Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 1.13.12.7 - firefly luciferase and Organism(s) Photinus pyralis and UniProt Accession P08659

for references in articles please use BRENDA:EC1.13.12.7
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
IUBMB Comments
The enzyme, which is found in fireflies (Lampyridae), is responsible for their biolouminescence. The reaction begins with the formation of an acid anhydride between the carboxylic group of D-firefly luciferin and AMP, with the release of diphosphate. An oxygenation follows, with release of the AMP group and formation of a very short-lived peroxide that cyclizes into a dioxetanone structure, which collapses, releasing a CO2 molecule. The spontaneous breakdown of the dioxetanone (rather than the hydrolysis of the adenylate) releases the energy (about 50 kcal/mole) that is necessary to generate the excited state of oxyluciferin. The excited luciferin then emits a photon, returning to its ground state. The enzyme has a secondary acyl-CoA ligase activity when acting on L-firefly luciferin (see EC 6.2.1.52).
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Photinus pyralis
UNIPROT: P08659
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Photinus pyralis
The expected taxonomic range for this enzyme is: Eukaryota, Bacteria
Synonyms
firefly luciferase, luciferin, photinus pyralis luciferase, beetle luciferase, pc3-luc, pplase, cbrluc, luciola italica luciferase, lucppy, ppy re-ts, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
oxygen 4-oxidoreductase
-
Photinus pyralis luciferase
-
firefly luciferase
firefly luciferin luciferase
-
-
-
-
luciferase (firefly luciferin)
-
-
-
-
luciferase FM
-
mutant luciferase
PC3-Luc
-
-
Photinus luciferin 4-monooxygenase (ATP-hydrolyzing)
-
-
-
-
Photinus pyralis luciferase
Ppy GR-TS
green-emitting luciferase
Ppy RE-TS
red-emitting luciferase
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
decarboxylation
-
oxidation
decarboxylation
-
-
redox reaction
-
-
-
-
oxidation
-
-
-
-
reduction
-
-
-
-
PATHWAY SOURCE
PATHWAYS
SYSTEMATIC NAME
IUBMB Comments
D-firefly luciferin:oxygen 4-oxidoreductase (decarboxylating, ATP-hydrolysing)
The enzyme, which is found in fireflies (Lampyridae), is responsible for their biolouminescence. The reaction begins with the formation of an acid anhydride between the carboxylic group of D-firefly luciferin and AMP, with the release of diphosphate. An oxygenation follows, with release of the AMP group and formation of a very short-lived peroxide that cyclizes into a dioxetanone structure, which collapses, releasing a CO2 molecule. The spontaneous breakdown of the dioxetanone (rather than the hydrolysis of the adenylate) releases the energy (about 50 kcal/mole) that is necessary to generate the excited state of oxyluciferin. The excited luciferin then emits a photon, returning to its ground state. The enzyme has a secondary acyl-CoA ligase activity when acting on L-firefly luciferin (see EC 6.2.1.52).
CAS REGISTRY NUMBER
COMMENTARY hide
61970-00-1
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
4'-methyl-D-luciferin + ATP + O2
?
show the reaction diagram
-
-
-
?
5-methylluciferin + ATP + O2
?
show the reaction diagram
-
-
-
?
6'-amino-D-luciferin + ATP + O2
?
show the reaction diagram
-
-
-
?
D-5,5-dimethylluciferyl-adenylate + O2
?
show the reaction diagram
yellow-green color of luminescence
-
-
?
D-firefly luciferin + O2 + ATP
firefly oxyluciferin + CO2 + AMP + diphosphate + hv
show the reaction diagram
D-luciferin + ATP
diphosphate + luciferyl-adenylate
show the reaction diagram
-
-
-
r
D-luciferin + ATP + O2
luciferyl-adenylate + diphosphate
show the reaction diagram
-
-
-
?
D-luciferin + ATP + O2
luciferyl-adenylate + diphosphate + H2O + hv
show the reaction diagram
-
-
-
r
D-luciferin + O2 + ATP
oxidized D-luciferin + CO2 + H2O + AMP + diphosphate + hv
show the reaction diagram
-
-
-
?
D-luciferin + O2 + ATP
oxidized luciferin + CO2 + H2O + AMP + diphosphate + hv
show the reaction diagram
-
-
-
?
D-luciferyl-adenylate + O2
oxyluciferin + CO2 + AMP + hv
show the reaction diagram
-
-
-
ir
D-luciferyl-O-adenosine monophosphate + ?
?
show the reaction diagram
-
-
-
?
D-naphthylluciferin + ATP + O2
?
show the reaction diagram
-
-
-
?
D-quinolylluciferin + ATP + O2
?
show the reaction diagram
-
-
-
?
decanoic acid + ATP + CoA
decanoyl-CoA + AMP + diphosphate
show the reaction diagram
-
-
-
?
dehydroluciferin + ATP
dehydroluciferyl-AMP + diphosphate
show the reaction diagram
-
-
-
r
fatty acid + ATP + CoA
fatty acyl-CoA + AMP
show the reaction diagram
-
-
-
?
lauric acid + ATP + CoA
lauroyl-CoA + AMP + diphosphate
show the reaction diagram
-
-
-
?
linoleic acid + ATP + CoA
linoleoyl-CoA + AMP + diphosphate
show the reaction diagram
linoleic acid concentration above 10 microM has an inhibitory effect
-
-
?
luciferin + MgATP2-
AMP + diphosphate
show the reaction diagram
-
-
-
?
luciferyl-adenylate
oxyluciferin + hnu
show the reaction diagram
-
-
-
?
luciferyl-adenylate + O2
oxyluciferin + AMP + CO2 + hv
show the reaction diagram
-
-
-
ir
luciferyl-O-adenosine monophosphate + CoA
luciferyl-CoA + AMP
show the reaction diagram
-
-
-
?
myristic acid + ATP + CoA
myristoyl-CoA + AMP + diphosphate
show the reaction diagram
-
-
-
?
Photinus luciferin + O2 + ATP
oxidized Photinus luciferin + CO2 + H2O + AMP + diphosphate + hv
show the reaction diagram
-
-
?
R-COOH + ATP
R-CO-AMP + diphosphate
show the reaction diagram
-
-
-
r
(4S)-2-(6-hydroxy-1,3-benzoxazol-2-yl)-4,5-dihydro-1,3-thiazole-4-carboxylic acid + ATP + O2
?
show the reaction diagram
-
decay time to 10%: 500 sec, relative specific activity: 13%
-
-
?
(4S)-2-(6-hydroxy-1-benzofuran-2-yl)-4,5-dihydro-1,3-thiazole-4-carboxylic acid + ATP + O2
?
show the reaction diagram
-
decay time to 10%: 150 sec, relative specific activity: 1.7%
-
-
?
(4S)-2-(6-hydroxy-1-benzothiophen-2-yl)-4,5-dihydro-1,3-thiazole-4-carboxylic acid + ATP + O2
?
show the reaction diagram
-
decay time to 10%: 5700 sec, relative specific activity: 421%
-
-
?
(4S)-2-(6-hydroxy-1H-benzimidazol-2-yl)-4,5-dihydro-1,3-thiazole-4-carboxylic acid + ATP + O2
?
show the reaction diagram
-
decay time to 10%: 400 sec, relative specific activity: 0.4%
-
-
?
(4S)-2-(6-hydroxy-1H-indol-2-yl)-4,5-dihydro-1,3-thiazole-4-carboxylic acid + ATP + O2
?
show the reaction diagram
-
-
-
-
?
5,5'-dimethylluciferin + ATP + O2
dehydroluciferin-adenylate + diphosphate
show the reaction diagram
-
produces only red light, 6-amino and 4 hydroxy analogs tested
-
?
5,5-dimethyl-luciferyl-O-adenosine monophosphate + ?
5,5-dimethyloxyluciferin + hv
show the reaction diagram
-
-
-
-
?
6'-amino-D-luciferin + ATP
? + hv
show the reaction diagram
-
-
-
-
?
8-anilino-1-naphthalene-sulfonate + ?
?
show the reaction diagram
-
-
-
?
adenosine 5'-tetraphosphate + Photinus luciferin
oxidized Photinus luciferin + CO2 + H2O + AMP + diphosphate + hv
show the reaction diagram
-
0.75% light response relative to ATP
-
?
ADP
ATP + AMP
show the reaction diagram
-
-
reaction inhibited by P1,P5-di(adenosine-5'-)pentaphosphate, but independent of luciferin
?
arachidonic acid + ATP + CoA
arachidonoyl-CoA + AMP + diphosphate
show the reaction diagram
-
-
-
-
?
ATP + O2 + oxyluciferin
?
show the reaction diagram
-
assay at pH 7.5, 24-27°C
-
-
?
D-aminoluciferin + ATP + O2
?
show the reaction diagram
-
assay at 37°C. 5 min
-
-
?
D-luciferin + ATP + O2
?
show the reaction diagram
D-luciferin + ATP + O2
luciferyl-adenylate + diphosphate + H2O + hv
show the reaction diagram
-
-
-
-
?
D-luciferin + ATP + O2
oxidized D-luciferin + AMP + CO2 + diphosphate
show the reaction diagram
D-luciferin + ATP + O2
oxidized D-luciferin + CO2 + H2O + AMP + diphosphate + hv
show the reaction diagram
-
-
-
-
?
D-luciferin + ATP + O2
oxidized luciferin + AMP + CO2 + diphosphate
show the reaction diagram
-
-
-
-
?
D-luciferin + ATP + O2
oxidized luciferin + AMP + CO2 + diphosphate + hv
show the reaction diagram
-
-
-
-
?
D-luciferin + ATP + O2
oxyluciferin + CO2 + AMP + hv + diphosphate
show the reaction diagram
-
-
-
-
?
D-luciferin + dATP + O2
?
show the reaction diagram
-
-
-
-
?
D-luciferin + O2
?
show the reaction diagram
-
10 microM, assay at pH 7.5
-
-
?
D-luciferin + O2 + ATP
oxidized D-luciferin + CO2 + H2O + AMP + diphosphate + hv
show the reaction diagram
D-luciferin + O2 + ATP
oxidized luciferin + CO2 + H2O + AMP + diphosphate + hv
show the reaction diagram
-
-
-
-
?
D-luciferin + O2 + ATP
oxyluciferin + AMP + diphosphate + CO2 + light
show the reaction diagram
-
-
-
?
D-luciferin + O2 + ATP
oxyluciferin + CO2 + H2O + AMP + diphosphate + hv
show the reaction diagram
-
-
-
-
r
D-luciferyl-AMP + O2
dehydroluciferyl-AMP + H2O2
show the reaction diagram
-
-
-
-
ir
dehydroluciferin + ATP + O2
diphosphate + dehydroluciferin-adenylate
show the reaction diagram
-
-
-
?
dehydroluciferin + CoA
dehydroluciferyl-CoA
show the reaction diagram
-
-
-
-
?
dehydroluciferyladenylate + CoA
dehydroluciferyl-CoA + ?
show the reaction diagram
-
-
-
-
?
deoxyATP + Photinus luciferin
oxidized Photinus luciferin + CO2 + H2O + AMP + diphosphate + hv
show the reaction diagram
-
-
-
?
L-luciferin + CoA + ATP
luciferyl-CoA + AMP + diphosphate
show the reaction diagram
-
L-luciferin is converted to luciferyl adenylate, and the adenyl group of luciferyl adenylate is then substituted to CoA-SH to give luciferyl-CoA. Even in presence of CoA-SH, D-luciferin is used for the light production reaction, but is not converted into luciferyl-CoA
-
-
?
linoleic acid + ATP + CoA
linoleoyl-CoA + AMP + diphosphate
show the reaction diagram
-
-
-
-
?
linolenic acid + ATP + CoA
linolenoyl-CoA + AMP + diphosphate
show the reaction diagram
-
-
-
-
?
luciferin + ATP + O2
?
show the reaction diagram
-
assay at 25°C, pH 7.8
-
-
?
luciferin + ATP + O2
oxidized luciferin + CO2 + H2O + AMP + diphosphate + hv
show the reaction diagram
luciferin + MgATP2-
AMP + diphosphate
show the reaction diagram
luciferin + O2 + ATP
?
show the reaction diagram
-
assay at pH 7.8
-
-
?
luciferin + O2 + ATP
oxidized luciferin + CO2 + H2O + AMP + diphosphate + hv
show the reaction diagram
luciferin + O2 + ATP
oxyluciferin + AMP + diphosphate + CO2 + light
show the reaction diagram
-
-
-
-
ir
luciferyl adenylate + O2
dehydroluciferyl adenylate + ?
show the reaction diagram
-
-
-
-
?
luciferyl-O-adenosine monophosphate + ?
?
show the reaction diagram
-
-
-
-
?
oleic acid + ATP + CoA
oleoyl-CoA + AMP + diphosphate
show the reaction diagram
-
-
-
-
?
P1,P5-di(adenosine-5'-)pentaphosphate + Photinus luciferin
oxidized Photinus luciferin + CO2 + H2O + AMP + diphosphate + hv
show the reaction diagram
-
2.2% light response relative to ATP
-
?
palmitic acid + ATP + CoA
palmitoyl-CoA + AMP + diphosphate
show the reaction diagram
-
-
-
-
?
Photinus luciferin + O2 + ATP
oxidized Photinus luciferin + CO2 + H2O + AMP + diphosphate + hv
show the reaction diagram
Photinus luciferin + O2 + GTP
adenosine 5'-P1-tetraphospho-P4-5'''-guanosine
show the reaction diagram
-
-
-
?
polyethylene glycol-6-amino-D-luciferin
? + hv
show the reaction diagram
-
longer light emission
-
-
?
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
D-firefly luciferin + O2 + ATP
firefly oxyluciferin + CO2 + AMP + diphosphate + hv
show the reaction diagram
luciferin + O2 + ATP
oxidized luciferin + CO2 + H2O + AMP + diphosphate + hv
show the reaction diagram
-
the enzyme in peroxisomes may keep the catalytic functions in bioluminescence and fatty acid metabolism
-
-
?
luciferin + O2 + ATP
oxyluciferin + AMP + diphosphate + CO2 + light
show the reaction diagram
-
-
-
-
ir
Photinus luciferin + O2 + ATP
oxidized Photinus luciferin + CO2 + H2O + AMP + diphosphate + hv
show the reaction diagram
-
highly specific for ATP
-
?
