-(trifluoromethyl)phenothiazine + NADPH + O2
?
show the reaction diagram
-
-
-
-
?
10-N-(n-octylamino)-2-(trifluoromethyl) phenothiazine + NADPH + O2
10-N-(n-octylamino)-2-(trifluoromethyl) phenothiazine N-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
-
?
3-hydroxy-nabumetone + NADPH + H+ + O2
? + NADP+ + H2O
show the reaction diagram
activation reaction
-
-
?
4-aminobenzoic acid hydrazide + NADPH + O2
?
show the reaction diagram
-
-
-
?
amphetamine + NADPH + O2
amphetamine N-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
-
?
benzylamine + [reduced NADPH-hemoprotein reductase] + O2
benzylamine N-oxide + [oxidized NADPH-hemoprotein reductase] + H2O
show the reaction diagram
-
-
-
-
?
cimetidine + NADPH + O2
cimetidine S-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
-
?
clozapine + NADPH + O2
?
show the reaction diagram
-
-
-
-
?
cysteamine + NADPH + O2
cysteamine N-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
-
?
dapsone + NADPH + O2
?
show the reaction diagram
bioactivation by isozyme FMO3, not FMO1, results in covalent adduct formation
-
-
?
demeton-O + NADPH + O2
demeton-O sulfoxide + NADP+ + H2O
show the reaction diagram
-
-
-
-
?
ethiofencarb + NADPH + O2
ethiofencarb sulfoxide + NADP+ + H2O
show the reaction diagram
-
-
-
-
?
ethionamide + NADPH + H+ + O2
ethionamide S-oxide + NADP+ + H2O
show the reaction diagram
ethionamide is a pro-drug requiring bioactivation to exert toxicity
-
-
?
ethionamide + NADPH + O2 + H+
2-ethyl-N-hydroxypyridine-4-carbothioamide + NADP+ + H2O
show the reaction diagram
-
bioactivation by isozymes FMO1 and FMO3
-
-
?
fenthion + NADPH + O2
fenthion sulfoxide + NADP+ + H2O
show the reaction diagram
-
-
-
-
?
hypotaurine + NADH + H+ + O2
taurine + NAD+ + H2O
show the reaction diagram
S-oxygenation
-
-
?
hypotaurine + NADPH + H+ + O2
taurine + NADP+ + H2O
show the reaction diagram
S-oxygenation
-
-
?
imipramine + NADPH + O2
?
show the reaction diagram
-
-
-
-
?
itopride + NADPH + O2
?
show the reaction diagram
-
-
-
-
?
L-methionine + NADPH + O2
L-methionine S-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
-
?
lipoic acid + NADPH + O2
?
show the reaction diagram
-
-
-
-
?
methimazole + NADPH + O2
?
show the reaction diagram
methiocarb + NADPH + O2
methiocarb sulfoxide + NADP+ + H2O
show the reaction diagram
-
-
-
-
?
methyl 4-tolyl sulfide + NADPH + O2
methyl 4-tolyl sulfoxide + NADP+ + H2O
show the reaction diagram
-
-
-
-
?
N,N-dimethylamphetamine + NADPH + H+ + O2
N,N-dimethylamphetamine N-oxide + NADP+ + H2O
show the reaction diagram
N-oxygenation mainly by isozyme FMO1, low activity with isozyme FMO3
-
-
?
N,N-dimethylaniline + NADH + H+ + O2
N,N-dimethylaniline N-oxide + NAD+ + H2O
show the reaction diagram
-
-
-
-
?
N,N-dimethylaniline + NADPH + H+ + O2
N,N-dimethylaniline N-oxide + NADP+ + H2O
show the reaction diagram
N,N-dimethylaniline + NADPH + O2
N,N-dimethylaniline N-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
-
?
phenethylamine + NADPH + O2
phenethylamine N-oxide + NADP+ + H2O
show the reaction diagram
-
isozyme FMO3
-
-
?
ranitidine + NADPH + O2
?
show the reaction diagram
-
-
-
-
?
sulfamethoxazole + NADPH + O2
?
show the reaction diagram
bioactivation by isozyme FMO3, not FMO1, results in covalent adduct formation
-
-
?
sulindac sulfide + NADPH + O2
(S,R)-sulindac + NADP+ + H2O
show the reaction diagram
-
-
-
-
?
tamoxifen + NADPH + O2
tamoxifen N-oxide + NADP+ + H2O
show the reaction diagram
thiacetazone + 2 NADPH + 2 H+ + 2 O2
thiacetazone carbodiimide + 2 NADP+ + 2 H2O
show the reaction diagram
-
bioactivation by isozymes FMO1 and FMO3, two-step process
-
-
?
trimethylamine + NADPH + H+ + O2
trimethylamine N-oxide + NADP+ + H2O
show the reaction diagram
trimethylamine + NADPH + O2
trimethylamine N-oxide + NADP+ + H2O
show the reaction diagram
tyramine + NADPH + O2
tyramine N-oxide + NADP+ + H2O
show the reaction diagram
-
-
-
-
?
voriconazole + NADPH + H+ + O2
?
show the reaction diagram
-
liver microsomes, a potent second-generation triazole antifungal agent with broad-spectrum activity against clinically important fungi
-
-
?
[7-(2,6-dichloro-phenyl)-5-methyl-benzo[1,2,4]triazin-3-yl]-[4-(2-pyrrolidin-1-yl-ethoxy)-phenyl]-amine + NADPH + H+ + O2
[7-(2,6-dichlorophenyl)-5-methyl-benzo[1,2,4]triazin-3-yl]-(4-[2-(1-oxy-pyrrolidin-1-yl)-ethoxy]-phenyl)-amine + NADP+ + H2O
show the reaction diagram
-
i.e. TG100435, a multitargeted Src family kinase inhibitor with anticancer activity, FMO3 is the primary enzyme responsible for TG100855 formation, enzyme-mediated retroreduction of TG100855 back to TG100435 is observed catalyzed by a cytochrome P450 reductase, overview
i.e. TG100855, the N-oxide product is also a multitargeted Src family kinase inhibitor with anticancer activity
-
?
additional information
?
