Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 1.1.3.7 - aryl-alcohol oxidase and Organism(s) Pleurotus eryngii and UniProt Accession O94219

for references in articles please use BRENDA:EC1.1.3.7
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
     1 Oxidoreductases
         1.1 Acting on the CH-OH group of donors
             1.1.3 With oxygen as acceptor
                1.1.3.7 aryl-alcohol oxidase
IUBMB Comments
Oxidizes many primary alcohols containing an aromatic ring; best substrates are (2-naphthyl)methanol and 3-methoxybenzyl alcohol.
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Pleurotus eryngii
UNIPROT: O94219
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
  • 1.1.3.7
  • anodic
  • aluminum
  • fabric
  • nanoporous
  • porous
  • film
  • nanostructures
  • ascending
  • aorta
  • lignin
  • nanowires
  • nanotube
  • laccase
  • etch
  • nanochannels
  • ophthalmology
  • age-at-onset
  • academy
  • decolor
  • nanorods
  • pleurotus
  • ligninolytic
  • white-rot
  • bicuspid
  • free-standing
  • eryngii
  • electrodeposition
  • sputter
  • valsalva
  • large-area
  • template-assisted
  • environmental protection
  • synthesis
  • aortopathy
  • bjerkandera
  • nanopillars
  • four-dimensional
  • nanopatterns
  • photovoltaic
  • polycrystalline
  • remazol
  • glucose-methanol-choline
  • president
  • nanoarrays
The taxonomic range for the selected organisms is: Pleurotus eryngii
The expected taxonomic range for this enzyme is: Eukaryota, Bacteria
Synonyms
aao, aryl-alcohol oxidase, veratryl alcohol oxidase, aryl alcohol oxidase, salicyl alcohol oxidase, arylalcohol oxidase, mtgloa, cpsao, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
arom. alcohol oxidase
-
-
-
-
aryl alcohol oxidase
-
-
-
-
oxidase, aryl alcohol
-
-
-
-
VAO
-
-
-
-
veratryl alcohol oxidase
-
-
-
-
additional information
REACTION
REACTION DIAGRAM
COMMENTARY hide
ORGANISM
UNIPROT
LITERATURE
an aromatic primary alcohol + O2 = an aromatic aldehyde + H2O2
show the reaction diagram
an aromatic primary alcohol + O2 = an aromatic aldehyde + H2O2
show the reaction diagram
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
redox reaction
-
-
-
-
oxidation
-
-
-
-
reduction
-
-
-
-
SYSTEMATIC NAME
IUBMB Comments
aryl-alcohol:oxygen oxidoreductase
Oxidizes many primary alcohols containing an aromatic ring; best substrates are (2-naphthyl)methanol and 3-methoxybenzyl alcohol.
CAS REGISTRY NUMBER
COMMENTARY hide
9028-77-7
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
(2E)-hex-2-en-1-ol + O2
(2E)-hex-2-enal + H2O2
show the reaction diagram
-
-
-
?
(R,S)-4-methoxybenzyl alcohol + O2
1-(4-methoxyphenyl)ethanol + H2O2
show the reaction diagram
over 98% excess of the R enantiomer after treatment of racemic 1-(4-methoxyphenyl)ethanol, the hydride transfer is highly stereoselective
-
-
?
(S)-1-(4-fluorophenyl)ethanol + O2
1-(4-fluorophenyl)acetaldehyde + H2O2
show the reaction diagram
(S)-1-(4-methoxyphenyl)-ethanol + O2
1-(4-methoxyphenyl)acetaldehyde + H2O2
show the reaction diagram
-
-
-
?
2,4-dimethoxybenzyl alcohol + O2
2,4-dimethoxybenzaldehyde + H2O2
show the reaction diagram
-
-
-
r
2,4-hexadien-1-ol + 2 O2
2,4-hexadienal + 2 H2O2
show the reaction diagram
-
-
-
?
2,4-hexadien-1-ol + O2
2,4-hexadienal + H2O2
show the reaction diagram
-
-
-
?
2,4-hexadien-1-ol + O2
?
show the reaction diagram
-
-
-
?
2,4-hexadienal + O2
2,4-hexadienoate + H2O2
show the reaction diagram
-
-
-
?
2,5-diformylfuran + 2 O2
2,5-furandicarboxylic acid + H2O2
show the reaction diagram
-
-
-
ir
2,5-diformylfuran + O2
formylfurancarboxylic acid + ?
show the reaction diagram
2-naphthylmethanol + O2
2-naphthaldehyde + H2O2
show the reaction diagram
3,4-difluorobenzaldehyde + O2
3,4-difluorobenzoic acid + H2O2
show the reaction diagram
-
-
-
?, r
3,4-dimethoxybenzyl alcohol + O2
3,4-dimethoxybenzaldehyde + H2O2
show the reaction diagram
ternary mechanism
-
-
?
3-anisyl alcohol + O2
3-anisyl aldehyde + H2O2
show the reaction diagram
3-chloro-4-anisaldehyde + O2
3-chloro-4-anisic acid + H2O2
show the reaction diagram
-
-
-
r
3-chloro-4-anisyl alcohol + O2
3-chloro-4-anisaldehyde + H2O2
show the reaction diagram
-
-
-
?