METALS and IONS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
Co2+
-
influences the interaction with triazine dyes
Fe2+
-
influences the interaction with triazine dyes
Mn2+
-
influences the interaction with triazine dyes
Ni2+
-
influences the interaction with triazine dyes
additional information
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
(2E)-1-(1-benzofuran-2-yl)-3-(4-methylphenyl)prop-2-en-1-one
-
-
(2E)-1-(1-benzofuran-2-yl)-3-phenylprop-2-en-1-one
-
-
(2E)-1-(2-hydroxyphenyl)-3-(4-methylphenyl)prop-2-en-1-one
-
-
(2E)-1-(5-chlorothiophen-2-yl)-3-(4-methylphenyl)prop-2-en-1-one
-
-
(2E)-1-(5-chlorothiophen-2-yl)-3-phenylprop-2-en-1-one
-
-
(2E)-2-benzylidene-3,4-dihydronaphthalen-1(2H)-one
-
(2E)-2-[(2-bromophenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
-
-
(2E)-2-[(2-chlorophenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
-
-
(2E)-2-[(2-methoxyphenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
-
-
(2E)-2-[(2-methylphenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
-
-
(2E)-2-[(2-nitrophenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
-
-
(2E)-2-[(3-bromophenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
-
-
(2E)-2-[(3-chlorophenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
-
-
(2E)-2-[(3-methoxyphenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
-
-
(2E)-2-[(3-methylphenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
-
-
(2E)-2-[(3-nitrophenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
-
-
(2E)-2-[(4-bromophenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
-
-
(2E)-2-[(4-chlorophenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
-
-
(2E)-2-[(4-ethoxyphenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
-
-
(2E)-2-[(4-ethylphenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
-
-
(2E)-2-[(4-fluorophenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
-
-
(2E)-2-[(4-hydroxyphenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
-
-
(2E)-2-[(4-methoxyphenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
-
-
(2E)-2-[(4-methylphenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
-
-
(2E)-2-[(4-nitrophenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
-
-
(2E)-2-[(pyridin-3-yl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
-
-
(2E)-2-[[4-(benzyloxy)phenyl]methylidene]-3,4-dihydronaphthalen-1(2H)-one
-
-
(2E)-2-[[4-(diethylamino)phenyl]methylidene]-3,4-dihydronaphthalen-1(2H)-one
-
-
(2E)-2-[[4-(dimethylamino)phenyl]methylidene]-3,4-dihydronaphthalen-1(2H)-one
-
-
(2E)-2-[[4-(dimethylamino)phenyl]methylidene]-6-methoxy-3,4-dihydronaphthalen-1(2H)-one
-
-
(2E)-2-[[4-(dimethylamino)phenyl]methylidene]-7-methoxy-3,4-dihydronaphthalen-1(2H)-one
-
-
(2E)-2-[[4-(dimethylamino)phenyl]methylidene]-8-methoxy-3,4-dihydronaphthalen-1(2H)-one
-
-
(2E)-2-[[4-(methylsulfanyl)phenyl]methylidene]-3,4-dihydronaphthalen-1(2H)-one
-
-
(2E)-2-[[4-(trifluoromethyl)phenyl]methylidene]-3,4-dihydronaphthalen-1(2H)-one
-
-
(2E)-5-methoxy-2-[(4-methylphenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
-
-
(2E)-6-methoxy-2-[(4-methylphenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
-
-
(2E)-7-methoxy-2-[(4-methylphenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
-
-
(2E)-8-methoxy-2-[(4-methylphenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
-
-
(6E)-6-[(3-carboxy-4-hydroxyphenyl)methylidene]-5-oxo-5,6,7,8-tetrahydronaphthalene-2-carboxylic acid
-
-
(7E)-7-[(4-methylphenyl)methylidene]-8-oxo-5,6,7,8-tetrahydronaphthalene-2-carboxylic acid
-
-
2,4-dimethoxy-N-(5-methylpyridin-2-yl)benzamide
non-competitive inhibitor
2-(2-fluorophenyl)-6-methoxy-1,3-benzothiazole
luciferin competitor
2-benzylidene-1H-indene-1,3(2H)-dione
-
-
2-hydroxy-5-[(E)-(1-oxo-3,4-dihydronaphthalen-2(1H)-ylidene)methyl]benzoic acid
-
-
2-phenylbenzothiazole
-
2-[(4-methylphenyl)methylidene]-1H-indene-1,3(2H)-dione
-
-
2-[(4-methylphenyl)methyl]-3,4-dihydronaphthalen-1(2H)-one
-
-
2-[[4-(dimethylamino)phenyl]methyl]-3,4-dihydronaphthalen-1(2H)-one
-
-
3-(4-methylphenyl)-4,5-dihydro-2H-benzo[g]indazole
-
-
3-[5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid
-
4-(4-methylphenyl)-5,6-dihydrobenzo[h]quinazolin-2-amine
-
-
5'-O-[N-(dehydroluciferyl)sulfamoyl]adenosine
competitive inhibitor
5'-O-[[2-(6-hydroxy-1,3-benzothiazol-2-yl)-1,3-thiazole-4-carbonyl]sulfamoyl]adenosine
non-competitive inhibitor
-
5-(ethanesulfonyl)-2-(naphthalen-2-yl)-1,3-benzoxazole
non-competitive inhibitor
-
5-[(2E)-4-(4-bromophenyl)-4-oxobut-2-en-1-yl]-2-hydroxybenzoic acid
luciferin competitor
-
5-[(E)-(6-bromo-1-oxo-3,4-dihydronaphthalen-2(1H)-ylidene)methyl]-2-hydroxybenzoic acid
-
-
arachidonic acid
concentration above 10 microM
dehydroluciferin
dehydroluciferyl adenylate
-
diphosphate
Halothane
non-competitive inhibitor
L-AMP
a potent luciferase inhibitor
linoleic acid
concentration above 10 microM
myristic acid
-
N-pyridin-2-ylbenzamide
-
NFkappaBAI4
non-competitive inhibitor
-
oleic acid
concentration above 10 microM
oxyluciferin
pifithrin-alpha
20 microM, above 95% inhibition
resveratrol
SMT C1100
non-competitive inhibitor, utrophin modulator, phase II clinical compound SMT C1100 for the treatment of Duchenne muscular dystrophy
-
[2-(4-ethoxyphenyl)quinolin-4-yl][4-(pyridin-2-yl)piperazin-1-yl]methanone
ATP competitor
-
[4-(6-methoxynaphthalen-2-yl)phenyl]acetic acid
luciferin competitor
-
(2R)-2-[4-(1-oxo-1,3-dihydro-2H-isoindol-2-yl)phenyl]propanoic acid
common name indoprofen
(2Z)-1-(4-chlorophenyl)-3-(pyridin-2-ylamino)prop-2-en-1-one
-
(2Z)-3-[(2-bromophenyl)amino]-1-pyridin-2-ylprop-2-en-1-one
-
(2Z)-3-[(4-fluorophenyl)amino]-1-furan-2-ylprop-2-en-1-one
-
(2Z)-3-[[4-(dimethylamino)cyclohexa-1,5-dien-1-yl]amino]-1-phenylprop-2-en-1-one
-
(3Z)-3-[[4-(dimethylamino)phenyl]methylidene]-1,3-dihydro-2H-indol-2-one
common name SU4312
1-[3-(6-ethoxy-1,3-benzothiazol-2-yl)thiophen-2-yl]urea
-
2,4-dimethoxy-N-(5-methylpyridin-2-yl)benzamide
-
2-(2-amino-3-methoxyphenyl)-4H-chromen-4-one
common name PD98059
2-(2-chlorophenyl)-6-methoxy-1,3-benzothiazole
-
-
-
2-(2-fluorophenyl)-6-methoxy-1,3-benzothiazole
-
-
2-(2-imino-4,5,6,7-tetrahydro-1,3-benzothiazol-3(2H)-yl)-1-(4-methylphenyl)ethanone
common name pifithrin-alpha
2-(2-methoxyphenyl)-1,3-benzothiazole
-
-
2-(3,4-dimethoxyphenyl)-1,3-benzothiazole
-
-
2-(3,4-dimethoxyphenyl)-6-methoxy-1,3-benzothiazole
-
-
2-(3-fluorophenyl)-1,3-benzothiazole
-
-
2-(3-fluorophenyl)-6-methoxy-1,3-benzothiazole
-
-
2-(4-chlorophenyl)-1,3-benzothiazole
-
-
2-(4-chlorophenyl)-6-methoxy-1,3-benzothiazole
-
-
2-(4-ethoxyphenyl)-4-[(4-methylpiperazin-1-yl)carbonyl]quinoline
-
2-(4-ethoxyphenyl)-4-[(4-pyridin-2-ylpiperazin-1-yl)carbonyl]quinoline
-
2-(4-fluorophenyl)-6-methoxy-1,3-benzothiazole
-
-
2-(4-methoxyphenyl)-1,3-benzothiazole
-
-
2-(4-methylphenyl)-4-[(4-pyrimidin-2-ylpiperazin-1-yl)carbonyl]quinoline
-
2-(5-biphenyl-4-yl-1,2,4-oxadiazol-3-yl)pyridine
2-(5-furan-2-yl-1,2,4-oxadiazol-3-yl)pyridine
-
-
2-(5-naphthalen-2-yl-1,2,4-oxadiazol-3-yl)pyridine
-
2-(5-pyridin-4-yl-1,2,4-oxadiazol-3-yl)pyridine
-
-
2-(6'-hydroxy-2'-benzothiazolyl)-4-hydroxymethylthiazole
-
competitive inhibitor
2-([7-(propan-2-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)aniline
-
-
2-hydroxy-N'-[(1E)-(2-hydroxyphenyl)methylidene]benzohydrazide
common name SCS
2-methyl-6-(phenylethynyl)pyridine
common name MPEB
2-methyl-6-[(Z)-2-phenylethenyl]pyridine
common name SIB1893
2-[5-(2-methoxyphenyl)-1,2,4-oxadiazol-3-yl]pyridine
-
-
2-[5-(3,4-dichlorophenyl)-1,2,4-oxadiazol-3-yl]pyridine
-
2-[5-(3-chloro-4-methylphenyl)-1,2,4-oxadiazol-3-yl]pyridine
-
2-[5-(3-chlorophenyl)-1,2,4-oxadiazol-3-yl]pyridine
-
2-[5-(5-bromofuran-2-yl)-1,2,4-oxadiazol-3-yl]pyridine
-
3',5'-cyclic AMP
3,5-diphenyl-1,2,4-oxadiazole
-
-
3-(2-hydroxyphenyl)-1H-benzo[f]chromen-1-one
common name flavonoid
3-(2-methoxyphenyl)-5-phenyl-1,2,4-oxadiazole
-
-
3-([7-(propan-2-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)aniline
-
-
3-methyl-2-[(E)-phenyldiazenyl]phenol
-
-
3-pyridin-2-yl-1,2,4-oxadiazol-5-yl biphenyl-4-carboxylate
-
-
3-[5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid
-
decrease of Fluc proteolysis, 2 microM
3-[5-(2-methoxyphenyl)-1,2,4-oxadiazol-3-yl]benzoic acid
-
-
3-[5-(3-chlorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid
-
-
3-[5-(3-methoxyphenyl)-1,2,4-oxadiazol-3-yl]benzoic acid
-
-
3-[5-(4-chlorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid
-
-
3-[5-[2-(trifluoromethyl)phenyl]-1,2,4-oxadiazol-3-yl]benzoic acid
-
-
3-[5-[4-(trifluoromethyl)phenyl]-1,2,4-oxadiazol-3-yl]benzoic acid
-
-
4-((7-[4-(trifluoromethyl)benzyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)oxy)aniline
-
7% inhibition
4-(1,3-benzothiazol-2-yl)-N,N-dimethylaniline
-
-
4-(1,3-benzothiazol-2-yl)benzonitrile
-
-
4-(1,4-dioxa-8-azaspiro[4.5]dec-8-ylcarbonyl)-2-(4-ethoxyphenyl)quinoline
-
4-(4-aminophenoxy)-7-(propan-2-yl)-7H-pyrrolo[2,3-d]pyrimidin-2-amine
-
-
4-(5-furan-2-yl-1,2,4-oxadiazol-3-yl)pyridine
-
-
4-(6-methoxy-1,3-benzothiazol-2-yl)-N,N-dimethylaniline
-
-
4-(6-methoxy-1,3-benzothiazol-2-yl)benzonitrile
-
-
4-(7H-pyrrolo[2,3-d]pyrimidin-4-yloxy)aniline
-
19% inhibition
4-([2-(methylsulfanyl)-7-(propan-2-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)aniline
-
31% inhibition
4-([2-(methylsulfonyl)-7-(propan-2-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)aniline
-
9% inhibition
4-([7-(2,2-dimethylpropyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)-N,N-dimethylaniline
-
-
4-([7-(2,2-dimethylpropyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)-N-methylaniline
-
-
4-([7-(2,2-dimethylpropyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)aniline
-
-
4-([7-(2-methylprop-2-en-1-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)aniline
-
-
4-([7-(2-methylpropyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)aniline
-
-
4-([7-(3-methylbut-2-en-1-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)aniline
-
-
4-([7-(3-methylbutyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)aniline
-
-
4-([7-(4-methoxybenzyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)aniline
-
26% inhibition
4-([7-(prop-2-en-1-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)aniline
-
-
4-([7-(propan-2-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)aniline
-
-
4-amino-6-[(E)-[4'-[(Z)-(8-amino-1-hydroxy-5,7-disulfonato-6,7-dihydronaphthalen-2-yl)diazenyl]-3-methylbiphenyl-4-yl]diazenyl]-5-hydroxy-2,3-dihydronaphthalene-1,3-disulfonate
common name Evans Blue
4-methoxy-N-[(4-methylpyridin-2-yl)carbamoyl]benzamide
-
4-methyl-N-(phenylmethyl)benzenesulfonamide
-
-
4-[(7-benzyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)oxy]aniline
-
46% inhibition
4-[(7-cyclopentyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)oxy]aniline
-
-
4-[(7-ethenyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)oxy]aniline
-
-
4-[(7-ethyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)oxy]aniline
-
-
4-[(7-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)oxy]aniline
-
48% inhibition
4-[1-(1,3-benzothiazol-2-yl)-2-(4-methylpiperazin-1-yl)-2-oxoethyl]phenol
-
4-[3-(2-methoxyphenyl)-1,2,4-oxadiazol-5-yl]pyridine
-
-
4-[5-(2-chlorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid
-
-
4-[5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid
-
-
4-[5-(2-methoxyphenyl)-1,2,4-oxadiazol-3-yl]-N,N-dimethylaniline
-
-
4-[5-(3-chlorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid
-
-
4-[5-(3-fluorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid
-
-
5'-O-[(N-dehydroluciferyl)-sulfamoyl]-adenosine
-
stable and potent reversibel inhibitor
5-(2,4-dimethoxyphenyl)-3-phenyl-1,2,4-oxadiazole
5-(2-bromophenyl)-3-(4-methylphenyl)-1,2,4-oxadiazole
-
5-(2-chloro-4-methylphenyl)-3-phenyl-1,2,4-oxadiazole
-
5-(2-fluorophenyl)-3-(4-methoxyphenyl)-1,2,4-oxadiazole
-
-
5-(4-fluorophenyl)-3-(3-methylphenyl)-1,2,4-oxadiazole
-
-
5-anilino-1-naphthalene sulfonate
5-methyl-N-[6-(methylsulfonyl)-1,3-benzothiazol-2-yl]thiophene-2-carboxamide
-
5-naphthalen-2-yl-3-phenyl-1,2,4-oxadiazole
-
6-methoxy-2-(2-methoxyphenyl)-1,3-benzothiazole
-
-
6-methoxy-2-(3-methylphenyl)-1,3-benzothiazole
-
-
6-methoxy-2-(4-methoxyphenyl)-1,3-benzothiazole
-
-
6-methoxy-2-[2-(2-methylbenzyl)phenyl]-1,3-benzothiazole
-
-
-
6-methoxy-2-[3-(2-methylbenzyl)phenyl]-1,3-benzothiazole
-
-
-
6-methyl-2-[(Z)-phenyldiazenyl]pyridin-3-ol
common name SIB1757
6-toluidino-2-naphthalene sulfonate
arsenate
bovine serum albumin
-
inhibition when present in large excess
-
butanoic acid
-
IC50: 13.6 mM
CoA
-
above 0.1 mM, N-terminal domain
D-luciferin
-
inhibits CoA-ligase activity with L-luciferin, IC50: 0.135 mM against 0.1 mM L-luciferin
Decanoic acid
-
IC50: 0.0132 mM
dehydroluciferin
dehydroluciferyl adenylate
-
IC50: 6 nM
dehydroluciferyl-adenylate
-
tight-binding competitive inhibitor
dehydroluciferyl-CoA
-
IC50: 0.005 mM
diphosphate
-
-
dithiothreitol
-
-
dodecanoic acid
Dodecanol
-
mixed-type inhibitor
dodecylamine
-
noncompetitive inhibitor
ethanol
-
-