-
COFACTOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
NADPH
additional information
-
METALS and IONS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
Mg2+
-
-
MgCl2
activates activity of mutant N413K by 18%
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
1-aminobenzotriazole
3,3'-diindolylmethane
-
competitive inhibition of FMO3
alpha-naphthoflavone
-
-
Benzydamine
-
i.e. 3-(1-benzyl-1H-indazol-3-yloxy)-N,N-dimethylpropan-1-amine, 47% inhibition at 1 mM
clomiphene
-
i.e. 2-[4-[2-chloro-1,2-diphenylethenyl]phenoxy]-N,N-diethylethanamine, 60% inhibition at 0.05 mM
dimethyl sulfoxide
-
about 50% inhibition at 0.5 % (v/v)
imipramine
a FMO1-specific inhibitor, selectively inhibits N,N-dimethylamphetamine N-oxidation
indole-3-carbinol
ketoconazole
-
-
Methimazole
MgCl2
-
100 mM, 100% inhibition within 6 min
NO
-
overproduced NO in liver causes the suppression of FMO3 activity directly via reversible S-nitrosylation. Overproduced NO may be responsible, at least in part, for the impairment of the detoxification or metabolism by FMOs of xenobiotics, which include a number of therapeutic drugs
Phenylthiourea
-
-
selegiline
-
i.e. (2R)-N-methyl-1-phenyl-N-prop-2-ynylpropan-2-amine, 21% inhibition at 0.1 mM
sodium cholate
-
1%, time-dependent sensitivity, maximum 65-100% inhibition
tamoxifen
-
i.e. (Z)-2-[4-(1,2-diphenylbut-1-enyl)phenoxy]-N,N-dimethylethanamine, 55% inhibition at 1 mM
Thiourea
tozasertib
-
i.e. N-[4-[4-(4-methylpiperazin-1-yl)-6-[(5-methyl-1H-pyrazol-3-yl)amino]pyrimidin2yl]sulfanylphenyl]cyclopropane carboxamide, 41% inhibition at 0.1 mM
trimethylamine
a FMO3-specific inhibitor, exhibits anegligible effect on the N,N-dimethylamphetamine N-oxide formation
additional information
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
cholate
activates activity of mutant N413K by 23%
Triton X-100
-
FMO3 enzymes show a 2fold activation of kcat/Km in the presence of Triton X-100. MBP-FMO3 also shows disassociation from a high-order oligomeric form to a monomeric status in the presence of Triton X-100
additional information
-
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.0345 - 0.0659
Benzydamine
0.0183 - 0.0444
clomiphene
0.00457 - 0.0587
GSK5182
0.0101 - 0.0163
sulindac sulfide
0.00134 - 0.0081
tamoxifen
15 - 38
10-[(N,N-dimethylaminooctyl)-2-(trifluoromethyl)]phenothiazine
0.0229
5-[[3-(dimethylamino)propyl]amino]-8-hydroxy-6H-[1,2,3]triazolo[4,5,1-de]acridin-6-one
isozyme FMO1, in 0.1 M potassium phosphate buffer (pH 8.4) at 37°C
0.05903 - 0.4314
5-[[3-(dimethylamino)propyl]amino]-8-methoxy-6H-[1,2,3]triazolo[4,5,1-de]acridin-6-one
0.0426 - 0.056
Benzydamine
0.022 - 0.08
chlorpromazine
4.31 - 4.56
cimetidine
0.018
clomiphene
-
pH and temperature not specified in the publication
0.013 - 0.25
demeton-O
0.101 - 1.45
ethiofencarb
0.105 - 0.336
Ethionamide
0.0502 - 0.0761
ethylenethiourea
0.145 - 0.351
fenthion
0.0078 - 0.02
imipramine
6.5 - 10
L-methionine
0.018 - 0.046
mercaptoimidazole
0.007 - 0.5758
Methimazole
0.079
methiocarb
-
pH 9.0, isozyme FMO1
0.0048 - 0.3
methyl p-tolyl sulfide
0.0445 - 0.261
N,N-dimethylamphetamine
0.0068 - 0.132
NADPH
0.0871
p-tolyl sulfide
-
37°C
0.147
pyrazoloacridine
-
-
0.314
selegiline
-
pH and temperature not specified in the publication
0.0665 - 0.2071
sulindac
0.005 - 0.121
tamoxifen
0.0058 - 0.007
thiacetazone
0.023
tozasertib
-
pH and temperature not specified in the publication
0.0209 - 0.0373
trimethylamine
3 - 3.4
voriconazole
additional information
additional information
-
TURNOVER NUMBER [1/s]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.003 - 0.075
Benzydamine
0.0012 - 0.01
clomiphene
0.0193 - 0.095
GSK5182
0.0042 - 0.027
sulindac sulfide
0.0062 - 0.0272
tamoxifen
0.18 - 0.72
10-[(N,N-dimethylaminooctyl)-2-(trifluoromethyl)]phenothiazine
0.15
Benzydamine
-
pH and temperature not specified in the publication
0.0017
clomiphene
-
pH and temperature not specified in the publication
0.805 - 1.5
Ethionamide
0.036 - 0.05
ethylenethiourea
0.004 - 0.525
Methimazole
10 - 71.1
methyl p-tolyl sulfide
0.1 - 0.33
N-methyl-tamoxifen
15.2 - 94.4
NADPH
0.023
selegiline
-
pH and temperature not specified in the publication
0.003 - 0.068
sulindac
0.273 - 3.18
tamoxifen
0.023 - 1.335
thiacetazone
0.155
tozasertib
-
pH and temperature not specified in the publication
0.034 - 0.065
trimethylamine
kcat/KM VALUE [1/mMs-1]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.044 - 1.526
Benzydamine
0.151 - 0.946
clomiphene
2.935 - 4.22
GSK5182
0.278 - 2.13
sulindac sulfide
1.21 - 53.19
tamoxifen
0.005 - 0.027
10-[(N,N-dimethylaminooctyl)-2-(trifluoromethyl)]phenothiazine
0.0028 - 0.014
Ethionamide
0.0091 - 0.0469
Methimazole
0.0022 - 0.0149
methyl p-tolyl sulfide
0.00014 - 0.0144
NADPH
0.0033 - 0.238
thiacetazone
Ki VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.008 - 0.013
indole-3-carbinol
-
-
SPECIFIC ACTIVITY [µmol/min/mg]
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
0.0046 - 0.0073
-
recombinant wild-type and mutant His6-tagged MBT-fusion-FMO3s
additional information
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
7.4 - 9
8.3
-
assay at
8.8
-
imipramine N-oxidase activity
9 - 10
-
-
pH RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
6.5 - 10
-
isozyme FMO1, pH profile
7.4 - 8.4
the activity is approximately twice as high at pH 8.4 as at pH 7.4
7.5 - 10
-
isozyme FMO3, pH profile
7.5 - 9.5
-
7.6 - 9
-
pH 7.6: about 70% of maximal activity, pH 9.0: about 65% of maximal activity, p-tolyl sulfide S-oxidase activity
8.5 - 9.5
-
TEMPERATURE OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
25
assay at
3
-
assay at
pI VALUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
8.52
isoelectric focusing
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
-
-
Manually annotated by BRENDA team
-
recombinant enzymes expressed in insect cells
Manually annotated by BRENDA team
FMO1, expression profiling in tissue from patients with atrial fibrillation
Manually annotated by BRENDA team
-
-
Manually annotated by BRENDA team
reduced expression in amyotrophic lateral sclerosis
Manually annotated by BRENDA team
additional information
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
malfunction
metabolism
flavin-containing monooxygenase (FMO) 3 is a member of a family of NADPH-dependent enzymes that oxygenate a range of highly polarizable soft nucleophilic heteroatom-containing substances. Human liver FMO3 potentially forms a complementary enzyme system to the NADPH-dependent cytochrome P450 enzymes (P450s, EC 1.14.14.1) responsible for drug metabolism
physiological function
malfunction
metabolism
physiological function
additional information
UNIPROT
ENTRY NAME
ORGANISM
NO. OF AA
NO. OF TRANSM. HELICES
MOLECULAR WEIGHT[Da]
SOURCE
SEQUENCE
LOCALIZATION PREDICTION?