ethyl 4-[[2-(4-ethoxyphenyl)quinolin-4-yl]carbonyl]piperazine-1-carboxylate
-
ethyl [4-(4-aminophenoxy)-7H-pyrrolo[2,3-d]pyrimidin-7-yl]acetate
-
33% inhibition
ethyl-2-benzothiazole sulfonate
-
competitive inhibitor
geneticin
-
induces nonsense suppression
gentamicin
-
induces nonsense suppression
hexadecanoic acid
-
IC50: 0.00067 mM
hexanoic acid
-
IC50: 3.4 mM
iodoacetamide
-
-
L-1-tosylamido-2-phenethyl chlorometyl ketone
-
competitive inhibitor with respect to luciferin, noncompetitive with respect to ATP
Limulus amebocyte lysate
-
decreased luminescence intensity to 10%
-
Luciferin
MgATP2-
-
-
N'-(3-chlorophenyl)-N-[(1Z)-(3-chlorophenyl)methylidene]imidoformamide
common name DCB
N,N-dimethyl-4-([7-(2-methylprop-2-en-1-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)aniline
-
-
N,N-dimethyl-4-([7-(propan-2-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)aniline
-
-
N-(4-ethoxyphenyl)-2-methoxybenzamide
-
N-(6-ethoxy-1,3-benzothiazol-2-yl)-2-methylfuran-3-carboxamide
-
N-(6-methoxy-1,3-benzothiazol-2-yl)-2-methylfuran-3-carboxamide
-
N-(6-methoxy-1,3-benzothiazol-2-yl)-3-methylthiophene-2-carboxamide
-
-
N-(6-methyl-1,3-benzothiazol-2-yl)thiophene-2-carboxamide
N-ethylmaleimide
-
-
N-methyl-4-([7-(2-methylprop-2-en-1-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)aniline
-
-
N-methyl-4-([7-(propan-2-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)aniline
-
-
N-tosyl-L-lysine chloromethyl ketone
-
-
N-tosyl-L-phenylalanine chloromethyl ketone
N-[3-(6-methoxy-1,3-benzothiazol-2-yl)phenyl]acetamide
-
-
N-[4-(1,3-benzothiazol-2-yl)phenyl]acetamide
-
-
N-[5-[(2,2-dimethylpropanoyl)amino]pyridin-2-yl]-3-hydroxybenzamide
-
N-[6-(methylsulfonyl)-1,3-benzothiazol-2-yl]thiophene-2-carboxamide
-
octadecanoic acid
-
IC50: 0.00063 mM
octanoic acid
-
IC50: 2.9 mM
oxyluciferin
-
competitive inhibitor
p-mercuribenzoate
-
-
phosphate
-
-
Procion blue MX-R
resveratrol
-
resveratrol is 3,5,4'-trihydroxystilbene, potent inhibitor
ribose-5-phosphate
-
-
tetradecanoic acid
-
IC50: 0.00068 mM
additional information
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
ATP
essential for luminescence reaction, initiates luminescence reaction
CoA
prevents rapid decay of light emission
diphosphate
stimulates light production under some conditions
molecular oxygen
essential for luminescence reaction
Triphosphate
stimulates light production under some conditions
alpha-synuclein
-
dose-dependent enhancement of oxyluciferin formation, maximum rate of bioluminescence independent upon ATP concentration
-
CoA
-
enhances luminescent activity of the wild-type enzyme about 2fold, highest activity at 1.2 mM CoA. For the N-terminal domain the effect of CoA is modest, 1.1fold enhancement, highest activity at 0.01 mM CoA. Addition of CoA at higher concentrations inhibits the luminescence activity
Luciferin
-
preparations supplemented with extra luciferin provide maximum light emission
Polyethyleneglycol
-
stimulates activity by promoting the dissociation of inhibitory product from the enzyme
Polyvinylpyrrolidone
-
stimulates activity by promoting the dissociation of inhibitory product from the enzyme
Triton X-100
-
stimulates activity by promoting the dissociation of inhibitory product from the enzyme
[1,1,3,3-tetramethylguanidine][acetate]
-
enzyme shows increased activity and increased thermal stability
[1,1,3,3-tetramethylguanidine][lactate]
-
increase in concentration of [1,1,3,3-tetramethylguanidine][Lac] up to 0.25 M increases enzyme activity, and at concentrations more than 0.25 M enzyme activity is decreased. Optimum temperature and thermal stability studies show more stability of luciferase only in the presence of [1,1,3,3-tetramethylguanidine][Lac]
[1,1,3,3-tetramethylguanidine][propionate]
-
in the presence of [1,1,3,3-tetramethylguanidine][propionate], enzyme activities are decreased with an increase in ionic liquid concentration
[1,1,3,3-tetramethylguanidine][trichloroacetate]
-
enzyme shows decreased activity
[1,1,3,3-tetramethylguanidine][trifluoroacetate]
-
enzyme shows unchanged activity
additional information
-
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.04 - 0.16
ATP
0.00076 - 0.1421
D-firefly luciferin
0.0023 - 0.23
D-luciferin
0.00038 - 0.0126
D-luciferyl-O-adenosine monophosphate
0.00741
lauric acid
-
0.0136
linoleic acid
-
0.0486 - 1.2
MgATP2-
0.176
(4S)-2-(6-hydroxy-1,3-benzoxazol-2-yl)-4,5-dihydro-1,3-thiazole-4-carboxylic acid
-
pH 8.5, temperature not specified in the publication
0.07
(4S)-2-(6-hydroxy-1-benzofuran-2-yl)-4,5-dihydro-1,3-thiazole-4-carboxylic acid
-
pH 8.5, temperature not specified in the publication
0.061
(4S)-2-(6-hydroxy-1-benzothiophen-2-yl)-4,5-dihydro-1,3-thiazole-4-carboxylic acid
-
pH 9.1, temperature not specified in the publication
0.02
(4S)-2-(6-hydroxy-1H-benzimidazol-2-yl)-4,5-dihydro-1,3-thiazole-4-carboxylic acid
-
pH 8.5, temperature not specified in the publication
0.00025 - 0.0003
5,5-dimethyl-luciferyl-O-adenosine monophosphate
0.001 - 6.9
ATP
0.001 - 2.5
D-luciferin
0.0149
dehydroluciferyl-adenylate
-
-
0.0982
L-luciferin
-
-
0.0136
linolenic acid
-
-
0.0072 - 0.218
Luciferin
0.0077 - 0.0127
luciferyl-O-adenosine monophosphate
0.025 - 6.2
MgATP2-
0.0147
oxyluciferin
-
-
additional information
additional information
-
TURNOVER NUMBER [1/s]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.000000157 - 0.24
D-luciferin
0.0000311 - 0.32
D-luciferyl-O-adenosine monophosphate
0.278
lauric acid
-
0.000000157 - 0.24
MgATP2-
0.0018
(4S)-2-(6-hydroxy-1,3-benzoxazol-2-yl)-4,5-dihydro-1,3-thiazole-4-carboxylic acid
-
pH 8.5, temperature not specified in the publication
0.00063
(4S)-2-(6-hydroxy-1-benzofuran-2-yl)-4,5-dihydro-1,3-thiazole-4-carboxylic acid
-
pH 8.5, temperature not specified in the publication
0.0067
(4S)-2-(6-hydroxy-1-benzothiophen-2-yl)-4,5-dihydro-1,3-thiazole-4-carboxylic acid
-
pH 9.1, temperature not specified in the publication
0.00051
(4S)-2-(6-hydroxy-1H-benzimidazol-2-yl)-4,5-dihydro-1,3-thiazole-4-carboxylic acid
-
pH 8.5, temperature not specified in the publication
0.0001 - 0.19
D-luciferin
0.13
linolenic acid
-
-
1.6
Luciferin
-
-
additional information
additional information
-
kinetic of light emission
-
kcat/KM VALUE [1/mMs-1]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.01
(4S)-2-(6-hydroxy-1,3-benzoxazol-2-yl)-4,5-dihydro-1,3-thiazole-4-carboxylic acid
-
pH 8.5, temperature not specified in the publication
0.01
(4S)-2-(6-hydroxy-1-benzofuran-2-yl)-4,5-dihydro-1,3-thiazole-4-carboxylic acid
-
pH 8.5, temperature not specified in the publication
0.11
(4S)-2-(6-hydroxy-1-benzothiophen-2-yl)-4,5-dihydro-1,3-thiazole-4-carboxylic acid
-
pH 9.1, temperature not specified in the publication
0.03
(4S)-2-(6-hydroxy-1H-benzimidazol-2-yl)-4,5-dihydro-1,3-thiazole-4-carboxylic acid
-
pH 8.5, temperature not specified in the publication
6.78
D-luciferin
-
pH 8.2, temperature not specified in the publication
Ki VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.00034
3-[5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid
pH and temperature not specified in the publication
0.000034 - 0.00034
5'-O-[N-(dehydroluciferyl)sulfamoyl]adenosine
0.0005
dehydroluciferin
pH 7.8, 25°C
0.0000038
dehydroluciferyl adenylate
pH and temperature not specified in the publication
0.0000038
L-AMP
pH 7.8, 25°C
0.003 - 0.004
L-luciferin
-
0.000026
lipoic acid
-
0.00053
myristic acid
-
0.0005
oxyluciferin
pH 7.8, 25°C
0.00012
[4-(6-methoxynaphthalen-2-yl)phenyl]acetic acid
pH and temperature not specified in the publication
-
0.0006
2-(6'-hydroxy-2'-benzothiazolyl)-4-hydroxymethylthiazole
-
-
0.9
3',5'-cyclic AMP
-
-
0.0014
4-[5-(2-chlorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid
-
-
0.03
4-[5-(3-chlorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid
-
-
0.00034
5'-O-[(N-dehydroluciferyl)-sulfamoyl]-adenosine
-
-
0.23
5-anilino-1-naphthalene sulfonate
-
-
0.0059
6-toluidino-2-naphthalene sulfonate
-
-
0.9
dAMP
-
-
0.7
dATP
-
-
0.00001 - 0.001
dehydroluciferin
0.0000038
dehydroluciferyl-adenylate
-
-
0.25
L-tosylamido-2-phenethyl chloromethyl ketone
-
-
1
MgATP2-
-
-
0.73
N-tosyl-L-lysine chloromethyl ketone
-
-
0.25
N-tosyl-L-phenylalanine chloromethyl ketone
-
-
0.0005
oxyluciferin
-
-
0.3
phosphate
-
-
0.002
resveratrol
-
-
0.34
ribose-5-phosphate
-
-
additional information
5'-O-[hydroxy({[(2Z)-2-(6-oxo-1,3-benzothiazol-2(6H)-ylidene)-2,3-dihydro-1,3-thiazol-4-yl]carbonyl}oxy)phosphoryl]adenosine
IC50 VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.0004
(2E)-1-(1-benzofuran-2-yl)-3-(4-methylphenyl)prop-2-en-1-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.0018
(2E)-1-(1-benzofuran-2-yl)-3-phenylprop-2-en-1-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.00007
(2E)-1-(2-hydroxyphenyl)-3-(4-methylphenyl)prop-2-en-1-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.0011
(2E)-1-(5-chlorothiophen-2-yl)-3-(4-methylphenyl)prop-2-en-1-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.00041
(2E)-1-(5-chlorothiophen-2-yl)-3-phenylprop-2-en-1-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.000088
(2E)-2-benzylidene-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
0.0002
(2E)-2-[(2-bromophenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.00009
(2E)-2-[(2-chlorophenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.0005
(2E)-2-[(2-methoxyphenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.00044
(2E)-2-[(2-methylphenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.0013
(2E)-2-[(2-nitrophenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.0006
(2E)-2-[(3-bromophenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.0014
(2E)-2-[(3-chlorophenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.000034
(2E)-2-[(3-methoxyphenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.0015
(2E)-2-[(3-methylphenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.0011
(2E)-2-[(3-nitrophenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.000007
(2E)-2-[(4-bromophenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.00006
(2E)-2-[(4-chlorophenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.000007
(2E)-2-[(4-ethoxyphenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.0000012
(2E)-2-[(4-ethylphenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.000031
(2E)-2-[(4-fluorophenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one, (2E)-2-[(4-hydroxyphenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.0000012
(2E)-2-[(4-methoxyphenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.0000005
(2E)-2-[(4-methylphenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.000056
(2E)-2-[(4-nitrophenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.0109
(2E)-2-[(pyridin-3-yl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.00013
(2E)-2-[[4-(benzyloxy)phenyl]methylidene]-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.000049
(2E)-2-[[4-(diethylamino)phenyl]methylidene]-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.0000005
(2E)-2-[[4-(dimethylamino)phenyl]methylidene]-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.0002
(2E)-2-[[4-(dimethylamino)phenyl]methylidene]-6-methoxy-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.0012
(2E)-2-[[4-(dimethylamino)phenyl]methylidene]-7-methoxy-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.007
(2E)-2-[[4-(dimethylamino)phenyl]methylidene]-8-methoxy-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.000012
(2E)-2-[[4-(methylsulfanyl)phenyl]methylidene]-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.00026
(2E)-2-[[4-(trifluoromethyl)phenyl]methylidene]-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.00014
(2E)-5-methoxy-2-[(4-methylphenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.000159
(2E)-6-methoxy-2-[(4-methylphenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.00286 - 122
(2E)-7-methoxy-2-[(4-methylphenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
-
0.000106
(2E)-8-methoxy-2-[(4-methylphenyl)methylidene]-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.00000025
(6E)-6-[(3-carboxy-4-hydroxyphenyl)methylidene]-5-oxo-5,6,7,8-tetrahydronaphthalene-2-carboxylic acid
Photinus pyralis
pH and temperature not specified in the publication
-
0.002
(7E)-7-[(4-methylphenyl)methylidene]-8-oxo-5,6,7,8-tetrahydronaphthalene-2-carboxylic acid
Photinus pyralis
pH and temperature not specified in the publication
-
0.0005
2-(2-fluorophenyl)-6-methoxy-1,3-benzothiazole
Photinus pyralis
pH and temperature not specified in the publication
0.00016
2-benzylidene-1H-indene-1,3(2H)-dione
Photinus pyralis
pH and temperature not specified in the publication
-
0.00056
2-hydroxy-5-[(E)-(1-oxo-3,4-dihydronaphthalen-2(1H)-ylidene)methyl]benzoic acid
Photinus pyralis
pH and temperature not specified in the publication
-
0.000063
2-[(4-methylphenyl)methylidene]-1H-indene-1,3(2H)-dione
Photinus pyralis
pH and temperature not specified in the publication
-
0.0024
2-[(4-methylphenyl)methyl]-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.0018