FMO3_HUMAN
532
1
60033
Swiss-Prot
other Location (Reliability: 3)
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
60047
x * 60047, sequence calcualtion
100000
-
x * 100000, recombinant MBP-FMO3 and MBP-FMO5, SDS-PAGE, x * 102000, about, MBP-FMO3, sequence calculation, x * 104000, about, MBP-FMO5, sequence calculation
102000
-
x * 100000, recombinant MBP-FMO3 and MBP-FMO5, SDS-PAGE, x * 102000, about, MBP-FMO3, sequence calculation, x * 104000, about, MBP-FMO5, sequence calculation
104000
-
x * 100000, recombinant MBP-FMO3 and MBP-FMO5, SDS-PAGE, x * 102000, about, MBP-FMO3, sequence calculation, x * 104000, about, MBP-FMO5, sequence calculation
60000
-
recombinant protein expressed in E. coli
63338
x * 63338, sequence calculation
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
additional information
POSTTRANSLATIONAL MODIFICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
glycoprotein
-
FMO1 is selectively N-glycosylated at Asn120, N-glycosylation is not essential for functional activity
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
A52T
naturally occuring mutation causing trimethylaminuria or fish-odor-syndrome
D132H
naturally occuring single nucleotide polymorphism of FMO3, the mutant shows substrate-dependent reduced activity
D198E
naturally occuring mutation causing trimethylaminuria or fish-odor-syndrome
E158K
E158K/E308G
E24D
naturally occuring single nucleotide polymorphism of FMO3, the mutant shows reduced activity
E305X
naturally occuring mutation causing trimethylaminuria or fish-odor-syndrome
E308G
E314X
naturally occuring mutation causing trimethylaminuria or fish-odor-syndrome
E32K
naturally occuring mutation causing trimethylaminuria or fish-odor-syndrome
E362Q
naturally occuring single nucleotide polymorphism of FMO3
G148X
naturally occuring mutation causing trimethylaminuria or fish-odor-syndrome
G180V
naturally occuring single nucleotide polymorphism of FMO3, the mutant is similar to the wild-type enzyme
G475D
naturally occuring mutation causing trimethylaminuria or fish-odor-syndrome
G503R
naturally occuring single nucleotide polymorphism of FMO3
I199T
naturally occuring mutation causing trimethylaminuria or fish-odor-syndrome
I37T
naturally occuring mutation causing trimethylaminuria or fish-odor-syndrome
I468M
naturally occuring single nucleotide polymorphism of FMO3
K416N
naturally occuring single nucleotide polymorphism of FMO3, the mutant shows reduced activity
L360P
M260V
naturally occuring single nucleotide polymorphism of FMO3
M434I
naturally occuring mutation causing trimethylaminuria or fish-odor-syndrome
M66I
naturally occuring mutation causing trimethylaminuria or fish-odor-syndrome
M82T
naturally occuring mutation causing trimethylaminuria or fish-odor-syndrome
N114S
naturally occuring mutation causing trimethylaminuria or fish-odor-syndrome
P153L
Q470X
naturally occuring mutation causing trimethylaminuria or fish-odor-syndrome
R205C
R223Q
naturally occuring mutation causing trimethylaminuria or fish-odor-syndrome
R238P
naturally occuring mutation causing trimethylaminuria or fish-odor-syndrome
R378L
naturally occuring mutation causing trimethylaminuria or fish-odor-syndrome
R500X
naturally occuring mutation causing trimethylaminuria or fish-odor-syndrome
R51G
naturally occuring mutation causing trimethylaminuria or fish-odor-syndrome
T201K
naturally occuring mutation causing trimethylaminuria or fish-odor-syndrome
V143E
naturally occuring mutation causing trimethylaminuria or fish-odor-syndrome
V257M
V277A
naturally occuring single nucleotide polymorphism of FMO3
V58I
naturally occuring mutation causing trimethylaminuria or fish-odor-syndrome
W388X
naturally occuring mutation causing trimethylaminuria or fish-odor-syndrome
C530L
naturally occuring single nucleotide polymorphism of FMO2
D132H
D227K
pKa value 7.3 for N-oxygenation of 10-(N,N-dimethylaminooctyl)2-(trifluoromethyl)phenothiazene, compared with 6.9 for wild-type
D36G
naturally occuring single nucleotide polymorphism of FMO2
down
-
FMO5 is downregulated in type II diabetes in liver. FMO1 downregulation and inhibition by 3,3'-diindolylmethane
E132H
-
natural genetic variant of isozyme FMO2, substrate specificity, overview
E132H/E158K
-
natural genetic variant of isozyme FMO2, substrate specificity, overview
E158K
E158K/E308G
E158K/T201K/E308G
-
naturally occuring genetic variant of isozyme FMO3, and site-directed mutagenesis, the mutant shows reduced activity with sulindac and methyl 4-toyl sulfide compared to the wild-type FMO3
E158K/V257M
-
the naturally occuring polymorphisms reduce the oxidation and clearance of FMO3 substrates such as tyramine, and TMA in vitro, and mutations are highly likely to eliminate the enzyme function in vivo
E24D
-
naturally occuring polymorphism of FMO3, frequency in different human populations, the mutation has an impact on protein structure, overview, the mutant shows altered substrate specificity compared to the wild-type mutant
E308G
E314G
naturally occuring single nucleotide polymorphism of FMO2
E339Q
naturally occuring single nucleotide polymorphism of FMO4
F182S
naturally occuring single nucleotide polymorphism of FMO2
F510X
-
natural genetic variant of isozyme FMO2, substrate specificity, overview
F69Y
naturally occuring single nucleotide polymorphism of FMO2
F81S
naturally occuring single nucleotide polymorphism of FMO2
G182E
pKa value 6.6 for N-oxygenation of 10-(N,N-dimethylaminooctyl)2-(trifluoromethyl)phenothiazene, compared with 6.9 for wild-type
H360P
-
site-directed mutagenesis of isozyme FMO1, the mutant shows altered thermal stability and highly increased activity with mercaptoimidazole and chlorpromazine compared to the wild-type FMO1
I303T
I303V
I37T
naturally occuring single nucleotide polymorphism of FMO4
K158L
-
Km-value for fenthion is 1.4fold higher than the wild-type value, Vmax for fenthion is nearly identical to the wild-type value, mutant of FMO3
K158L/D132H
-
Km-value for fenthion is 1.5fold higher than the wild-type value, Vmax for fenthion is 1.5fold higher than the wild-type value, mutant of FMO3
K416N
-
naturally occuring polymorphism of FMO3, frequency in different human populations, the mutation has an impact on protein structure, overview, the mutant shows altered substrate specificity compared to the wild-type mutant
L360A
-
site-directed mutagenesis of isozyme FMO3, the mutant shows altered thermal stability and reduced activity with mercaptoimidazole, chlorpromazine, and 10-[(N,N-dimethylaminopentyl)-2-(trifluoromethyl)]phenothiazine compared to the wild-type FMO3