2-[[4-(dimethylamino)phenyl]methyl]-3,4-dihydronaphthalen-1(2H)-one
Photinus pyralis
pH and temperature not specified in the publication
-
0.00058
3-(4-methylphenyl)-4,5-dihydro-2H-benzo[g]indazole
Photinus pyralis
pH and temperature not specified in the publication
-
0.0059
4-(4-methylphenyl)-5,6-dihydrobenzo[h]quinazolin-2-amine
Photinus pyralis
pH and temperature not specified in the publication
-
0.000033
5'-O-[[2-(6-hydroxy-1,3-benzothiazol-2-yl)-1,3-thiazole-4-carbonyl]sulfamoyl]adenosine
Photinus pyralis
pH and temperature not specified in the publication
-
0.0003
5-(ethanesulfonyl)-2-(naphthalen-2-yl)-1,3-benzoxazole
Photinus pyralis
pH and temperature not specified in the publication
-
0.0002
5-[(2E)-4-(4-bromophenyl)-4-oxobut-2-en-1-yl]-2-hydroxybenzoic acid
Photinus pyralis
pH and temperature not specified in the publication
-
0.00044
5-[(E)-(6-bromo-1-oxo-3,4-dihydronaphthalen-2(1H)-ylidene)methyl]-2-hydroxybenzoic acid
Photinus pyralis
pH and temperature not specified in the publication
-
0.00005
lipoic acid
Photinus pyralis
-
0.00068
myristic acid
Photinus pyralis
-
0.000069
N-pyridin-2-ylbenzamide
Photinus pyralis
-
0.001
NFkappaBAI4
Photinus pyralis
pH and temperature not specified in the publication
-
0.0019 - 0.002
resveratrol
0.0005
[2-(4-ethoxyphenyl)quinolin-4-yl][4-(pyridin-2-yl)piperazin-1-yl]methanone
Photinus pyralis
pH and temperature not specified in the publication
-
0.0002
(2R)-2-[4-(1-oxo-1,3-dihydro-2H-isoindol-2-yl)phenyl]propanoic acid
Photinus pyralis
-
0.002
(2Z)-1-(4-chlorophenyl)-3-(pyridin-2-ylamino)prop-2-en-1-one
Photinus pyralis
-
0.00008
(2Z)-3-[(2-bromophenyl)amino]-1-pyridin-2-ylprop-2-en-1-one
Photinus pyralis
-
0.001
(2Z)-3-[(4-fluorophenyl)amino]-1-furan-2-ylprop-2-en-1-one
Photinus pyralis
-
0.00021
(2Z)-3-[[4-(dimethylamino)cyclohexa-1,5-dien-1-yl]amino]-1-phenylprop-2-en-1-one
Photinus pyralis
-
0.0008
(3Z)-3-[[4-(dimethylamino)phenyl]methylidene]-1,3-dihydro-2H-indol-2-one
Photinus pyralis
-
0.0006
1-[3-(6-ethoxy-1,3-benzothiazol-2-yl)thiophen-2-yl]urea
Photinus pyralis
-
0.00008
2,4-dimethoxy-N-(5-methylpyridin-2-yl)benzamide
Photinus pyralis
-
0.0062
2-(2-amino-3-methoxyphenyl)-4H-chromen-4-one
Photinus pyralis
-
0.0054
2-(2-chlorophenyl)-6-methoxy-1,3-benzothiazole
Photinus pyralis
-
-
-
0.0006
2-(2-fluorophenyl)-6-methoxy-1,3-benzothiazole
Photinus pyralis
-
-
0.00032
2-(2-imino-4,5,6,7-tetrahydro-1,3-benzothiazol-3(2H)-yl)-1-(4-methylphenyl)ethanone
Photinus pyralis
-
0.0113
2-(2-methoxyphenyl)-1,3-benzothiazole
Photinus pyralis
-
-
0.0032
2-(3,4-dimethoxyphenyl)-1,3-benzothiazole
Photinus pyralis
-
-
0.0028
2-(3,4-dimethoxyphenyl)-6-methoxy-1,3-benzothiazole
Photinus pyralis
-
-
0.0242
2-(3-fluorophenyl)-1,3-benzothiazole
Photinus pyralis
-
-
0.0015
2-(3-fluorophenyl)-6-methoxy-1,3-benzothiazole
Photinus pyralis
-
-
0.0045
2-(4-chlorophenyl)-1,3-benzothiazole
Photinus pyralis
-
-
0.0035
2-(4-chlorophenyl)-6-methoxy-1,3-benzothiazole
Photinus pyralis
-
-
0.0013
2-(4-ethoxyphenyl)-4-[(4-methylpiperazin-1-yl)carbonyl]quinoline
Photinus pyralis
-
0.00041
2-(4-ethoxyphenyl)-4-[(4-pyridin-2-ylpiperazin-1-yl)carbonyl]quinoline
Photinus pyralis
-
0.0013
2-(4-fluorophenyl)-6-methoxy-1,3-benzothiazole
Photinus pyralis
-
-
0.001
2-(4-methoxyphenyl)-1,3-benzothiazole
Photinus pyralis
-
-
0.004
2-(4-methylphenyl)-4-[(4-pyrimidin-2-ylpiperazin-1-yl)carbonyl]quinoline
Photinus pyralis
-
0.00008 - 0.0001
2-(5-biphenyl-4-yl-1,2,4-oxadiazol-3-yl)pyridine
0.0171
2-(5-furan-2-yl-1,2,4-oxadiazol-3-yl)pyridine
Photinus pyralis
-
-
0.0001
2-(5-naphthalen-2-yl-1,2,4-oxadiazol-3-yl)pyridine
Photinus pyralis
-
0.0144
2-(5-pyridin-4-yl-1,2,4-oxadiazol-3-yl)pyridine
Photinus pyralis
-
-
0.0073
2-([7-(propan-2-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)aniline
Photinus pyralis
-
pH 7.8, 20°C
0.0008
2-hydroxy-N'-[(1E)-(2-hydroxyphenyl)methylidene]benzohydrazide
Photinus pyralis
-
0.0047
2-methyl-6-(phenylethynyl)pyridine
Photinus pyralis
-
0.0043
2-methyl-6-[(Z)-2-phenylethenyl]pyridine
Photinus pyralis
-
0.0028
2-[5-(2-methoxyphenyl)-1,2,4-oxadiazol-3-yl]pyridine
Photinus pyralis
-
-
0.00084
2-[5-(3,4-dichlorophenyl)-1,2,4-oxadiazol-3-yl]pyridine
Photinus pyralis
-
0.00022
2-[5-(3-chloro-4-methylphenyl)-1,2,4-oxadiazol-3-yl]pyridine
Photinus pyralis
-
0.0005
2-[5-(3-chlorophenyl)-1,2,4-oxadiazol-3-yl]pyridine
Photinus pyralis
-
0.0032
2-[5-(5-bromofuran-2-yl)-1,2,4-oxadiazol-3-yl]pyridine
Photinus pyralis
-
0.00005
3-(2-hydroxyphenyl)-1H-benzo[f]chromen-1-one
Photinus pyralis
-
0.0083
3-(2-methoxyphenyl)-5-phenyl-1,2,4-oxadiazole
Photinus pyralis
-
-
0.01471
3-([7-(propan-2-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)aniline
Photinus pyralis
-
pH 7.8, 20°C
0.0014
3-pyridin-2-yl-1,2,4-oxadiazol-5-yl biphenyl-4-carboxylate
Photinus pyralis
-
-
0.0002
4-(1,3-benzothiazol-2-yl)-N,N-dimethylaniline
Photinus pyralis
-
-
0.0063
4-(1,3-benzothiazol-2-yl)benzonitrile
Photinus pyralis
-
-
0.0007
4-(1,4-dioxa-8-azaspiro[4.5]dec-8-ylcarbonyl)-2-(4-ethoxyphenyl)quinoline
Photinus pyralis
-
0.01076
4-(4-aminophenoxy)-7-(propan-2-yl)-7H-pyrrolo[2,3-d]pyrimidin-2-amine
Photinus pyralis
-
pH 7.8, 20°C
0.024
4-(5-furan-2-yl-1,2,4-oxadiazol-3-yl)pyridine
Photinus pyralis
-
-
0.0007
4-(6-methoxy-1,3-benzothiazol-2-yl)-N,N-dimethylaniline
Photinus pyralis
-
-
0.0057
4-(6-methoxy-1,3-benzothiazol-2-yl)benzonitrile
Photinus pyralis
-
-
0.00012
4-([7-(2,2-dimethylpropyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)-N,N-dimethylaniline
Photinus pyralis
-
pH 7.8, 20°C
0.00007
4-([7-(2,2-dimethylpropyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)-N-methylaniline
Photinus pyralis
-
pH 7.8, 20°C
0.00008
4-([7-(2,2-dimethylpropyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)aniline
Photinus pyralis
-
pH 7.8, 20°C
0.00012
4-([7-(2-methylprop-2-en-1-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)aniline
Photinus pyralis
-
pH 7.8, 20°C
0.00031
4-([7-(2-methylpropyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)aniline
Photinus pyralis
-
pH 7.8, 20°C
0.00753
4-([7-(3-methylbut-2-en-1-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)aniline
Photinus pyralis
-
pH 7.8, 20°C
0.00646
4-([7-(3-methylbutyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)aniline
Photinus pyralis
-
pH 7.8, 20°C
0.00224
4-([7-(prop-2-en-1-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)aniline
Photinus pyralis
-
pH 7.8, 20°C
0.00036
4-([7-(propan-2-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)aniline
Photinus pyralis
-
pH 7.8, 20°C
0.0017
4-amino-6-[(E)-[4'-[(Z)-(8-amino-1-hydroxy-5,7-disulfonato-6,7-dihydronaphthalen-2-yl)diazenyl]-3-methylbiphenyl-4-yl]diazenyl]-5-hydroxy-2,3-dihydronaphthalene-1,3-disulfonate
Photinus pyralis
-
0.00041
4-methoxy-N-[(4-methylpyridin-2-yl)carbamoyl]benzamide
Photinus pyralis
-
0.00029
4-[(7-cyclopentyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)oxy]aniline
Photinus pyralis
-
pH 7.8, 20°C
0.00943
4-[(7-ethenyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)oxy]aniline
Photinus pyralis
-
pH 7.8, 20°C
0.00351
4-[(7-ethyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)oxy]aniline
Photinus pyralis
-
pH 7.8, 20°C
0.0003
4-[1-(1,3-benzothiazol-2-yl)-2-(4-methylpiperazin-1-yl)-2-oxoethyl]phenol
Photinus pyralis
-
0.024
4-[3-(2-methoxyphenyl)-1,2,4-oxadiazol-5-yl]pyridine
Photinus pyralis
-
-
0.0005
4-[5-(2-methoxyphenyl)-1,2,4-oxadiazol-3-yl]-N,N-dimethylaniline
Photinus pyralis
-
-
0.00015 - 0.0002
5-(2,4-dimethoxyphenyl)-3-phenyl-1,2,4-oxadiazole
0.001
5-(2-bromophenyl)-3-(4-methylphenyl)-1,2,4-oxadiazole
Photinus pyralis
-
0.00015
5-(2-chloro-4-methylphenyl)-3-phenyl-1,2,4-oxadiazole
Photinus pyralis
-
0.0028
5-(2-fluorophenyl)-3-(4-methoxyphenyl)-1,2,4-oxadiazole
Photinus pyralis
-
-
0.0017
5-(4-fluorophenyl)-3-(3-methylphenyl)-1,2,4-oxadiazole
Photinus pyralis
-
-
0.0011
5-methyl-N-[6-(methylsulfonyl)-1,3-benzothiazol-2-yl]thiophene-2-carboxamide
Photinus pyralis
-
0.00041
5-naphthalen-2-yl-3-phenyl-1,2,4-oxadiazole
Photinus pyralis
-
0.0032
6-methoxy-2-(2-methoxyphenyl)-1,3-benzothiazole
Photinus pyralis
-
-
0.0015
6-methoxy-2-(3-methylphenyl)-1,3-benzothiazole
Photinus pyralis
-
-
0.0022
6-methoxy-2-(4-methoxyphenyl)-1,3-benzothiazole
Photinus pyralis
-
-
0.0089
6-methoxy-2-[2-(2-methylbenzyl)phenyl]-1,3-benzothiazole
Photinus pyralis
-
-
-
0.0134
6-methoxy-2-[3-(2-methylbenzyl)phenyl]-1,3-benzothiazole
Photinus pyralis
-
-
-
0.0045
6-methyl-2-[(Z)-phenyldiazenyl]pyridin-3-ol
Photinus pyralis
-
13.6
butanoic acid
Photinus pyralis
-
IC50: 13.6 mM
0.135
D-luciferin
Photinus pyralis
-
inhibits CoA-ligase activity with L-luciferin, IC50: 0.135 mM against 0.1 mM L-luciferin
0.0132
Decanoic acid
Photinus pyralis
-
IC50: 0.0132 mM
0.000006
dehydroluciferyl adenylate
Photinus pyralis
-
IC50: 6 nM
0.0000074 - 0.000022
dehydroluciferyl-adenylate
0.005
dehydroluciferyl-CoA
Photinus pyralis
-
IC50: 0.005 mM
0.0012
dodecanoic acid
Photinus pyralis
-
IC50: 0.0012 mM
0.0009
ethyl 4-[[2-(4-ethoxyphenyl)quinolin-4-yl]carbonyl]piperazine-1-carboxylate
Photinus pyralis
-
0.00067
hexadecanoic acid
Photinus pyralis
-
IC50: 0.00067 mM
3.4
hexanoic acid
Photinus pyralis
-
IC50: 3.4 mM
0.0045
N'-(3-chlorophenyl)-N-[(1Z)-(3-chlorophenyl)methylidene]imidoformamide
Photinus pyralis
-
0.00009
N,N-dimethyl-4-([7-(2-methylprop-2-en-1-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)aniline
Photinus pyralis
-
pH 7.8, 20°C
0.00018
N,N-dimethyl-4-([7-(propan-2-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)aniline
Photinus pyralis
-
pH 7.8, 20°C
0.0006
N-(4-ethoxyphenyl)-2-methoxybenzamide
Photinus pyralis
-
0.00065
N-(6-ethoxy-1,3-benzothiazol-2-yl)-2-methylfuran-3-carboxamide
Photinus pyralis
-
0.0012
N-(6-methoxy-1,3-benzothiazol-2-yl)-2-methylfuran-3-carboxamide
Photinus pyralis
-
0.0005
N-(6-methyl-1,3-benzothiazol-2-yl)thiophene-2-carboxamide
Photinus pyralis
-
0.00006
N-methyl-4-([7-(2-methylprop-2-en-1-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)aniline
Photinus pyralis
-
pH 7.8, 20°C
0.00013
N-methyl-4-([7-(propan-2-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]oxy)aniline
Photinus pyralis
-
pH 7.8, 20°C
0.0029
N-[3-(6-methoxy-1,3-benzothiazol-2-yl)phenyl]acetamide
Photinus pyralis
-
-
0.003
N-[4-(1,3-benzothiazol-2-yl)phenyl]acetamide
Photinus pyralis
-
-
0.0007
N-[5-[(2,2-dimethylpropanoyl)amino]pyridin-2-yl]-3-hydroxybenzamide
Photinus pyralis
-
0.0011
N-[6-(methylsulfonyl)-1,3-benzothiazol-2-yl]thiophene-2-carboxamide
Photinus pyralis
-
0.00063
octadecanoic acid
Photinus pyralis
-
IC50: 0.00063 mM
2.9
octanoic acid
Photinus pyralis
-
IC50: 2.9 mM
0.00068
tetradecanoic acid
Photinus pyralis
-
IC50: 0.00068 mM
SPECIFIC ACTIVITY [µmol/min/mg]
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
additional information
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
5 - 6
red emitted light
5.4
red emitted light
5.5
shift of emission spectra to red region
7.5 - 7.8
yellow-green emitted light
7.5 - 8
7.6
yellow-green emitted light
8.5
wild-type enzyme, mutant enzymes H461D, H489K, H489D and H489M
9
recombinant circular enzyme
6.9
-
in vivo detection
7.2
-
assay at
7.3
-
mutant R337Q
7.4
-
optimum for binding to triazine dyes
7.6
-
tricine buffer
8.2
-
substrate: D-luciferin
8.6
-
reaction with 5,5-dimethyl-luciferyl-O-adenosine monophosphate
9.1
-
substrate: (4S)-2-(6-hydroxy-1-benzothiophen-2-yl)-4,5-dihydro-1,3-thiazole-4-carboxylic acid
additional information
pH RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
2.5 - 10.5
pH activity range, recombinant circular enzyme
4 - 10
pH activity range, recombinant wild-type enzyme
6.5 - 8.5
-
pH 6.5: about 45% of activity maximum, pH 8.5: about 35% of activity maximum
7.5 - 8
7.5 - 8.5
-
peak emission at 560 nm
8.2 - 9.1
-
-
additional information
-
buffers with pKa from 7.2 to 8.4 tested and no relationship with activity found
TEMPERATURE OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
10
mutant enzyme H461D
20
mutant enzyme H489M
35
recombinant circular enzyme
23
-
purified
additional information
TEMPERATURE RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
10 - 60
temperature activity range, recombinant wild-type enzyme and recombinant circular enzyme
22 - 28
-
-
24 - 27
-
assay at
37 - 45
-
-
pI VALUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
6.2
calculated with ExPASy Compute pI/MW tool
6
isoelectric focusing
7.2
-
His10-tagged wild type enzyme
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
associated to
Manually annotated by BRENDA team
additional information
-
localized in peroxisomes when expressed in mammalian, plant and yeast cells
-
Manually annotated by BRENDA team
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
malfunction
the single conservative amino acid change tyrosine to phenylalanine at position 255 accounts for the entire emission color difference
physiological function
additional information
UNIPROT
ENTRY NAME
ORGANISM
NO. OF AA
NO. OF TRANSM. HELICES
MOLECULAR WEIGHT[Da]
SOURCE
SEQUENCE
LOCALIZATION PREDICTION?