L360H
-
site-directed mutagenesis of isozyme FMO3, the mutant shows altered thermal stability and reduced activity with mercaptoimidazole, chlorpromazine, and 10-[(N,N-dimethylaminopentyl)-2-(trifluoromethyl)]phenothiazine compared to the wild-type FMO3
L360P
L360Q
-
site-directed mutagenesis of isozyme FMO3, the mutant shows altered thermal stability and reduced activity with mercaptoimidazole, chlorpromazine, and 10-[(N,N-dimethylaminopentyl)-2-(trifluoromethyl)]phenothiazine compared to the wild-type FMO3
M66I
-
naturally occuring mutation involved in trimethylaminuria, the mutant fails to incorporate/retain the FAD cofactor
N413K
N61K
-
naturally occuring polymorphism of FMO3, frequency in different human populations, the mutation has an impact on protein structure, overview, the mutant shows altered substrate specificity compared to the wild-type mutant
N61S
-
naturally occuring mutation involved in trimethylaminuria, the mutant shows over 90% reduced activity with trimethylamine compared to the wild-type enzyme
P153L
-
naturally occuring mutation involved in trimethylaminuria, the mutant shows over 90% reduced activity with trimethylamine compared to the wild-type enzyme
P457L
naturally occuring single nucleotide polymorphism of FMO4
Q170K
pKa value 6.6 for N-oxygenation of 10-(N,N-dimethylaminooctyl)2-(trifluoromethyl)phenothiazene, compared with 6.9 for wild-type
Q206H
pKa value 6.5 for N-oxygenation of 10-(N,N-dimethylaminooctyl)2-(trifluoromethyl)phenothiazene, compared with 6.9 for wild-type
Q472X
R205C
-
naturally occuring genetic variant of isozyme FMO3, and site-directed mutagenesis, the mutant shows reduced activity with sulindac and methyl 4-toyl sulfide compared to the wild-type FMO3, and is almost substrate inhibited, wild-type FMO3 has no free cysteine residues in the native form
R223Q
naturally occuring single nucleotide polymorphism of FMO1
R238Q
naturally occuring single nucleotide polymorphism of FMO2
R249X
naturally occuring single nucleotide polymorphism of FMO2, probably inactive mutant
R391T
naturally occuring single nucleotide polymorphism of FMO2
R492W
-
naturally occuring mutation involved in trimethylaminuria, the mutant fails to incorporate/retain the FAD cofactor
R502V
-
no activity with methimazole, KM-value for methyl p-tolyl sulfide is 70% of the wild-type value, Vmax with methyl p-tolyl sulfide is 70% of the wild-type value, KM-value for imipramine is is nearly identical to the the wild-type value, Vmax with imipramine is 49% of the wild-type value, KM-value for fenthion is 88% of the wild-type value, Vmax with fenthion is 55% of wild-type value, mutant of FMO1
R502X
R506S
naturally occuring single nucleotide polymorphism of FMO4
S195L
T308S
naturally occuring single nucleotide polymorphism of FMO4
V257M
V257M/E308G
-
naturally occuring polymorphism, the substitutions do not affect enzyme activity in vitro
V257M/M260V
-
naturally occuring genetic variant of isozyme FMO3, and site-directed mutagenesis, the mutant shows reduced activity with sulindac and methyl 4-toyl sulfide compared to the wild-type FMO3
V323A
naturally occuring single nucleotide polymorphism of FMO4
Y228H
pKa value 7.9 for N-oxygenation of 10-(N,N-dimethylaminooctyl)2-(trifluoromethyl)phenothiazene, compared with 6.9 for wild-type
additional information
TEMPERATURE STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
46 - 50
differential scanning calorimetry (DSC) indicates that the thermal denaturation of the enzyme is irreversible in all cases. The melting temperature (Tm) for the wild-type enzyme and its polymorphic variants is in a range from 46°C to 50°C at pH 7.4. Calculation for the activation energy of unfolding is performed using a mathematical model, secondary structures of wild-type and mutant enzymes during heat inactivation, overview
40
-
in absence of NADPH, residue 360 is important for thermal stability, half-lives of wild-type and mutant isozymes FMO1 and FMO3, overview
45
-
the benzydamine N-oxygenation activity of the enzyme is reduced by approximately 70% by preheating at 45°C for 5 min. Benzydamine N-oxygenation is suppressed by 30% and 50% after preincubation of liver microsomes at 37°C for 5 and 10 min, respectively
50
-
the enzyme is unstable in absence of NADPH
60
90 s, inactivation of FMO in liver microsomes
additional information
GENERAL STABILITY
ORGANISM
UNIPROT
LITERATURE
NADPH stabilizes the enzyme
-
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
recombinant His-tagged wild-type and mutant enzymes from Escherichia coli strain JM109 by negative anionic exchange chromatography (the protein is not retained by the DEAE resin at pH 7.4) and nickel affinity chromatography, followed by ultrafiltration
recombinant His-tagged wild-type and mutant enzymes from Escherichia coli strain JM109 by nickel affinity chromatography and ultrafiltration
recombinant His-tagged wild-type and mutant full-length and truncated enzyme variants from Escherichia coli strain JM109 by anion exchange and nickel affinity chromatography followed by ultrafiltration
nickel affinity column chromatography
-
recombinant MBP-fusion FMO3 and FMO5 from Escherichia coli strain DH5alpha to about 90% purity by amylose affinity chromatography, and for FMO3 also further by anion exchange chromatography
-
recombinant protein
recombinant wild-type and mutant FMO3 from Escherichia coli strain JM109 in a multistep process
-
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
FMO3, DNA and amino acid sequence determination and analysis, genotyping
FMO3, DNA and amino acid sequence determination and analysis, the gene maps to the long arm of chromosome 1, phylogenetic analysis
FMO3, genotyping in relation to gender, age, race/ethnic, and FMO3 expression in response to administration of the anti-schizophrenia drug olanzapine
gene fMO3, DNA and amino acid sequence determination and analysis of wild-type and natural mutant enzymes, overview
gene FMO3, DNA and amino acid sequence determination and analysis, transient expression in Hep-G2 cells
gene FMO3, genes FMO1 to FMO4 are clustered on chromosome 1 at q24.3, along with a pseudogene FMO6P
gene FMO3, recombinant expression of C-terminally His-tagged wild-type and mutant enzymes in Escherichia coli
gene FMO3, recombinant expression of His-tagged wild-type and mutant enzymes in Escherichia coli strain JM109
recombinant expression of His-tagged wild-type and mutant enzymes in Escherichia coli strain JM109
recombinant expression of His-tagged wild-type and mutant full-length and truncated enzyme variants in Escherichia coli strain JM109
DNA and amino acid sequence determination and analysis of multiple samples of gene FMO3, expression of clones in Spodoptera frugiperda Sf9 insect cell microsomes via baculovirus transfection system, the FMO multigene family consists of a five-gene cluster at 1q24.3, comprising FMO1-4 and FMO6p, and a second cluster of five genes at 1q24.2, comprising FMO7p-11p, and a single gene, FMO5, at 1q21.1, encoding a total of five active proteins in humans
-
DNA sequence determination and analysis, and genotyping
expressed in Escherichia coli JM109 cells
-
expressed in Sf9 insect cell microsomes
-
expressed in Sf9 insect cells
expressed in Trichoplusia ni cells using a baculovirus expression vector system
expression as maltose-binding fusion proteins in Escherichia coli
expression of FMO1, FMO2.1, and FMO3 in Spodoptera frugiperda Sf9 cell microsomes
expression of FMO3 and FMO5 as N-terminal maltose-binding protein fusion proteins, MBP-FMOs, in Escherichia coli strain DH5alpha
-
expression of isozyme FMO genetic variants in Spodoptera frugiperda Sf9 insect cell microsomes via baculovirus transfection system
-
expression of isozymes FMO1-FMO5, optimized for heterologous expression, in Escherichia coli, isozymes FMO1-FMO4 are active with peptide-bound methionine, while FMO5 is inactive
-
expression of wild-type and mutant FMO3 in Escherichia coli strain JM109
-
expression of wild-type and mutant isozymes FMO1 and FMO3 as N-terminally maltose-binding-protein fusion and C-terminally His6-tagged proteins in Escherichia coli strain JM109
-
expression of wild-type enzyme and mutants M66I and R492W in Spodoptera frugiperda Sf9 cell membranes
-
five genes encoding isozymes FMO1-FMO5 and 1 pseudogene organized in a gene cluster
-
FMO isozyme expression patterns, expression analysis
FMO1, DNA and amino acid sequence determination and analysis, phylogenetic analysis
FMO2, DNA and amino acid sequence determination and analysis, sequence comparisons and phylogenetic analysis
FMO3 cDNA from liver, expression in Spodoptera frugiperda Sf9 insect cells
-
FMO4, DNA and amino acid sequence determination and analysis, phylogenetic analysis, the gene maps to the long arm of chromosome 1, genotyping and alternative splicing variants, overview
FMO5, the gene encoding the enzyme is located at 1q21.1, not in the FMO gene cluster at 1q24.3, DNA and amino acid sequence determination and analysis, phylogenetic analysis
gene FMO1, DNA and amino acid sequence determination and analysis, the gene contains five long interspersed nuclear element-1-like elements, i.e. LINE elements, expression analysis, silencing of FMO1 in adult human liver is due apparently to the presence upstream of the proximal P0 of LINE-1 elements rather than the absence of retrotransposons, expression in Hep-G2 cells
gene FMO1, genes FMO1 to FMO4 are clustered on chromosome 1 at q24.3, along with a pseudogene FMO6P
gene FMO2, genes FMO1 to FMO4 are clustered on chromosome 1 at q24.3, along with a pseudogene FMO6P
genes FMO1-FMO6, FMO6 is a pseudogene, the genes are organized in two clusters chromosome 1, one of which resides on the long arm of chromosome 1 at q23 –25, the second cluster is composed of 5 pseudogenes
-
independent expression of isozymes FMO1 and FMO3 in Spodoptera frugiperda Sf9 insect cell microsomes via baculovirus transfection system
missense mutations causing fish-odour syndrome
-
using a baculovuirus expression system in Sf-9 insect cells, dFMO1 is expressed to protein levels of 0.4 nM/mg
-
EXPRESSION
ORGANISM
UNIPROT
LITERATURE
FMO3 expression in response to administration of the anti-schizophrenia drug olanzapine, allele frequencies and phenotypes, overview
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
drug development
-
the enzyme is not affected by drugs in contrast to cytochrome P450 monooxygenases, EC 1.14.14.1, by incorporating FMO detoxication pathways into drug candidates, more drug-like materials may emerge
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Cashman, J.R.; Xiong, Y.; Lin, J.; Verhagen, H.; van Poppel, G.; van Bladeren, P.J.; Larsen-Su, S.; Williams, D.
In vitro and in vivo inhibition of human flavin-containing monooxygenase form 3 (FMO3) in the presence of dietary indoles
Biochem. Pharmacol.
58
1047-1055
1999
Homo sapiens
Manually annotated by BRENDA team
Overby, L.H.; Buckpitt, A.R.; Lawton, M.P.; Atta-Asafo-Adjei, E.; Schulze, J.; Philpot, R.M.
Characterization of flavin-containing monooxygenase 5 (FMO5) cloned from human and guinea pig: evidence that the unique catalytic properties of FMO5 are not confined to the rabbit ortholog
Arch. Biochem. Biophys.
317
275-284
1995
Cavia porcellus, Homo sapiens
Manually annotated by BRENDA team
Dolphin, C.T.; Janmohamed, A.; Smith, R.L.; Shephard, E.A.; Phillips, I.R.
Compound heterozygosity for missense mutations in the flavin-containing monooxygenase 3 (FMO3) gene in patients with fish-odour syndrome
Pharmacogenetics
10
799-807
2000
Homo sapiens
Manually annotated by BRENDA team
Adali, O.; Carver, G.C.; Philpot, R.M.
The effect of arginine-428 mutation on modulation of activity of human liver flavin monooxygenase 3 (FMO3) by imipramine and chlorpromazine
Exp. Toxicol. Pathol.
51
271-276
1999
Homo sapiens
Manually annotated by BRENDA team
Cashman, J.R.
Human flavin-containing monooxygenase: substrate specificity and role in drug metabolism
Curr. Drug Metab.
1
181-191
2000
Homo sapiens
Manually annotated by BRENDA team
Overby, L.H.; Carver, G.C.; Philpot, R.M.
Quantitation and kinetic properties of hepatic microsomal and recombinant flavin-containing monooxygenases 3 and 5 from humans
Chem. Biol. Interact.
106
29-45
1997
Homo sapiens
Manually annotated by BRENDA team
Reid, J.M.; Walker, D.L.; Miller, J.K.; Benson, L.M.; Tomlinson, A.J.; Naylor, S.; Blajeski, A.L.; LoRusso, P.M.; Ames, M.M.
The metabolism of pyrazoloacridine (NSC 366140) by cytochromes P450 and flavin monooxygenase in human liver microsomes
Clin. Cancer Res.
10
1471-1480
2004
Homo sapiens
Manually annotated by BRENDA team
Lee, J.K.; Kang, J.H.; Cha, Y.N.; Chung, W.G.; Park, C.S.
Alteration of substrate specificity by common variants, E158K/E308G and V257M, in human hepatic drug-metabolizing enzyme, flavin-containing monooxygenase 3
Korean J. Physiol. Pharmacol.
7
157-162
2003
Homo sapiens
-
Manually annotated by BRENDA team
Ryu, S.D.; Yi, H.G.; Cha, Y.N.; Kang, J.H.; Kang, J.S.; Jeon, Y.C.; Park, H.K.; Yu, T.M.; Lee, J.N.; Park, C.S.
Flavin-containing monooxygenase activity can be inhibited by nitric oxide-mediated S-nitrosylation
Life Sci.