LUCI_PHOPY
550
0
60745
Swiss-Prot
other Location (Reliability: 2)
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
62000
SDS-PAGE
65500
calculated from amino acid sequence
100000
-
from sedimentation velocity of the crystalline form
49000
-
x * 49000, N-terminal domain, SDS-PAGE
50000
50000 - 52000
500000
-
2 * 500000 sedimentation equilibrium study of guanidine hydrochloride-treated enzyme
53600
-
sedimentation velocity
61160
-
calculated from sequence of cDNA
61200
-
x * 61200, wild-type enzyme, SDS-PAGE
62000
89000 - 91000
-
low speed equilibrium sedimentation
92000 - 95000
-
high speed equilibrium sedimentation
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
?
x * 61000, recombinant wild-type enzyme, SDS-PAGE, x * 80000, recombinant cyclized enzyme SpyCatcher-LUC-SpyTag, SDS-PAGE
dimer
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
crystallization was achieved using the micro batch technique under oil at 4°C, 2 A resolution structure was determined at -173°C, using isomorphous replacement, the protein is folded into two compact domains. The large N-terminal domain consists of a beta-barrel and two beta-sheets. The sheets are flanked by alpha-helices to form a layered structure, the C-terminal portion forms a distinct domain, separated from the N-terminal domain by a wide cleft
-
extraction, 2 gel elutions, 5 crystallizations
-
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
D476P
site-directed mutagenesis, the mutant shows decreased thermostability compared to the wild-type
E311Q
site-directed mutagenesis, the mutant shows 65% specific activity compared to the wild-type
G446I
turnover number is 8.4fold lower compared to wild-type value, KM-value for D-luciferin is 1.5fold lower compared to wild-type value, KM-value for MgATP2- is 2.2fold lower compared to wild-type value, the bioluminescence emission maximum is 554 nm, compared to 558 nm for the wild-type value. The ratio of turnover-number to KM-value for D-luciferyl-O-adenosine monophosphate is 5.1fold lower compared to wild-type value
H461D
relative specific activity is 57.6% as compared to wild-type enzyme. Mutation decreases ATP binding affinity, reduces the melting temperature of protein by around 25°C and shifts its optimum temperature of activity to 10°C
H489D
relative specific activity is 112% as compared to wild-type enzyme. Mutation introduces a new salt bridge between the C-terminal and N-terminal domains and increases protein rigidity but only slightly improves its thermal stability
H489K
relative specific activity is 115% as compared to wild-type enzyme. Mutation increases protein rigidity but only slightly improves its thermal stability
H489M
relative specific activity is 103% as compared to wild-type enzyme
H489P
site-directed mutagenesis, the mutant shows improved thermostability while maintaining its catalytic efficiency compared to that of wild-type luciferase, the overall rigidity and local rigidity of H489Pmutant are greatly strengthened
I423L/D436G/L530R
the mutant shows a lower apparent Km value of 0.00076 mM than that of the wild-type enzyme
ins356E
green and red emitting light at pH 7.8, at pH 5.5 red-emitting luciferase, 97% increase in specific activity
ins356K
green and red emitting light at pH 7.8, at pH 5.5 red-emitting luciferase, 18% decrease in specific activity
ins356Q
at pH 5.5 red-emitting luciferase, increase in thermostability, 6% decrease in specific activity
ins356R
green and red emitting light at pH 7.8, at pH 5.5 red-emitting luciferase, 12% decrease in specific activtiy
K329I
point mutation does not affect the orientation of critical residues in bioluminescence color determination. Thermostability and Km value for luciferin are decreased as compared to wild type enzyme. Intrinsic fluorescence and far-UV CD intensity in K329I mutant is decreased. Realative activity as compared to wild-type enzyme is 32%
K443A
turnover number is 2655 fold lower compared to wild-type value, KM-value for D-luciferin is 6.5fold lower compared to wild-type value, KM-value for MgATP2- is 3.3fold lower compared to wild-type value, the bioluminescence emission maximum is identical to the wild-type value. The ratio of turnover-number to KM-value for D-luciferyl-O-adenosine monophosphate is 181fold lower compared to wild-type value
K443A/K529A
turnover number is 1063700fold lower compared to wild-type value, KM-value for D-luciferin is 4.5fold higher compared to wild-type value, KM-value for MgATP2- is 3.5fold higher compared to wild-type value, the bioluminescence emission maximum is 596 nm, compared to 558 nm for the wild-type value. The ratio of turnover-number to KM-value for D-luciferyl-O-adenosine monophosphate is 858fold lower compared to wild-type value
K445Q
turnover number is 1.4fold higher compared to wild-type value, KM-value for D-luciferin is 1.7fold lower compared to wild-type value, KM-value for MgATP2- is 2.3fold lower compared to wild-type value, the bioluminescence emission maximum is 556 nm, compared to 558 nm for the wild-type value. The ratio of turnover-number to KM-value for D-luciferyl-O-adenosine monophosphate is 1.7fold higher compared to wild-type value
K529A
turnover number is 668fold lower compared to wild-type value, KM-value for D-luciferin is 15.3fold higher compared to wild-type value, KM-value for MgATP2- is 7.5fold higher compared to wild-type value, the bioluminescence emission maximum is 562 nm, compared to 558 nm for the wild-type value. The ratio of turnover-number to KM-value for D-luciferyl-O-adenosine monophosphate is 3.5fold lower compared to wild-type value
N229T
site-directed mutagenesis, the mutant shows 63% specific activity compared to the wild-type
Q448A
turnover number is 1.9fold lower compared to wild-type value, KM-value for D-luciferin is 2.5fold lower compared to wild-type value, KM-value for MgATP2- is 2.1fold higher compared to wild-type value, the bioluminescence emission maximum is 557 nm, compared to 558 nm for the wild-type value. The ratio of turnover-number to KM-value for D-luciferyl-O-adenosine monophosphate is 1.1fold lower compared to wild-type value
R213K/T214N
site-directed mutagenesis, residues K213 and/or N214 are largely responsible for the 1.55fold increase in specific activity of the variant
R218Q
site-directed mutagenesis, the mutant shows 125% specific activity compared to the wild-type
R330Q
point mutation does not affect the orientation of critical residues in bioluminescence color determination. Thermostability and Km value for luciferin are decreased as compared to wild type enzyme. Increase in tryptophan fluorescence intensity and secondary structure content for R330Q as compared with wild type. Realative activity as compared to wild-type enzyme is 23%
R337Q
site-directed mutagenesis, the mutant shows 26% specific activity compared to the wild-type
S284T
site-directed mutagenesis, a red-emitting mutant variant, the mutant shows 25% specific activity compared to the wild-type
S307P/H489P
site-directed mutagenesis, the mutation is randomly chosen outside the flexible regions as a control. The mutant has decreased kinetic stability and enhanced thermodynamic stability compared to the wild-type
T214A/A215L/I232A/F295L/E345K
the mutant enzyme displays high thermostability, retaining about 60% activity after 120 min at 45°C. Although the mutant shows higher maximum activity at high D-luciferin concentrations, its activity at low D-luciferin concentrations (below 0.004 mM) lags behind that of the mutantI423L/D436G/L530R
T214A/A215L/I232A/F295L/E345K/I423L/D436G/L530R
the mutant enzyme exhibits both improved thermostability and brighter luminescence at low luciferin concentrations, it may be useful for reporter gene applications
Y255F
site-directed mutagenesis, the mutant shows 71% specific activity compared to the wild-type
A296C/A326C
-
specific activity 676% (compared to wild-type 100%), Km (ATP) decreased compared to wild-type, Km (D-luciferin) decreased compared to wild-type, optimal temperature 35° (wild-type 25°C), optimal pH 8.5 (wild-type pH 8), activity remains 54% at 40°C for 5 min (compared to wild-type 0%), t1/2: 40 min at 35°C (compared to wild-type 5 min)
A348V
-
Km-value for D-luciferin is 8.9fold higher compared to the Km-value of the wild-type enzyme, the turnover-number for D-luciferin is 2fold lower compared to the turnover-number of the wild-type enzyme, the Km-value for MgATP2- is 6.5fold higher compared to the Km-value of the wild-type enzyme
AC571TG
-
nonsense mutation
D436A
3.4fold increased activity compared to the wild type enzyme
D436E
50% activity compared to the wild type enzyme
D436G
D436N
50% activity compared to the wild type enzyme
D436S
2.2fold increased activity compared to the wild type enzyme
D436V
2% activity compared to the wild type enzyme
D474K
-
D476N mutation does not have any significant effect
D476N
-
D474K mutation destabilizes the protein. Flexibility analysis using dynamic quenching and limited proteolysis demonstrates that D474K mutation is much more flexible than wild-type
DELTA438-550
-
the purified N-terminal domain 1-437 has luminescence activity by itself, and binds to substrates ATP and luciferin with reduced affinity
E345K/A215L
-
half-life at 37°C is 7.36 min, compared to 3.06 min for the wild-type enzyme
E345K/A215L/I232A/T214A
-
half-life at 37°C is 75.1 min, compared to 3.06 min for the wild-type enzyme
E345K/A215L/I232A/T214A/F295L
-
half-life at 37°C is 82.1 min, compared to 3.06 min for the wild-type enzyme
E345K/I232A/T214A
-
half-life at 37°C is 15.5 min, compared to 3.06 min for the wild-type enzyme
E345K/I232A/T214A/F295L/S420T
-
half-life at 37°C is 72.4 min, compared to 3.06 min for the wild-type enzyme
E345K/T214A
-
half-life at 37°C is 8.5 min, compared to 3.06 min for the wild-type enzyme
F14R
-
improved pH tolerance and stability up to 45°C, no decrease in specific activity relative to the recombinant wild type enzyme
F14R/L35Q/V182K/I232K/F465R
-
improved pH tolerance and stability up to 45°C, no decrease in specific activity relative to the recombinant wild type enzyme
F247A
-
Km-value for D-luciferin is 15.3fold higher compared to the Km-value of the wild-type enzyme, the turnover-number for D-luciferin is 17.9fold lower compared to the turnover-number of the wild-type enzyme, the Km-value for MgATP2- is 21.9fold higher compared to the Km-value of the wild-type enzyme
F247L
-
Km-value for D-luciferin is 8.3fold higher compared to the Km-value of the wild-type enzyme, the turnover-number for D-luciferin is nearly identical to the turnover-number of the wild-type enzyme, the Km-value for MgATP2- is 1.4fold higher compared to the Km-value of the wild-type enzyme
F247Y
-
Km-value for D-luciferin is 1.2fold higher compared to the Km-value of the wild-type enzyme, the turnover-number for D-luciferin is 128fold lower compared to the turnover-number of the wild-type enzyme, the Km-value for MgATP2- is 2fold lower compared to the Km-value of the wild-type enzyme
F250G
F250S
F250T
37% specific activity at pH 7.8 compared to the wild type enzyme
F465R
-
improved pH tolerance and stability up to 45°C, no decrease in specific activity relative to the recombinant wild type enzyme
G246A
G246A/F250G
33% specific activity at pH 7.8 compared to the wild type enzyme
G246A/F250S
42% specific activity at pH 7.8 compared to the wild type enzyme
G246A/F250T
40% specific activity at pH 7.8 compared to the wild type enzyme
G315A
-
Km-value for D-luciferin is 13.3fold higher compared to the Km-value of the wild-type enzyme, the turnover-number for D-luciferin is 625fold lower compared to the turnover-number of the wild-type enzyme, the Km-value for MgATP2- is 7.5fold higher compared to the Km-value of the wild-type enzyme
G316A
-
Km-value for D-luciferin is 1.2fold higher compared to the Km-value of the wild-type enzyme, the turnover-number for D-luciferin is 2.6fold lower compared to the turnover-number of the wild-type enzyme, the Km-value for MgATP2- is 1.5fold lower compared to the Km-value of the wild-type enzyme
G341A
-
Km-value for D-luciferin is 4fold higher compared to the Km-value of the wild-type enzyme, the turnover-number for D-luciferin is 625fold lower compared to the turnover-number of the wild-type enzyme, the Km-value for MgATP2- is 1.3fold higher compared to the Km-value of the wild-type enzyme
H245A
-
Km-value for D-luciferin is identical to the Km-value of the wild-type enzyme, the turnover-number for D-luciferin is 3fold lower compared to the turnover-number of the wild-type enzyme, the Km-value for MgATP2- is 1.5fold higher compared to the Km-value of the wild-type enzyme
H245D
-
longest rise time known among single point mutants
I147A
30% activity compared to the wild type enzyme
I147E
4% activity compared to the wild type enzyme
I147F
1.2fold increased activity compared to the wild type enzyme
I147G
3% activity compared to the wild type enzyme
I147K
4% activity compared to the wild type enzyme
I147L
4.7fold increased activity compared to the wild type enzyme
I147M
3.4fold increased activity compared to the wild type enzyme
I147Q
70% activity compared to the wild type enzyme
I147R
1% activity compared to the wild type enzyme
I147S
7% activity compared to the wild type enzyme
I147V
1.3fold increased activity compared to the wild type enzyme
I232K
-
improved pH tolerance and stability up to 45°C, no decrease in specific activity relative to the recombinant wild type enzyme
I232R
-
specific activity 75% (compared to wild-type 100%), Km (ATP) increased compared to wild-type, Km (D-luciferin) increased compared to wild-type, optimal temperature 25° (wild-type 25°C), optimal pH 8.5 (wild-type pH 8), activity remains 4% at 40°C for 5 min (compared to wild-type 0%), t1/2: 20 min at 35°C (compared to wild-type 5 min)
I232R/A296C/A326C
-
specific activity 358% (compared to wild-type 100%), Km (ATP) increased compared to wild-type, Km (D-luciferin) increased compared to wild-type, optimal temperature 35° (wild-type 25°C), optimal pH 8 (wild-type pH 8), activity remains 28% at 40°C for 5 min (compared to wild-type 0%), t1/2: 10 min at 35°C (compared to wild-type 5 min)
I351A
-
Km-value for D-luciferin is 5.7fold higher compared to the Km-value of the wild-type enzyme, the turnover-number for D-luciferin is 1.5fold higher compared to the turnover-number of the wild-type enzyme, the Km-value for MgATP2- is 1.8fold higher compared to the Km-value of the wild-type enzyme
I423L
I423L/D436G/L530R
K529A
L287I
-
orange light emitting mutant, mutation does not affect the structural integrity and/or folding of luciferase
L342A
-
Km-value for D-luciferin is 8.7fold higher compared to the Km-value of the wild-type enzyme, the turnover-number for D-luciferin is 1.2fold lower compared to the turnover-number of the wild-type enzyme, the Km-value for MgATP2- is 7.5fold higher compared to the Km-value of the wild-type enzyme
L35Q
-
improved pH tolerance and stability up to 45°C, no decrease in specific activity relative to the recombinant wild type enzyme
L530A
20% activity compared to the wild type enzyme
L530D
1% activity compared to the wild type enzyme
L530F
10% activity compared to the wild type enzyme
L530H
1.4fold increased activity compared to the wild type enzyme
L530I
shows wild type enzyme activity
L530K
3.2fold increased activity compared to the wild type enzyme
L530R
L530S
1% activity compared to the wild type enzyme
L530V
50% activity compared to the wild type enzyme
L530Y
2% activity compared to the wild type enzyme
Q283R
-
red light emitting mutant, mutation does not affect the structural integrity and/or folding of luciferase
Q338P
-
about 50% decrease in specific activity compared to wild-type luciferase
R213E
-
same activity like wild-type luciferase
R213M
R218A
-
Km-value for D-luciferin is 20fold higher compared to the Km-value of the wild-type enzyme, the turnover-number for D-luciferin is 31.3fold lower compared to the turnover-number of the wild-type enzyme, the Km-value for MgATP2- is 38.8fold higher compared to the Km-value of the wild-type enzyme
R337Q
S184T
-
red-emitting luciferase with a bioluminescence maximum of 615 nm
S284G
-
red light emitting mutant, mutation does not affect the structural integrity and/or folding of luciferase
S284T
-
red-emitting mutant, about 75% decrease of activitiy in vitro, in vivo more efficient light production
S293P
-