75
2559-2572
2004
Homo sapiens
Manually annotated by BRENDA team
Stevens, J.C.; Melton, R.J.; Zaya, M.J.; Engel, L.C.
Expression and characterization of functional dog flavin-containing monooxygenase 1
Mol. Pharmacol.
63
271-275
2003
Canis lupus familiaris, Homo sapiens
Manually annotated by BRENDA team
Furnes, B.; Schlenk, D.
Evaluation of xenobiotic N- and S-oxidation by variant flavin-containing monooxygenase 1 (FMO1) enzymes
Toxicol. Sci.
78
196-203
2004
Homo sapiens
Manually annotated by BRENDA team
Cashman, J.R.
Some distinctions between flavin-containing and cytochrome P450 monooxygenases
Biochem. Biophys. Res. Commun.
338
599-604
2005
Homo sapiens
Manually annotated by BRENDA team
Elfarra, A.A.; Krause, R.J.
Potential roles of flavin-containing monooxygenases in sulfoxidation reactions of L-methionine, N-acetyl-L-methionine and peptides containing L-methionine
Biochim. Biophys. Acta
1703
183-189
2005
Oryctolagus cuniculus, Homo sapiens, Rattus norvegicus
Manually annotated by BRENDA team
Qian, L.; Ortiz de Montellano, P.R.
Oxidative activation of thiacetazone by the Mycobacterium tuberculosis flavin monooxygenase EtaA and human FMO1 and FMO3
Chem. Res. Toxicol.
19
443-449
2006
Homo sapiens, Mycobacterium tuberculosis
Manually annotated by BRENDA team
Parte, P.; Kupfer, D.
Oxidation of tamoxifen by human flavin-containing monooxygenase (FMO) 1 and FMO3 to tamoxifen-N-oxide and its novel reduction back to tamoxifen by human cytochromes P450 and hemoglobin
Drug Metab. Dispos.
33
1446-1452
2005
Homo sapiens
Manually annotated by BRENDA team
Furnes, B.; Schlenk, D.
Extrahepatic metabolism of carbamate and organophosphate thioether compounds by the flavin-containing monooxygenase and cytochrome P450 systems
Drug Metab. Dispos.
33
214-218
2005
Homo sapiens
Manually annotated by BRENDA team
Borbas, T.; Zhang, J.; Cerny, M.A.; Liko, I.; Cashman, J.R.
Investigation of structure and function of a catalytically efficient variant of the human flavin-containing monooxygenase form 3
Drug Metab. Dispos.
34
1995-2002
2006
Homo sapiens
Manually annotated by BRENDA team
Shimizu, M.; Yano, H.; Nagashima, S.; Murayama, N.; Zhang, J.; Cashman, J.R.; Yamazaki, H.
Effect of genetic variants of the human flavin-containing monooxygenase 3 on N- and S-oxygenation activities
Drug Metab. Dispos.
35
328-330
2007
Homo sapiens
Manually annotated by BRENDA team
Krueger, S.K.; Vandyke, J.E.; Williams, D.E.; Hines, R.N.
The role of flavin-containing monooxygenase (FMO) in the metabolism of tamoxifen and other tertiary amines
Drug Metab. Rev.
38
139-147
2006
Homo sapiens, Mus musculus, Rattus norvegicus, Sus scrofa
Manually annotated by BRENDA team
Vyas, P.M.; Roychowdhury, S.; Koukouritaki, S.B.; Hines, R.N.; Krueger, S.K.; Williams, D.E.; Nauseef, W.M.; Svensson, C.K.
Enzyme-mediated protein haptenation of dapsone and sulfamethoxazole in human keratinocytes: II. Expression and role of flavin-containing monooxygenases and peroxidases
J. Pharmacol. Exp. Ther.
319
497-505
2006
Homo sapiens (Q01740)
Manually annotated by BRENDA team
Koukouritaki, S.B.; Poch, M.T.; Henderson, M.C.; Siddens, L.K.; Krueger, S.K.; VanDyke, J.E.; Williams, D.E.; Pajewski, N.M.; Wang, T.; Hines, R.N.
Identification and functional analysis of common human flavin-containing monooxygenase 3 genetic variants
J. Pharmacol. Exp. Ther.
320
266-273
2007
Homo sapiens
Manually annotated by BRENDA team
Zhou, J.; Shephard, E.A.
Mutation, polymorphism and perspectives for the future of human flavin-containing monooxygenase 3
Mutat. Res.
612
165-171
2006
Homo sapiens
Manually annotated by BRENDA team
Krueger, S.K.; Williams, D.E.
Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism
Pharmacol. Ther.
106
357-387
2005
Oryctolagus cuniculus, Homo sapiens, Mus musculus, Sus scrofa
Manually annotated by BRENDA team
Yeung, C.K.; Adman, E.T.; Rettie, A.E.
Functional characterization of genetic variants of human FMO3 associated with trimethylaminuria
Arch. Biochem. Biophys.
464
251-259
2007
Homo sapiens
Manually annotated by BRENDA team
Shephard, E.A.; Chandan, P.; Stevanovic-Walker, M.; Edwards, M.; Phillips, I.R.
Alternative promoters and repetitive DNA elements define the species-dependent tissue-specific expression of the FMO1 genes of human and mouse
Biochem. J.
406
491-499
2007
Mus musculus (P50285), Mus musculus, Homo sapiens (Q01740), Homo sapiens
Manually annotated by BRENDA team
Klick, D.E.; Shadley, J.D.; Hines, R.N.
Differential regulation of human hepatic flavin containing monooxygenase 3 (FMO3) by CCAAT/enhancer-binding protein beta (C/EBPbeta) liver inhibitory and liver activating proteins
Biochem. Pharmacol.
76
268-278
2008
Homo sapiens (P31513), Homo sapiens
Manually annotated by BRENDA team
Phillips, I.R.; Francois, A.A.; Shephard, E.A.
The flavin-containing monooxygenases (FMOs): genetic variation and its consequences for the metabolism of therapeutic drugs
Curr. Pharmacogenomics
5
292-313
2007
Homo sapiens (P31512), Homo sapiens (P31513), Homo sapiens (P49326), Homo sapiens (Q01740), Homo sapiens (Q99518)
-
Manually annotated by BRENDA team
Kousba, A.; Soll, R.; Yee, S.; Martin, M.
Cyclic conversion of the novel Src kinase inhibitor [7-(2,6-dichloro-phenyl)-5-methyl-benzo[1,2,4]triazin-3-yl]-[4-(2-pyrrolidin-1-yl-ethoxy)-phenyl]-amine (TG100435) and Its N-oxide metabolite by flavin-containing monoxygenases and cytochrome P450 reduct
Drug Metab. Dispos.
35
2242-2251
2007
Homo sapiens
Manually annotated by BRENDA team
Yanni, S.B.; Annaert, P.P.; Augustijns, P.; Bridges, A.; Gao, Y.; Benjamin, D.K.; Thakker, D.R.
Role of flavin-containing monooxygenase in oxidative metabolism of voriconazole by human liver microsomes
Drug Metab. Dispos.
36
1119-1125
2008
Homo sapiens
Manually annotated by BRENDA team
Shimizu, M.; Tomioka, S.; Murayama, N.; Yamazaki, H.
Missense and nonsense mutations of the flavin-containing monooxygenase 3 gene in a Japanese cohort
Drug Metab. Pharmacokinet.
22
61-64
2007
Homo sapiens (P31513)
Manually annotated by BRENDA team
Allerston, C.K.; Shimizu, M.; Fujieda, M.; Shephard, E.A.; Yamazaki, H.; Phillips, I.R.
Molecular evolution and balancing selection in the flavin-containing monooxygenase 3 gene (FMO3)
Pharmacogenet. Genomics
17
827-839
2007
Homo sapiens (P31513), Homo sapiens
Manually annotated by BRENDA team
Phillips, I.R.; Shephard, E.A.
Flavin-containing monooxygenases: mutations, disease and drug response
Trends Pharmacol. Sci.
29
294-301
2008
Saccharomyces cerevisiae, Homo sapiens (P31513), Homo sapiens (Q01740), Homo sapiens (Q99518), Homo sapiens
Manually annotated by BRENDA team
Mitchell, S.
Flavin mono-oxygenase (FMO) - The other oxidase
Curr. Drug Metab.
9
280-284
2008
Oryctolagus cuniculus, Homo sapiens, Mus musculus, Rattus norvegicus, Sus scrofa
Manually annotated by BRENDA team
Francois, A.A.; Nishida, C.R.; de Montellano, P.R.; Phillips, I.R.; Shephard, E.A.
Human flavin-containing monooxygenase 2.1 catalyzes oxygenation of the antitubercular drugs thiacetazone and ethionamide
Drug Metab. Dispos.
37
178-186
2009
Homo sapiens (Q01740), Homo sapiens
Manually annotated by BRENDA team
Krueger, S.K.; Henderson, M.C.; Siddens, L.K.; VanDyke, J.E.; Benninghoff, A.D.; Karplus, P.A.; Furnes, B.; Schlenk, D.; Williams, D.E.
Characterization of sulfoxygenation and structural implications of human flavin-containing monooxygenase isoform 2 (FMO2.1) variants S195L and N413K
Drug Metab. Dispos.
37
1785-1791
2009
Homo sapiens (Q99518), Homo sapiens
Manually annotated by BRENDA team
Lickteig, A.J.; Riley, R.; Melton, R.J.; Reitz, B.A.; Fischer, H.D.; Stevens, J.C.
Expression and characterization of functional dog flavin-containing monooxygenase 3
Drug Metab. Dispos.
37
1987-1990
2009
Canis lupus familiaris, Homo sapiens
Manually annotated by BRENDA team
Cashman, J.R.; Zhang, J.; Nelson, M.R.; Braun, A.
Analysis of flavin-containing monooxygenase 3 genotype data in populations administered the anti-schizophrenia agent olanzapine
Drug Metab. Lett.
2
100-114
2008
Homo sapiens (P31513), Homo sapiens
Manually annotated by BRENDA team
Hai, X.; Adams, E.; Hoogmartens, J.; Van Schepdael, A.
Enantioselective in-line and off-line CE methods for the kinetic study on cimetidine and its chiral metabolites with reference to flavin-containing monooxygenase genetic isoforms
Electrophoresis
30
1248-1257
2009
Homo sapiens
Manually annotated by BRENDA team
Novick, R.M.; Mitzey, A.M.; Brownfield, M.S.; Elfarra, A.A.
Differential localization of flavin-containing monooxygenase (FMO) isoforms 1, 3, and 4 in rat liver and kidney and evidence for expression of FMO4 in mouse, rat, and human liver and kidney microsomes
J. Pharmacol. Exp. Ther.
329
1148-1155
2009
Homo sapiens, Homo sapiens (P31512), Mus musculus, Rattus norvegicus (P36365), Rattus norvegicus (Q8K4B7), Rattus norvegicus (Q9EQ76)
Manually annotated by BRENDA team
Henderson, M.C.; Siddens, L.K.; Morre, J.T.; Krueger, S.K.; Williams, D.E.
Metabolism of the anti-tuberculosis drug ethionamide by mouse and human FMO1, FMO2 and FMO3 and mouse and human lung microsomes
Toxicol. Appl. Pharmacol.
233
420-427
2008
Homo sapiens, Homo sapiens (Q01740), Homo sapiens (Q99518), Mus musculus, Mus musculus (P50285), Mus musculus (Q8K2I3)
Manually annotated by BRENDA team
Lee, S.K.; Kang, M.J.; Jin, C.; In, M.K.; Kim, D.H.; Yoo, H.H.
Flavin-containing monooxygenase 1-catalysed N,N-dimethylamphetamine N-oxidation
Xenobiotica
39
680-686
2009
Homo sapiens (Q01740), Homo sapiens
Manually annotated by BRENDA team
Castrignano, S.; Sadeghi, S.J.; Gilardi, G.
Electro-catalysis by immobilised human flavin-containing monooxygenase isoform 3 (hFMO3)
Anal. Bioanal. Chem.
398
1403-1409
2010
Homo sapiens
Manually annotated by BRENDA team
Driscoll, J.P.; Aliagas, I.; Harris, J.J.; Halladay, J.S.; Khatib-Shahidi, S.; Deese, A.; Segraves, N.; Khojasteh-Bakht, S.C.
Formation of a quinoneimine intermediate of 4-fluoro-N-methylaniline by FMO1: carbon oxidation plus defluorination
Chem. Res. Toxicol.
23
861-863
2010
Homo sapiens
Manually annotated by BRENDA team
Reddy, R.R.; Ralph, E.C.; Motika, M.S.; Zhang, J.; Cashman, J.R.
Characterization of human flavin-containing monooxygenase (FMO) 3 and FMO5 expressed as maltose-binding protein fusions
Drug Metab. Dispos.
38
2239-2245
2010
Homo sapiens
Manually annotated by BRENDA team
Lang, D.H.; Yeung, C.K.; Peter, R.M.; Ibarra, C.; Gasser, R.; Itagaki, K.; Philpot, R.M.; Rettie, A.E.
Isoform specificity of trimethylamine N-oxygenation by human flavin-containing monooxygenase (FMO) and P450 enzymes: selective catalysis by FMO3
Biochem. Pharmacol.
56
1005-1012
1998
Homo sapiens (Q01740), Homo sapiens
Manually annotated by BRENDA team
Fedejko-Kap, B.; Niemira, M.; Radominska-Pandya, A.; Mazerska, Z.
Flavin monooxygenases, FMO1 and FMO3, not cytochrome P450 isoenzymes, contribute to metabolism of anti-tumour triazoloacridinone, C-1305, in liver microsomes and HepG2 cells
Xenobiotica
41
1044-1055
2011
Rattus norvegicus, Homo sapiens (Q01740), Homo sapiens (Q9HA79), Homo sapiens
Manually annotated by BRENDA team
Motika, M.S.; Zhang, J.; Ralph, E.C.; Dwyer, M.A.; Cashman, J.R.
pH dependence on functional activity of human and mouse flavin-containing monooxygenase 5
Biochem. Pharmacol.