orange light emitting mutant, mutation does not affect the structural integrity and/or folding of luciferase
S347A
-
Km-value for D-luciferin is 11.3fold higher compared to the Km-value of the wild-type enzyme, the turnover-number for D-luciferin is 4.2fold lower compared to the turnover-number of the wild-type enzyme, the Km-value for MgATP2- is 2.2fold higher compared to the Km-value of the wild-type enzyme
S440P/S456Y
-
mutant shows improved specificity and reactivity for ATP compared to wild-type
S440R/S456A
-
mutant shows improved specificity and reactivity for ATP compared to wild-type
S440R/S456V
-
mutant shows improved specificity for ATP compared to wild-type
T251A
-
Km-value for D-luciferin is 20.7fold higher compared to the Km-value of the wild-type enzyme, the turnover-number for D-luciferin is 2.9fold lower compared to the turnover-number of the wild-type enzyme, the Km-value for MgATP2- is 12.5fold higher compared to the Km-value of the wild-type enzyme
T343A
-
Km-value for D-luciferin is 6.6fold higher compared to the Km-value of the wild-type enzyme, the turnover-number for D-luciferin is 125fold lower compared to the turnover-number of the wild-type enzyme, the Km-value for MgATP2- is 5.4fold higher compared to the Km-value of the wild-type enzyme
V182K
-
improved pH tolerance and stability up to 45°C, no decrease in specific activity relative to the recombinant wild type enzyme
V241I
136% specific activity at pH 7.8 compared to the wild type enzyme
V241I/F250G
13% specific activity at pH 7.8 compared to the wild type enzyme
V241I/F250S
32% specific activity at pH 7.8 compared to the wild type enzyme
V241I/F250T
64% specific activity at pH 7.8 compared to the wild type enzyme
V241I/G246A/F250S
73% specific activity at pH 7.8 compared to the wild type enzyme
V241I/G246A/F250T
83% specific activity at pH 7.8 compared to the wild type enzyme
additional information
pH STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
8 - 10
recombinant circular LUC is stable at a pH range of 8.0-10.0, maintaining nearly 100% activity after incubation in various pH buffers for 30 min. Recombinant wild-type LUC maintains only 80% of its original activity after incubating at pH 10.0 for 30 min
746213
8
-
all spectra undergo a red-shift when cells are assayed under acidic conditions, whereas a blue-shift is observed at pH 8.0
676934
TEMPERATURE STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
16.7
Tm value of recombinant wild-type LUC
25
t1/2: 17 min (wild-type enzyme), 9.5 min (mutant enzyme H461D), 12.6 min (mutant enzyme H489K), 20.2 min (mutant enzyme H489D) and 24.4 min (mutant enzyme H489M)
30
t1/2: 10.5 min (wild-type enzyme), 6.9 min (mutant enzyme H461D), 8.3 min (mutant enzyme H489K), 11.1 min (mutant enzyme H489D) and 9.5 min (mutant enzyme H489M)
35 - 45
free enzyme shows 65% remaning activity after 10 min at 35°C, inactivation after 4 min at 35°C, inactivation at 45°C
37
thermal inactivation of purified recombinant wild-type enzyme at pH 7.4 after 47 min
37.4
T50 for recombinant wild-type LUC
40
complete inactivation, mutant ins356Q still 20% residual activity
40.3
T1/2 value of recombinant cyclized LUC
42
thermal inactivation of purified recombinant wild-type enzyme at pH 7.4 after 50 s
47.5
T50 for recombinant cyclized LUC
49.2
T50 value of recombinant cyclized LUC with truncated Spy-Catcher cyclization protein
51.4
T1/2 value of recombinant cyclized LUC with truncated Spy-Catcher cyclization protein
53.5
Tm value of recombinant wild-type LUC
55
complete inactivation
70.2
Tm value of recombinant cyclized LUC
73.1
Tm value of recombinant cyclized LUC with truncated Spy-Catcher cyclization protein
15 - 45
-
when native and mutants are incubated 5 min at temperatures ranging from 15 to 45°C, D474K mutant is inactivated faster than native and D476N at all temperatures
20
-
after 20 min only 5% activity in the absence of ionic liquids but less than 1% in the presence of [1,1,3,3-tetramethylguanidine][lactate] and [1,1,3,3-tetramethylguanidine][propionate]
23
-
stability remains constant upon 120 min
25 - 45
activity starts to decrease above 25°C and is almost completely lost at 45°C
32
-
after 20 min at 32°C wild-type and mutant D476N retain 24% original activity whereas mutant D474K shows only 2% remaining activity
45
-
mutant enzymes F14R, L35Q, V182K, I232K and F465R are stable up to 45°C
additional information
GENERAL STABILITY
ORGANISM
UNIPROT
LITERATURE
bovine serum albumin stabilizes
-
decrease of remaining activity after trypsin hydrolysis at 23 and 37°C, mutants R213M and R337Q are more stable than the wild-type luciferase
-
dithiothreitol stabilizes
-
EDTA stabilizes
-
EDTA, 2-mercaptoethanol, dithiothreitol and bovine serum albumin used as stabilizers
-
enzyme is stable for several days adsorbed on polystyrene
-
immobilization on hexyl-Sepharose reduces the specific activity to 35%, immobilization on octyl-Sepharose reduces the specific activity to 26%
inactivation inhibited by sodium azide
-
more stable in phosphate buffer than in Tricine buffer
-
mutant R337Q still 26% remaining activity after 15 min trypsin hydrolysis at 37°C
-
sorbitol, proline and sucrose with strong stabilizing effect on firefly luciferase activity at 35°C
-
stability in crude solutions varies
-
stabilized by immobilization on polysaccharide carriers
-
STORAGE STABILITY
ORGANISM
UNIPROT
LITERATURE
5°C, pH 7.2, ammonium sulfate, EDTA, glycerol, several weeks
4°C, 50 mM Tris-HCl (pH 7.0) containing 150 mM NaCl, 1 mM EDTA, and 1 mM dithiothreitol, up to 6 months, 10% loss of activity
4°C, in 50 mM Tris-HCl, 1 mM EDTA, 150 mM NaCl, 1 mM DTT and 0.8 M ammonium sulfate pH 8.0
-
4°C, pH 7.0, 0.1 M phosphate, 1 mM 2-mercaptoethanol, immobilized, 3 weeks
-
4°C, pH 7.5, ammonium sulfate, EDTA, as 10 mg protein/ml slurry, several months
-
4°C, wild-type and mutant enzymes remain fully active for up to 6 months
-
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
gel filtration, affinity chromatography
Ni-chelate affinity chromatography
Ni-NTA Sepharose, yield of 95%
recombinant GST-tagged wild-type and mutant enzymes from Escherichia coli strain BL21(DE3) pLysS by glutathione affinity chromatography
recombinant His-tagged wild-type and mutant enzymes from Escherichia coli strain BL21(DE3) by nickel affinity chromatography
recombinant mutants purified using ammonium sulfate precipitation and Sephacryl S-200 column chromatography
recombinant secreted enzyme from Nicotiana benthamiana BY-2 cell medium by ultrafiltration, buffer exchange gel filtration, anion exchange chromatography, and dialysis
a more efficient method for the purification and concentration of luciferase using aqueous two-phase extraction (ATPE) is designed. Downstream processing of luciferase from Photinus pyralis is carried out using polymer/salt aqueous two phase system (ATPS) at 4°C. The enzyme is observed to preferentially partition to the polyethylene glycol (PEG) rich top phase. The best results of purification (13.69 fold) and enzyme activity recovery (118.34%) are observed in the system containing 4.0% (w/w) PEG (1500) and 20.5% (w/w) (NH4)2SO4 with a phase volume ratio of 0.21
-
affinity chromatography
-
alkyl-substituted Sepharose 4B affinity chromatography
-
ammonium sulfate fractionation and gel filtration of the wild-type and several mutants
-
ammonium sulfate fractionation and ion-exchange chromatography of the wild-type and several mutants
-
glutathione Sepharose 4B affinity chromatography
immobilization with Procion blue and other tiazine dyes as a purification method
-
immobilized ion affinity chromatography was used to purify a polyhistidine tagged recombinant enzyme
-
Ni-NTA agarose column chromatography
Ni-NTA Sepharose column chromatography
Ni-NTA Sepharose, yield of 95%
-
Ni-NTA spin column
-
Ni-Sepharose 6 Fast Flow column chromatography
Ni2+-nitrilotriacetate agarose column chromatography
-
Ni2+-Sepharose column chromatography
purification of a chimeric protein derived from Photinus pyralis and Luciola cruciata luciferases by ammonium sulfate precipitation, gel filtration and hydroxyapatite column chromatography
-
several chromatographic and non chromatographic methods
-
using Ni-NTA chromatography
-
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
expressed in Escherichia coli
expressed in Escherichia coli BL21(DE3)
expression in Escherichia coli
expression in Escherichia coli BL21
gene luc, DNA and amino acid sequence determination and analysis, sequence comparisons of Photinus pyralis and Photinus scintillans luciferases, the single conservative amino acid change tyrosine to phenylalanine at position 255 accounts for the entire emission color difference, recombinant expression of GST-tagged wild-type and mutant enzymes in Escherichia coli strain BL21(DE3) pLysS, recombinant Luc contains the N-terminal peptide GlyProLeuGlySer-
recombinant coexpression of the luciferase with fused cyclization proteins SpyCatcher at the N-terminus and SpyTag at the C-terminus (pyCatcher-LUC-SpyTag) in Escherichia coli strain BL21(DE3)
recombinant expression from vector p35SHSPG in Nicotiana benthamiana BY-2 cells with intracellular enzyme localization, recombinant expression of the enzyme in Arabidopsis thaliana roots with enzyme localization around the nucleus, outside of the central vacuole and in the protoplasm
recombinant expression of His-tagged wild-type and mutant enzymes in Escherichia coli strain BL21(DE3)
recombinant expression of the chimeric mutant luc2 that contains the N-domain of Photinus pyralis luciferase joined to the C-domain of Luciola italica luciferase in HEK-293 cells and in Escherichia coli strain BL21(DE3)pLysS
wild-type and mutant enzymes expressed as glutathione-S-transferase-fusion proteins containing the additional N-terminal peptide Gly-Pro-Leu-Gly-SER, which remains after PreScission protease cleavage from GST, expression in Escherichia coli
cloning of the cDNA encoding the destabilized enzyme into an adenoviral expression plasmid and transfection of Vero, Hep-2, Chang, A-549, COS-1, and HeLa cells, luciferase expression is linear with respect to viral multiplicity of infection, protein synthesis inhibiting drugs, e.g. shiga toxins of Escherichia coli, diphtheria toxin, Pseudomonas exotoxin A and the plant toxin ricin A, and cycloheximide, reduce bioluminescence respresenting the antiviral activity
-
complete nucleotide sequence, expression in mammalian cells
-
expressed in Candida albicans strain CAI4
-
expressed in Escherichia coli as a His-tagged fusion protein
-
expressed in Escherichia coli BL21 (DE3) cells
expressed in Escherichia coli BL21 cells
expressed in Escherichia coli BL21(DE3)pLysS cells
-
expressed in Escherichia coli JM109 cells and Bacillus subtilis strain NBRC13719
expressed in Escherichia coli strain BL21
expressed in Escherichia coli strain HMS174(DE3)
expressed in Escherichia coli strain JM109
expressed in Escherichia coli strains XL1-Blue and BL21
expressed in Escherichia coli Top10 cells
-
expressed in Escherichia coli XL10-Gold cells
-
expressed in Saccharomyces cerevisiae
-
expression in Drosophila
-
expression in Escherichia coli
-
expression in Escherichia coli BL21
-
expression in Escherichia coli BL21 and DH5alpha, transfection in CHO-cells
-
expression in Escherichia coli, transfection in human glioma cells and in quadriceps muscles of mice
-
expression in HEK-293 cells or Grip-Tite 293 MSR cells
-
expression in HEK-293T cells
-
expression in L16 derived from CV-1 monkey kidney cells
-
expression in mouse cells
-
expression in PC3 cells
-
expression in Spodoptera frugiperda clone 9-cells, expression in insect cells using a baculovirus vector
-
expression in transfected Leishmania amazonensis strain LV79 amastigotes, transfection by electroporation
-
expression of a polyhystidine tagged enzyme in Trichoplusia
-
expression of a recombinant enzyme containing a protein kinase A recognition site
-
expression of a recombinant luciferase-ubiquitin enzyme in Saccharomyces cerevisiae
-
firefly lantern cDNA library
-
gene expression in vegetative and symbiotic Rhizobium melioti and other gram-negative bacteria
-
into pET28a vector
mutant enzymes,R218A, H245A, G246A, F247A, F247L, F247Y, F250G, F250S, T251A, G315A, G316A, G341A, L342A, T343A, S347A, A348V, I351A and K529A
-
Nn-terminal domain, expression in Escherichia coli
-
overexpressed in Escherichia coli BL-21
-
wild-type and mutant enzymes are expressed as GST-fusion proteins
-
RENATURED/Commentary
ORGANISM
UNIPROT
LITERATURE
renaturation is initiated by diluting the denaturant in 50 mM HEPES-KOH, pH 7.5, 10 mM Mg(OAc)2, 70 mM KOAc, 50 mM imidazole, and 1 mM dithiothreitol without urea, refolding of firefly luciferase from a denatured state is a slow process, its rate and productivity depend on molecular chaperones of the Hsp70 family, Hsp70-dependent refolding restores 55% of the initial enzymatic activity, immobilization leads to a higher refolding yield owing to the prevention of intermolecular aggregation
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
analysis
biotechnology
industry
the enzyme is widely used in academia and industry due to its excellent sensitivity and dynamic range, and its ease of use
molecular biology
analysis
medicine
additional information
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Matsuki, H.; Suzuki, A.; Kamaya, H.; Ueda, I.
Specific and non-specific binding of long-chain fatty acids to firefly luciferase: cutoff at octanate
Biochim. Biophys. Acta
1426
143-150
1999
Photinus pyralis
Manually annotated by BRENDA team
Hasmain, S.E.; Nakhai, B.H.
Expression of the gene encoding firefly luciferase in insect cells using a baculovirus vector
Gene
91
135-138
1990
Photinus pyralis
Manually annotated by BRENDA team
Palomares J.P.; DeLuca M.A.Helinski D.R.
Firefly luciferase enzyme for measuring gene expression in vegetative and symbiotic Rhizobium meliloti and other gram-negative bacteria
Gene
81
155-64
1989
Photinus pyralis
-
Manually annotated by BRENDA team
De Wet, J.R.; Wood, K.V.; DeLuca, M.; Helinski, D.R.; Subramani, S.
Firefly luciferase gene: structure and expression in mammalian cells
Mol. Cell. Biol.
7
725-737
1987
Photinus pyralis
Manually annotated by BRENDA team
De Wet, J.R.; Wood, K.V.; Helinski, D.R.; DeLuca, M.
Cloning firefly luciferase
Methods Enzymol.
133
3-14
1986
Photinus pyralis
Manually annotated by BRENDA team
De Wet, J.R.; Wood, K.V.; Helinski, D.R.; DeLuca, M.
Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli
Proc. Natl. Acad. Sci. USA
82
7870-7873
1985
Photinus pyralis
Manually annotated by BRENDA team
DeLuca M.; McElroy, W.D.
Purification and properties of firefly luciferase
Methods Enzymol.
57
3-15
1978
Photinus pyralis
-
Manually annotated by BRENDA team
DeLuca, M.
Firefly luciferase
Adv. Enzymol. Relat. Areas Mol. Biol.
44
37-68
1976
Photinus pyralis
Manually annotated by BRENDA team
Rajgopal S; Vijayalakshmi M.A.
Firefly luciferase: purification and immobilization
Enzyme Microb. Technol.
6
482-490
1984
Luciola mingrelica, Photinus pyralis
-
Manually annotated by BRENDA team
Leach F.R.
ATP determination with firefly luciferase
J. Appl. Biochem.
3
473-517
1981
Luciola mingrelica, Photinus pyralis
-
Manually annotated by BRENDA team
Guranowski, A.; Sillero, M.A.G.; Sillero, A.
Firefly luciferase synthesizes P1,P4-bis(5-adenosyl)tetraphosphate (Ap4A) and other dinucleoside polyphosphates
FEBS Lett.
271
215-218
1990
Photinus pyralis
Manually annotated by BRENDA team
Nguyen V.T; Morange M.; Bensaude O.
Protein denaturation during heat shock and related stress
J. Biol. Chem.
264
10487-10492
1989
Photinus pyralis
Manually annotated by BRENDA team
Leach, F.R.; Webster, J.J.
Commercially available firefly luciferase reagents
Methods Enzymol.
133
51-70
1986
Photinus pyralis
Manually annotated by BRENDA team
Thompson, A.; Nigro, J.; Seliger, H.H.
Efficient singlet oxygen inactivation of firefly luciferase
Biochem. Biophys. Res. Commun.
140
888-894
1986
Photinus pyralis
Manually annotated by BRENDA team
Rajgopal S.; Vijayalakshmi M.A.
Studies on the interaction of firefly luciferase with triazine dyes
J. Chromatogr.
18
201-210
1986
Photinus pyralis
-
Manually annotated by BRENDA team
DeLuca M.; McElroy, W.D.
Two kinetically distinguishable ATP sites in firefly luciferase
Biochem. Biophys. Res. Commun.
123
764-770
1984
Photinus pyralis
Manually annotated by BRENDA team
Moye,r J.D.; Henderson, J.F.