83
962-968
2012
Homo sapiens (P49326), Homo sapiens, Mus musculus (P97872), Mus musculus
Manually annotated by BRENDA team
Catucci, G.; Polignano, I.; Cusumano, D.; Medana, C.; Gilardi, G.; Sadeghi, S.J.
Identification of human flavin-containing monooxygenase 3 substrates by a colorimetric screening assay
Anal. Biochem.
522
46-52
2017
Homo sapiens
Manually annotated by BRENDA team
Huijbers, M.; Montersino, S.; Westphal, A.; Tischler, D.; Van Berkel, W.
Flavin dependent monooxygenases
Arch. Biochem. Biophys.
544
2-17
2014
Homo sapiens
-
Manually annotated by BRENDA team
Siddens, L.K.; Krueger, S.K.; Henderson, M.C.; Williams, D.E.
Mammalian flavin-containing monooxygenase (FMO) as a source of hydrogen peroxide
Biochem. Pharmacol.
89
141-147
2014
Homo sapiens
Manually annotated by BRENDA team
Phillips, I.R.; Francois, A.A.; Shephard, E.A.
The flavin-containing monooxygenases (FMOs) genetic variation and its consequences for the metabolism of therapeutic drugs
Curr. Pharmacogenomics
5
292-313
2007
Homo sapiens
-
Manually annotated by BRENDA team
Fennema, D.; Phillips, I.R.; Shephard, E.A.
Trimethylamine and trimethylamine N-oxide, a flavin-containing monooxygenase 3 (FMO3)-mediated host-microbiome metabolic axis implicated in health and disease
Drug Metab. Dispos.
44
1839-1850
2016
Homo sapiens (P31513)
Manually annotated by BRENDA team
Taniguchi-Takizawa, T.; Shimizu, M.; Kume, T.; Yamazaki, H.
Benzydamine N-oxygenation as an index for flavin-containing monooxygenase activity and benzydamine N-demethylation by cytochrome P450 enzymes in liver microsomes from rats, dogs, monkeys, and humans
Drug Metab. Pharmacokinet.
30
64-69
2015
Canis lupus familiaris, Macaca fascicularis, Homo sapiens, Rattus norvegicus
Manually annotated by BRENDA team
Phillips, I.R.; Shephard, E.A.
Drug metabolism by flavin-containing monooxygenases of human and mouse
Expert. Opin. Drug Metab. Toxicol.
13
167-181
2017
Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Liao, B.M.; McManus, S.A.; Hughes, W.E.; Schmitz-Peiffer, C.
Flavin-containing monooxygenase 3 reduces endoplasmic reticulum stress in lipid-treated hepatocytes
Mol. Endocrinol.
30
417-428
2016
Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Fu, C.W.; Lin, T.H.
Predicting the metabolic sites by flavin-containing monooxygenase on drug molecules using SVM classification on computed quantum mechanics and circular fingerprints molecular descriptors
PLoS ONE
12
e0169910
2017
Homo sapiens
Manually annotated by BRENDA team
El-Serafi, I.; Terelius, Y.; Abedi-Valugerdi, M.; Naughton, S.; Saghafian, M.; Moshfegh, A.; Mattsson, J.; Potacova, Z.; Hassan, M.
Flavin-containing monooxygenase 3 (FMO3) role in busulphan metabolic pathway
PLoS ONE
12
e0187294
2017
Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Bortolussi, S.; Catucci, G.; Gilardi, G.; Sadeghi, S.J.
N- and S-oxygenation activity of truncated human flavin-containing monooxygenase 3 and its common polymorphic variants
Arch. Biochem. Biophys.
697
108663
2021
Homo sapiens (P31513), Homo sapiens
Manually annotated by BRENDA team
Catucci, G.; Bortolussi, S.; Rampolla, G.; Cusumano, D.; Gilardi, G.; Sadeghi, S.J.
Flavin-containing monooxygenase 3 polymorphic variants significantly affect clearance of tamoxifen and clomiphene
Basic Clin. Pharmacol. Toxicol.
123
687-691
2018
Homo sapiens (P31513), Homo sapiens
Manually annotated by BRENDA team
Cheropkina, H.; Catucci, G.; Marucco, A.; Fenoglio, I.; Gilardi, G.; Sadeghi, S.
Human flavin-containing monooxygenase 1 and its long-sought hydroperoxyflavin intermediate
Biochem. Pharmacol.
193
114763
2021
Homo sapiens (Q01740), Homo sapiens
Manually annotated by BRENDA team
Veeravalli, S.; Phillips, I.R.; Freire, R.T.; Varshavi, D.; Everett, J.R.; Shephard, E.A.
Flavin-containing monooxygenase 1 catalyzes the production of taurine from hypotaurine
Drug Metab. Dispos.
48
378-385
2020
Homo sapiens, Homo sapiens (Q01740), Mus musculus (P50285)
Manually annotated by BRENDA team
Shimizu, M.; Uehara, S.; Suemizu, H.; Yamazaki, H.
In vivo drug interactions of itopride and trimethylamine mediated by flavin-containing monooxygenase 3 in humanized-liver mice
Drug Metab. Pharmacokinet.
37
100369
2021
Homo sapiens (P31513)
Manually annotated by BRENDA team
Taniguchi-Takizawa, T.; Kato, N.; Shimizu, M.; Kume, T.; Yamazaki, H.
Different substrate elimination rates of model drugs pH-dependently mediated by flavin-containing monooxygenases and cytochromes P450 in human liver microsomes
Drug Metab. Pharmacokinet.
40
100412
2021
Homo sapiens (P31513), Homo sapiens
Manually annotated by BRENDA team
Catucci, G.; Gao, C.; Rampolla, G.; Gilardi, G.; Sadeghi, S.J.
Uncoupled human flavin-containing monooxygenase 3 releases superoxide radical in addition to hydrogen peroxide
Free Radic. Biol. Med.
145
250-255
2019
Homo sapiens (P31513), Homo sapiens
Manually annotated by BRENDA team
Kim, J.; Lee, H.; Roh, Y.J.; Kim, H.U.; Shin, D.; Kim, S.; Son, J.; Lee, A.; Kim, M.; Park, J.; Hwang, S.Y.; Kim, K.; Lee, Y.K.; Jung, H.S.; Hwang, K.Y.; Lee, B.C.
Structural and kinetic insights into flavin-containing monooxygenase and calponin-homology domains in human MICAL3
IUCrJ
7
90-99
2020
Homo sapiens (P31513), Homo sapiens
Manually annotated by BRENDA team
Matsumoto, K.; Hasegawa, T.; Ohara, K.; Kamei, T.; Koyanagi, J.; Akimoto, M.
Role of human flavin-containing monooxygenase (FMO) 5 in the metabolism of nabumetone Baeyer-Villiger oxidation in the activation of the intermediate metabolite, 3-hydroxy nabumetone, to the active metabolite, 6-methoxy-2-naphthylacetic acid in vitro
Xenobiotica
51
155-166
2021
Homo sapiens (P49326), Homo sapiens
Manually annotated by BRENDA team