Nucleoside triphosphate specificity of firefly luciferase
Anal. Biochem.
131
187-189
1983
Photinus pyralis
Manually annotated by BRENDA team
Kricka, L.J.; DeLuca, M.
Effect of solvents on the catalytic activity of firefly luciferase
Arch. Biochem. Biophys.
217
674-681
1982
Photinus pyralis
Manually annotated by BRENDA team
Nichols, W.W.; Curtis, G. D.W.; Johnston, H.H.
Choice of buffer anion for the assay of adenosine 5'-triphosphate using firefly luciferase
Anal. Biochem.
114
396-397
1981
Photinus pyralis
Manually annotated by BRENDA team
Webster, J.J.; Leach, F.R.
Optimization of the firefly luciferase assay for ATP
J. Appl. Biochem.
2
469-479
1980
Photinus pyralis
-
Manually annotated by BRENDA team
Webster, J.J.; Chang, J.C.; Manley, E.R.; Spivey, H.O.; Leach ,F.R.
Buffer effects on ATP analysis by firefly luciferase
Anal. Biochem.
106
7-11
1980
Photinus pyralis
Manually annotated by BRENDA team
DeLuca, M.; Wannlund, J.; McElroy, W.D.
Factors affecting the kinetics of light emission from crude and purified firefly luciferase
Anal. Biochem.
95
194-198
1979
Photinus pyralis
Manually annotated by BRENDA team
Momsen, G.
Firefly luciferase reacts with p1,p5-di(adenosine-5'-)pentaphosphate and adenosine-5'-tetraphosphate
Biochem. Biophys. Res. Commun.
84
816-822
1978
Photinus pyralis
Manually annotated by BRENDA team
Lee, Y.; Jablonski, I.; DeLuca, M.
Immobilization of firefly luciferase on glass rods: properties of the immobilized enzyme
Anal. Biochem.
80
496-501
1977
Photinus pyralis
Manually annotated by BRENDA team
Lemaster,s J.J.; Jackenbroc, C.R.
Kinetics of product inhibition during firefly luciferase luminiscense
Biochemistry
16
445-447
1977
Photinus pyralis
Manually annotated by BRENDA team
Lee, R.; McElroy, W.D.
Role and reactivity of sulfhydryl groups in firefly luciferase
Biochemistry
8
130-135
1969
Photinus pyralis
Manually annotated by BRENDA team
Lee, R.; McElroy, W.D.
Effects of 5'-adenylic acid on firefly luciferase
Arch. Biochem. Biophys.
145
78-84
1971
Photinus pyralis
Manually annotated by BRENDA team
Denburg, J.L.; McElroy, W.D.
Catalytic subunit of firefly luciferase
Biochemistry
9
4619-4625
1970
Photinus pyralis
Manually annotated by BRENDA team
Denburg, J.L.; McElroy, W.D.
Anion inhibition of firefly luciferase
Arch. Biochem. Biophys.
141
668-675
1970
Photinus pyralis
Manually annotated by BRENDA team
Lee, R.T.; Denburg, J.L.; McElroy, W.D.
Substrate-binding properties of firefly luciferase. II. ATP-binding site
Arch. Biochem. Biophys.
141
38-52
1970
Photinus pyralis
Manually annotated by BRENDA team
Lee, R.T.; Denbur,g J.L.; McElroy, W.D.
Substrate-binding properties of firefly luciferase. I. Luciferin-binding site
Arch. Biochem. Biophys.
134
381-394
1969
Photinus pyralis
Manually annotated by BRENDA team
Rajgopal S.; Vijayalakshmi M.A.
Role of metal ions in triazine dye affinity chromatography: the metal mediated interaction of triazine dyes with firefly luciferase
Enzyme Microb. Technol.
6
555-559
1984
Photinus pyralis
-
Manually annotated by BRENDA team
Kricka L.
Clinical and biochemical applications of luciferases and luciferines
Anal. Biochem.
175
14-21
1988
Photinus pyralis
Manually annotated by BRENDA team
Gould, S.J.; Subraman,i S.
Firefly luciferase as a tool in molecular and cell biology
Anal. Biochem.
175
5-13
1988
Photinus pyralis
Manually annotated by BRENDA team
Rajgopal S.; Vijayalakshmi M.A.
Interaction of firefly luciferase with triazine dyes
J. Chromatogr.
280
77-84
1983
Photinus pyralis
-
Manually annotated by BRENDA team
Lembert, N.; Idahl, L.A.
Regulatory effects of ATP and luciferin on firefly luciferase activity
Biochem. J.
305
929-933
1995
Photinus pyralis
-
Manually annotated by BRENDA team
Branchini, B.; Magyar, R.; Murtiashaw, M.; Anderson, S.; Helgerson, L.; Zimmer, M.
Site-directed mutagenesis of firefly luciferase active site amino acids: a proposed model for bioluminiscence color
Biochemistry
38
13223-13230
1999
Photinus pyralis
Manually annotated by BRENDA team
Thompson, J.F.; Geoghegan, K.F.; Lloyd, D.B.; Lanzetti, A.J.; Magyar, R.A.; Anderson, S.M.; Branchini, B.R.
Mutation of protease-sensitive region in firefly luciferase alters light emission properties
J. Biol. Chem.
272
18766-18771
1997
Photinus pyralis (P08659), Photinus pyralis
Manually annotated by BRENDA team
Worley, C.K.; Ling, R.; Callis, J.
Engineering in vivo instability of firefly luciferase and Escherichia coli beta-glucuronidase in higher plants using recognition elements from the ubiquitin pathway
Plant Mol. Biol.
37
337-347
1998
Photinus pyralis
Manually annotated by BRENDA team
Michel, P.; Torkkeli, T.; Karp, M.; Oker-Blom, C.
Expression and purification of polyhistidine-tagged firefly luciferase in insect cells--a potential alternative for process scale-up
J. Biotechnol.
85
49-56
2001
Photinus pyralis
Manually annotated by BRENDA team
Conti, E.; Franks, N.P.; Brick, P.
Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes
Structure
4
287-298
1996
Photinus pyralis
Manually annotated by BRENDA team
Waud, J.P.; Sala-Newby, G.B.; Matthews, S.B.; Campbell, A.K.
Engineering the C-terminus of firefly luciferase as an indicator of covalent modification of proteins
Biochim. Biophys. Acta
1292
89-98
1996
Photinus pyralis
Manually annotated by BRENDA team
Sala-Newby, G.B.; Campbell, A.K.
Stepwise removal of the C-terminal 12 amino acids of firefly luciferase results in graded loss of activity
Biochim. Biophys. Acta
1206
155-160
1994
Photinus pyralis
Manually annotated by BRENDA team
Wang, Xi.; Yang, J.; Huang, W.; He, L.; Yu, J.; Lin, Q.; Li, W.; Zhou, H.
Effects of removal of the N-terminal amino acid residues on the activity and conformation of firefly luciferase
Int. J. Biochem. Cell Biol.
34
983-991
2002
Photinus pyralis
Manually annotated by BRENDA team
Lundovskikh, I.; Dementieva, E.; Ugarova, N.
Recombinant firefly luciferase in Escherichia coli
Appl. Biochem. Biotechnol.
88
127-135
2000
Luciola mingrelica, Photinus pyralis
-
Manually annotated by BRENDA team
Min, K.; Steghens, J.
ADP is produced by firefly luciferase but its synthesis is independent of the light emitting properties
Biochimie
83
523-528
2001
Photinus pyralis
Manually annotated by BRENDA team
Hirokawa, K.; Kajiyama, N.; Murakami, S.
Improved practical usefulness of firefly luciferase by gene chimerization and random mutagenesis
Biochim. Biophys. Acta
1597
271-279
2002
Luciola cruciata, Photinus pyralis
Manually annotated by BRENDA team
Sala-Newby, G.; Campbell, A.K.
Engineering firefly luciferase as an indicator of cyclic AMP-dependent protein kinase in living cells
FEBS Lett.
307
241-244
1992
Photinus pyralis
Manually annotated by BRENDA team
Ford, S.R.; Hall, M.S.; Leach, F.R.
Enhancement of firefly luciferase activity by cytidine nucleotides
Anal. Biochem.
204
283-291
1992
Photinus pyralis
Manually annotated by BRENDA team
Lundin, A.
Use of firefly luciferase in ATP-related assays of biomass, enzymes and metabolites
Methods Enzymol.
305
346-370
2000
Photinus pyralis
Manually annotated by BRENDA team
Nakamura, M.; Maki, S.; Amano, Y.; Ohkita, Y.; Niwa, K.; Hirano, T.; Ohmiya, Y.; Niwa, H.
Firefly luciferase exhibits bimodal action depending on the luciferin chirality
Biochem. Biophys. Res. Commun.
331
471-475
2005
Photinus pyralis
Manually annotated by BRENDA team
Branchini, B.R.; Southworth, T.L.; Murtiashaw, M.H.; Boije, H.; Fleet, S.E.
A mutagenesis study of the putative luciferin binding site residues of firefly luciferase
Biochemistry
42
10429-10436
2003
Photinus pyralis
Manually annotated by BRENDA team
Branchini, B.R.; Southworth, T.L.; Murtiashaw, M.H.; Magyar, R.A.; Gonzalez, S.A.; Ruggiero, M.C.; Stroh, J.G.
An alternative mechanism of bioluminescence color determination in firefly luciferase
Biochemistry
43
7255-7262
2004
Photinus pyralis, Pyrophorus plagiophthalamus
Manually annotated by BRENDA team
Branchini, B.R.; Southworth, T.L.; Murtiashaw, M.H.; Wilkinson, S.R.; Khattak, N.F.; Rosenberg, J.C.; Zimmer, M.
Mutagenesis evidence that the partial reactions of firefly bioluminescence are catalyzed by different conformations of the luciferase C-terminal domain
Biochemistry
44
1385-1393
2005
Photinus pyralis (P08659), Photinus pyralis
Manually annotated by BRENDA team
Zako, T.; Ayabe, K.; Aburatani, T.; Kamiya, N.; Kitayama, A.; Ueda, H.; Nagamune, T.
Luminescent and substrate binding activities of firefly luciferase N-terminal domain
Biochim. Biophys. Acta
1649
183-189
2003
Photinus pyralis
Manually annotated by BRENDA team
Takehara, K.; Kamaya, H.; Ueda, I.
Inhibition of firefly luciferase by alkane analogues
Biochim. Biophys. Acta
1721
124-129
2005
Photinus pyralis
Manually annotated by BRENDA team
Oba, Y.; Sato, M.; Ojika, M.; Inouye, S.
Enzymatic and genetic characterization of firefly luciferase and Drosophila CG6178 as a fatty acyl-CoA synthetase
Biosci. Biotechnol. Biochem.
69
819-828
2005
Photinus pyralis (P08659), Luciola cruciata (P13129)
Manually annotated by BRENDA team
Oba, Y.; Ojika, M.; Inouye, S.
Firefly luciferase is a bifunctional enzyme: ATP-dependent monooxygenase and a long chain fatty acyl-CoA synthetase
FEBS Lett.
540
251-254
2003
Luciola cruciata, Photinus pyralis
Manually annotated by BRENDA team
Baggett, B.; Roy, R.; Momen, S.; Morgan, S.; Tisi, L.; Morse, D.; Gillies, R.J.
Thermostability of firefly luciferases affects efficiency of detection by in vivo bioluminescence
Mol. Imaging
3
324-332
2004
Photinus pyralis
Manually annotated by BRENDA team
Branchini, B.R.; Ablamsky, D.M.; Murtiashaw, M.H.; Uzasci, L.; Fraga, H.; Southworth, T.L.
Thermostable red and green light-producing firefly luciferase mutants for bioluminescent reporter applications
Anal. Biochem.
361
253-262
2007
Photinus pyralis
Manually annotated by BRENDA team
Bakhtiarova, A.; Taslimi, P.; Elliman, S.J.; Kosinski, P.A.; Hubbard, B.; Kavana, M.; Kemp, D.M.
Resveratrol inhibits firefly luciferase
Biochem. Biophys. Res. Commun.
351
481-484
2006
Photinus pyralis
Manually annotated by BRENDA team
Law, G.H.; Gandelman, O.A.; Tisi, L.C.; Lowe, C.R.; Murray, J.A.
Mutagenesis of solvent-exposed amino acids in Photinus pyralis luciferase improves thermostability and pH-tolerance
Biochem. J.
397
305-312
2006
Photinus pyralis
Manually annotated by BRENDA team
Branchini, B.R.; Murtiashaw, M.H.; Carmody, J.N.; Mygatt, E.E.; Southworth, T.L.
Synthesis of an N-acyl sulfamate analog of luciferyl-AMP: a stable and potent inhibitor of firefly luciferase
Bioorg. Med. Chem. Lett.
15
3860-3864
2005
Photinus pyralis
Manually annotated by BRENDA team
Oba, Y.; Tanaka, K.; Inouye, S.
Catalytic properties of domain-exchanged chimeric proteins between firefly luciferase and Drosophila fatty acyl-CoA synthetase CG6178
Biosci. Biotechnol. Biochem.
70
2739-2744
2006
Photinus pyralis (P08659), Photinus pyralis
Manually annotated by BRENDA team
Lang, T.; Goyard, S.; Lebastard, M.; Milon, G.
Bioluminescent Leishmania expressing luciferase for rapid and high throughput screening of drugs acting on amastigote-harbouring macrophages and for quantitative real-time monitoring of parasitism features in living mice
Cell. Microbiol.
7
383-392
2005
Photinus pyralis
Manually annotated by BRENDA team
Fraga, H.; Fernandes, D.; Novotny, J.; Fontes, R.; Esteves da Silva, J.C.
Firefly luciferase produces hydrogen peroxide as a coproduct in dehydroluciferyl adenylate formation
Chembiochem
7
929-935
2006
Photinus pyralis
Manually annotated by BRENDA team
Fraga, H.; Fernandes, D.; Fontes, R.; Esteves da Silva, J.C.
Coenzyme A affects firefly luciferase luminescence because it acts as a substrate and not as an allosteric effector
FEBS J.
272
5206-5216
2005
Photinus pyralis
Manually annotated by BRENDA team
Ayabe, K.; Zako, T.; Ueda, H.
The role of firefly luciferase C-terminal domain in efficient coupling of adenylation and oxidative steps
FEBS Lett.
579
4389-4394
2005
Photinus pyralis
Manually annotated by BRENDA team
Harrison, E.M.; Garden, O.J.; Ross, J.A.; Wigmore, S.J.
Firefly luciferase terminally degraded by mild heat exposure: implications for reporter assays
J. Immunol. Methods
310
182-185
2006
Photinus pyralis
Manually annotated by BRENDA team
Zhao, L.; Haslam, D.B.
A quantitative and highly sensitive luciferase-based assay for bacterial toxins that inhibit protein synthesis
J. Med. Microbiol.
54
1023-1030
2005
Photinus pyralis
Manually annotated by BRENDA team
Doyle, T.C.; Nawotka, K.A.; Purchio, A.F.; Akin, A.R.; Francis, K.P.; Contag, P.R.
Expression of firefly luciferase in Candida albicans and its use in the selection of stable transformants
Microb. Pathog.
40
69-81
2006
Photinus pyralis
Manually annotated by BRENDA team
Venkatesh, B.; Arifuzzaman, M.; Mori, H.; Suzuki, S.; Taguchi, T.; Ohmiya, Y.
Use of GFP tags to monitor localization of different luciferases in E. coli
Photochem. Photobiol.
4
740-743
2005
Photinus pyralis
Manually annotated by BRENDA team
Shapiro, E.; Lu, C.; Baneyx, F.
A set of multicolored Photinus pyralis luciferase mutants for in vivo bioluminescence applications
Protein Eng. Des. Sel.
18
581-587
2005
Photinus pyralis
Manually annotated by BRENDA team
Mortazavi, M.; Hosseinkhani, S.; Khajeh, K.; Ranjbar, B.; Emamzadeh, A.R.
Spectroscopic and functional characterization of Lampyris turkestanicus luciferase: a comparative study
Acta Biochim. Biophys. Sin. (Shanghai)
40
365-374
2008
Photinus pyralis (Q27758), Photinus pyralis, Lampyris turkestanicus (Q5UFR2), Lampyris turkestanicus
Manually annotated by BRENDA team
Fujii, H.; Noda, K.; Asami, Y.; Kuroda, A.; Sakata, M.; Tokida, A.
Increase in bioluminescence intensity of firefly luciferase using genetic modification
Anal. Biochem.
366
131-136
2007
Photinus pyralis (Q27758), Photinus pyralis
Manually annotated by BRENDA team
Branchini, B.R.; Ablamsky, D.M.; Rosenman, J.M.; Uzasci, L.; Southworth, T.L.; Zimmer, M.
Synergistic mutations produce blue-shifted bioluminescence in firefly luciferase
Biochemistry
46
13847-13855
2007
Photinus pyralis (Q27758), Photinus pyralis
Manually annotated by BRENDA team
Noda, K.; Matsuno, T.; Fujii, H.; Kogure, T.; Urata, M.; Asami, Y.; Kuroda, A.
Single bacterial cell detection using a mutant luciferase
Biotechnol. Lett.
30
1051-1054
2008
Photinus pyralis, Photinus pyralis (Q27758)
Manually annotated by BRENDA team
Yousefi-Nejad, M.; Hosseinkhani, S.; Khajeh, K.; Ranjbar, B.
Expression, purification and immobilization of firefly luciferase on alkyl-substituted Sepharose 4B
Enzyme Microb. Technol.
40
740-746
2007
Photinus pyralis (Q27758)
-
Manually annotated by BRENDA team
Nakatani, N.; Hasegawa, J.Y.; Nakatsuji, H.
Red light in chemiluminescence and yellow-green light in bioluminescence: color-tuning mechanism of firefly, Photinus pyralis, studied by the symmetry-adapted cluster-configuration interaction method
J. Am. Chem. Soc.
129
8756-8765
2007
Photinus pyralis (Q27758), Photinus pyralis
Manually annotated by BRENDA team
Auld, D.S.; Southall, N.T.; Jadhav, A.; Johnson, R.L.; Diller, D.J.; Simeonov, A.; Austin, C.P.; Inglese, J.
Characterization of chemical libraries for luciferase inhibitory activity
J. Med. Chem.
51
2372-2386
2008
Photinus pyralis (Q27758)
Manually annotated by BRENDA team
Svetlov, M.S.; Kolb, V.A.; Spirin, A.S.
Folding of the firefly luciferase polypeptide chain with the immobilized C terminus
Mol. Biol.
41
86-92
2007
Photinus pyralis (Q27758)
-
Manually annotated by BRENDA team
Michelini, E.; Cevenini, L.; Mezzanotte, L.; Ablamsky, D.; Southworth, T.; Branchini, B.R.; Roda, A.
Combining intracellular and secreted bioluminescent reporter proteins for multicolor cell-based assays
Photochem. Photobiol. Sci.
7
212-217
2008
Pyrophorus plagiophthalamus, Photinus pyralis (Q27758), Photinus pyralis, Gaussia princeps (Q9BLZ2), Gaussia princeps
Manually annotated by BRENDA team
Noda, K.; Goto, H.; Murakami, Y.; Ahmed, A.B.; Kuroda, A.
Endotoxin assay by bioluminescence Using mutant firefly luciferase
Anal. Biochem.
397
152-155
2010
Photinus pyralis
Manually annotated by BRENDA team
Moradi, A.; Hosseinkhani, S.; Naderi-Manesh, H.; Sadeghizadeh, M.; Alipour, B.S.
Effect of charge distribution in a flexible loop on the bioluminescence color of firefly luciferases
Biochemistry
48
575-582
2009
Photinus pyralis (P08659), Photinus pyralis
Manually annotated by BRENDA team
Kim, J.; Moon, C.H.; Jung, S.; Paik, S.R.
alpha-Synuclein enhances bioluminescent activity of firefly luciferase by facilitating luciferin localization
Biochim. Biophys. Acta
1794
309-314
2009
Photinus pyralis
Manually annotated by BRENDA team
Inouye, S.
Firefly luciferase: an adenylate-forming enzyme for multicatalytic functions
Cell. Mol. Life Sci.
67
387-404
2010
Pyrearinus termitilluminans (AF116843), Photinus pyralis (P08659), Luciola cruciata (P13129), Aquatica lateralis (Q01158), Lampyroidea maculata (Q1WLP6), Luciola parvula (Q25118), Pyrocoelia miyako (Q26076), Luciola mingrelica (Q26304), Lampyris noctiluca (Q27688), Photuris pensylvanica (Q27757), Lampyris turkestanicus (Q5UFR2), Cratomorphus distinctus (Q5USC8), Pyrophorus mellifluus (Q717B6), Pyrophorus plagiophthalamus (Q718F0), Hotaria unmunsana (Q8T6U3), Pyrocoelia rufa (Q9GPF9), Phrixothrix hirtus (Q9U4U7), Phrixothrix vivianii (Q9U4U8)
Manually annotated by BRENDA team
Berger, F.; Paulmurugan, R.; Bhaumik, S.; Gambhir, S.S.
Uptake kinetics and biodistribution of 14C-D-luciferin--a radiolabeled substrate for the firefly luciferase catalyzed bioluminescence reaction: impact on bioluminescence based reporter gene imaging
Eur. J. Nucl. Med. Mol. Imaging
35
2275-2285
2008
Photinus pyralis
Manually annotated by BRENDA team
Mehrabi, M.; Hosseinkhani, S.; Ghobadi, S.
Stabilization of firefly luciferase against thermal stress by osmolytes
Int. J. Biol. Macromol.
43
187-191
2008
Photinus pyralis
Manually annotated by BRENDA team
Marques, S.M.; Esteves da Silva, J.C.
Firefly bioluminescence: a mechanistic approach of luciferase catalyzed reactions
IUBMB Life
61
6-17
2009
Photinus pyralis (P08659), Photinus pyralis
Manually annotated by BRENDA team
Auld, D.S.; Zhang, Y.Q.; Southall, N.T.; Rai, G.; Landsman, M.; Maclure, J.; Langevin, D.; Thomas, C.J.; Austin, C.P.; Inglese, J.
A basis for reduced chemical library inhibition of firefly luciferase obtained from directed evolution
J. Med. Chem.
52
1450-1458
2009
Photinus pyralis, Photuris pensylvanica
Manually annotated by BRENDA team
Chandran, S.S.; Williams, S.A.; Denmeade, S.R.
Extended-release PEG-luciferin allows for long-term imaging of firefly luciferase activity in vivo
Luminescence
24
35-38
2009
Photinus pyralis
Manually annotated by BRENDA team
Ribeiro, C.; Esteves da Silva, J.C.
Kinetics of inhibition of firefly luciferase by oxyluciferin and dehydroluciferyl-adenylate
Photochem. Photobiol. Sci.
7
1085-1090
2008
Photinus pyralis
Manually annotated by BRENDA team
Caysa, H.; Jacob, R.; Muether, N.; Branchini, B.; Messerle, M.; Soeling, A.
A redshifted codon-optimized firefly luciferase is a sensitive reporter for bioluminescence imaging
Photochem. Photobiol. Sci.
8
52-56
2009
Photinus pyralis
Manually annotated by BRENDA team
Riahi-Madvar, A.; Hosseinkhani, S.
Design and characterization of novel trypsin-resistant firefly luciferases by site-directed mutagenesis
Protein Eng. Des. Sel.
22
655-663
2009
Photinus pyralis
Manually annotated by BRENDA team
Ebrahimi, M.; Hosseinkhani, S.; Heydari, A.; Khavari-Nejad, R.A.; Akbari, J.
Improvement of thermostability and activity of firefly luciferase through [TMG][Ac] ionic liquid mediator
Appl. Biochem. Biotechnol.
168
604-615
2012
Photinus pyralis
Manually annotated by BRENDA team
Fushimi, T.; Miura, N.; Shintani, H.; Tsunoda, H.; Kuroda, K.; Ueda, M.
Mutant firefly luciferases with improved specific activity and dATP discrimination constructed by yeast cell surface engineering
Appl. Microbiol. Biotechnol.
97
4003-4011
2013
Photinus pyralis
Manually annotated by BRENDA team
Woodroofe, C.C.; Meisenheimer, P.L.; Klaubert, D.H.; Kovic, Y.; Rosenberg, J.C.; Behney, C.E.; Southworth, T.L.; Branchini, B.R.
Novel heterocyclic analogues of firefly luciferin
Biochemistry
51
9807-9813
2012
Photinus pyralis
Manually annotated by BRENDA team
Amini-Bayat, Z.; Hosseinkhani, S.; Jafari, R.; Khajeh, K.
Relationship between stability and flexibility in the most flexible region of Photinus pyralis luciferase
Biochim. Biophys. Acta
1824
350-358
2012
Photinus pyralis
Manually annotated by BRENDA team
Liu, Y.; Fang, J.; Cai, H.; Xiao, F.; Ding, K.; Hu, Y.
Identification and synthesis of substituted pyrrolo[2,3-d]pyrimidines as novel firefly luciferase inhibitors
Bioorg. Med. Chem.
20
5473-5482
2012
Photinus pyralis
Manually annotated by BRENDA team
Karimzadeh, S.; Moradi, M.; Hosseinkhani, S.
Delicate balance of electrostatic interactions and disulfide bridges in thermostability of firefly luciferase
Int. J. Biol. Macromol.
51
837-844
2012
Photinus pyralis
Manually annotated by BRENDA team
Riahi-Madvar, A.; Hosseinkhani, S.; Rezaee, F.
Implication of Arg213 and Arg337 on the kinetic and structural stability of firefly luciferase
Int. J. Biol. Macromol.
52
157-163
2013
Photinus pyralis
Manually annotated by BRENDA team
Ebrahimi, M.; Hosseinkhani, S.; Heydari, A.; Khavari-Nejad, R.; Akbari, J.
Controversial effect of two methylguanidine-based ionic liquids on firefly luciferase
Photochem. Photobiol. Sci.
11
828-834
2012
Photinus pyralis
Manually annotated by BRENDA team
Priyanka, B.; Rastogi, N.; Raghavarao, K.; Thakur, M.
Downstream processing of luciferase from fireflies (Photinus pyralis) using aqueous two-phase extraction
Process Biochem.
47
1358-1363
2012
Photinus pyralis
-
Manually annotated by BRENDA team
Branchini, B.R.; Southworth, T.L.; Fontaine, D.M.; Kohrt, D.; Talukder, M.; Michelini, E.; Cevenini, L.; Roda, A.; Grossel, M.J.
An enhanced chimeric firefly luciferase-inspired enzyme for ATP detection and bioluminescence reporter and imaging applications
Anal. Biochem.
484
148-153
2015
Photinus pyralis (P08659), Photinus pyralis, Luciola italica (Q1AG35), Luciola italica
Manually annotated by BRENDA team
Morita, N.; Haga, S.; Ohmiya, Y.; Ozaki, M.
Long-term ex vivo and in vivo monitoring of tumor progression by using dual luciferases
Anal. Biochem.
497
24-26
2016
Photinus pyralis (P08659)
Manually annotated by BRENDA team
Noori, A.R.; Hosseinkhani, S.; Ghiasi, P.; Akbari, J.; Heydari, A.
Magnetic nanoparticles supported ionic liquids improve firefly luciferase properties
Appl. Biochem. Biotechnol.
172
3116-3127
2014
Photinus pyralis (P08659), Photinus pyralis
Manually annotated by BRENDA team
Branchini, B.R.; Southworth, T.L.; Fontaine, D.M.; Davis, A.L.; Behney, C.E.; Murtiashaw, M.H.
A Photinus pyralis and Luciola italica chimeric firefly luciferase produces enhanced bioluminescence
Biochemistry
53
6287-6289
2014
Photinus pyralis (P08659), Photinus pyralis, Luciola italica (Q1AG35), Luciola italica
Manually annotated by BRENDA team
Yu, H.; Zhao, Y.; Guo, C.; Gan, Y.; Huang, H.
The role of proline substitutions within flexible regions on thermostability of luciferase
Biochim. Biophys. Acta
1854
65-72
2015
Photinus pyralis (P08659), Photinus pyralis
Manually annotated by BRENDA team
Branchini, B.R.; Southworth, T.L.; Fontaine, D.M.; Murtiashaw, M.H.; McGurk, A.; Talukder, M.H.; Qureshi, R.; Yetil, D.; Sundlov, J.A.; Gulick, A.M.
Cloning of the orange light-producing luciferase from Photinus scintillans - a new proposal on how bioluminescence color is determined
Photochem. Photobiol.
93
479-485
2017
Photinus scintillans (A0A1B3TNR9), Photinus scintillans, Photinus pyralis (P08659), Photinus pyralis
Manually annotated by BRENDA team
Si, M.; Xu, Q.; Jiang, L.; Huang, H.
SpyTag/SpyCatcher cyclization enhances the thermostability of firefly luciferase
PLoS ONE
11
e0162318
2016
Photinus pyralis (P08659), Photinus pyralis
Manually annotated by BRENDA team
Mitani, Y.; Oshima, Y.; Mitsuda, N.; Tomioka, A.; Sukegawa, M.; Fujita, M.; Kaji, H.; Ohmiya, Y.
Efficient production of glycosylated Cypridina luciferase using plant cells
Protein Expr. Purif.
133
102-109
2017
Photinus pyralis (P08659)
Manually annotated by BRENDA team
Li, Y.; Jin, C.; Xu, H.; Wu, W.; Wang, Y.; Wu, J.; Liu, T.; Wan, G.; Yue, X.; Bu, X.
Identification of 2-benzylidene-tetralone derivatives as highly potent and reversible firefly luciferase inhibitors
ACS Med. Chem. Lett.
13
304-311
2022
Photinus pyralis (P08659)
Manually annotated by BRENDA team
Pozzo, T.; Akter, F.; Nomura, Y.; Louie, A.Y.; Yokobayashi, Y.
Firefly luciferase mutant with enhanced activity and thermostability
ACS Omega
3
2628-2633
2018
Photinus pyralis (P08659), Photinus pyralis
Manually annotated by BRENDA team
Rahban, M.; Salehi, N.; Saboury, A.A.; Hosseinkhani, S.; Karimi-Jafari, M.H.; Firouzi, R.; Rezaei-Ghaleh, N.; Moosavi-Movahedi, A.A.
Histidine substitution in the most flexible fragments of firefly luciferase modifies its thermal stability
Arch. Biochem. Biophys.
629
8-18
2017
Photinus pyralis (P08659)
Manually annotated by BRENDA team
Wilkinson, I.V.L.; Reynolds, J.K.; Galan, S.R.G.; Vuorinen, A.; Sills, A.J.; Pires, E.; Wynne, G.M.; Wilson, F.X.; Russell, A.J.
Characterisation of utrophin modulator SMT C1100 as a non-competitive inhibitor of firefly luciferase
Bioorg. Chem.
94
103395
2020
Photinus pyralis (P08659)
Manually annotated by BRENDA team
Salehi-Sedeh, H.; Ataei, F.; Jarchi, S.; Hamidi, R.; Hosseinkhani, S.
Effect of mutation at positively charged residues (K329 and R330) in a flexible region of firefly luciferase on structure and kinetic properties
Enzyme Microb. Technol.
131
109424
2019
Photinus pyralis (P08659), Photinus pyralis
Manually annotated by BRENDA team
Smirnova, D.V.; Ugarova, N.N.
Firefly luciferase-based fusion proteins and their applications in bioanalysis
Photochem. Photobiol.
93
436-447
2017
Photinus pyralis (P08659), Aquatica lateralis (Q01158), Luciola mingrelica (Q26304)
Manually annotated by BRENDA team
Liu, G.C.; Zhang, R.; Hou, Q.B.; He, J.W.; Dong, Z.W.; Zhao, R.P.; Wang, W.; Li, X.Y.
Cloning and characterization of luciferase from the chinese firefly Lamprigera yunnana
Photochem. Photobiol.
95
1186-1194
2019
Lamprigera yunnana (A0A4D6FG55), Photinus pyralis (P08659)
Manually annotated by BRENDA team
Jazayeri, F.S.; Amininasab, M.; Hosseinkhani, S.
Structural and dynamical insight into thermally induced functional inactivation of firefly luciferase
PLoS ONE
12
e0180667
2017
Photinus pyralis (P08659)
Manually annotated by BRENDA team