3-chloro-4-methoxybenzyl alcohol + O2
3-chloro-4-methoxybenzaldehyde + H2O2
show the reaction diagram
ternary mechanism
-
-
?
3-chlorobenzaldehyde + O2
3-chlorobenzoic acid + H2O2
show the reaction diagram
-
-
-
r
3-chlorobenzyl alcohol + O2
3-chlorobenzaldehyde + H2O2
show the reaction diagram
3-fluorobenzaldehyde + O2
3-fluorobenzoic acid + H2O2
show the reaction diagram
-
-
-
r
3-fluorobenzyl alcohol + O2
3-fluorobenzaldehyde + H2O2
show the reaction diagram
3-fluorobenzyl alcohol + O2
?
show the reaction diagram
-
-
-
?
3-methoxybenzyl alcohol + O2
3-methoxybenzaldehyde + H2O2
show the reaction diagram
-
-
-
r
4-anisaldehyde + O2
4-anisic acid + H2O2
show the reaction diagram
4-anisyl alcohol + O2
4-anisaldehyde + H2O2
show the reaction diagram
4-anisyl alcohol + O2
4-anisyl aldehyde + H2O2
show the reaction diagram
4-chlorobenzaldehyde + O2
4-chlorobenzoic acid + H2O2
show the reaction diagram
-
-
-
r
4-chlorobenzyl alcohol + O2
4-chlorobenzaldehyde + H2O2
show the reaction diagram
-
-
-
?
4-fluorobenzaldehyde + O2
4-fluorobenzoic acid + H2O2
show the reaction diagram
-
-
-
r
4-fluorobenzyl alcohol + O2
4-fluorobenzaldehyde + H2O2
show the reaction diagram
-
-
-
?
4-hydroxy-3-methoxybenzyl alcohol + O2
4-hydroxy-3-methoxybenzaldehyde + H2O2
show the reaction diagram
-
-
-
r
4-hydroxybenzyl alcohol + O2
4-hydroxybenzaldehyde + H2O2
show the reaction diagram
-
-
-
r
4-methoxybenzyl alcohol + O2
4-methoxybenzaldehyde + H2O2
show the reaction diagram
4-methoxybenzyl alcohol + O2
4-methoxybenzyl aldehyde + H2O2
show the reaction diagram
4-methoxycinnamyl alcohol + O2
4-methoxycinnamaldehyde + H2O2
show the reaction diagram
-
-
-
r
4-nitrobenzaldehyde + O2
4-nitrobenzoic acid + H2O2
show the reaction diagram
-
-
-
?, r
4-nitrobenzyl alcohol + O2
4-nitrobenzaldehyde + H2O2
show the reaction diagram
-
-
-
r
5-(hydroxymethyl)furan-2-carboxylic acid + O2
2,5-furandicarboxylic acid + ?
show the reaction diagram
very low activity
-
-
?
5-hydroxymethylfurfural + O2
2,5-diformylfuran + H2O2
show the reaction diagram
5-hydroxymethylfurfural + O2
5-(hydroxymethyl)furan-2-carboxylic acid + H2O2
show the reaction diagram
-
-
-
?
benzaldehyde + O2
benzoic acid + H2O2
show the reaction diagram
-
-
-
r
benzyl alcohol + O2
benzaldehyde + H2O2
show the reaction diagram
-
-
-
?
benzyl alcohol + O2
benzyl aldehyde + H2O2
show the reaction diagram
-
-
-
?
cinnamyl alcohol + O2
cinnamaldehyde + H2O2
show the reaction diagram
formylfurancarboxylic acid + O2
2,5-furandicarboxylic acid + H2O2
show the reaction diagram
veratraldehyde + O2
veratric acid + H2O2
show the reaction diagram
-
-
-
r
veratryl alcohol + O2
veratraldehyde + H2O2
show the reaction diagram
veratryl alcohol + O2
veratryl aldehyde + H2O2
show the reaction diagram
(2E)-hept-2-en-1-ol + O2
(2E)-hept-2-enal + H2O2
show the reaction diagram
31.9% of the activity with benzyl alcohol
-
-
?
(2E)-hex-2-en-1-ol + O2
(2E)-hex-2-enal + H2O2
show the reaction diagram
63.9% of the activity with benzyl alcohol
-
-
?
(2E,4E)-hepta-2,4-dien-1-ol + O2
(2E,4E)-hepta-2,4-dienal + H2O2
show the reaction diagram
737% of the activity with benzyl alcohol
-
-
?
(2E,4E)-hexa-2,4-dien-1-ol + O2
(2E,4E)-hexa-2,4-dienal + H2O2
show the reaction diagram
807% of the activity with benzyl alcohol
-
-
?
(2H-1,3-benzodioxol-5-yl)methanol + O2
2H-1,3-benzodioxole-5-carbaldehyde + H2O2
show the reaction diagram
301% of the activity with benzyl alcohol
-
-
?
(naphthalen-2-yl)methanol + O2
naphthalene-2-carbaldehyde + H2O2
show the reaction diagram
874% of the activity with benzyl alcohol
-
-
?
(pyrene-1-yl)methanol + O2
pyrene-1-carbaldehyde + H2O2
show the reaction diagram
35% of the activity with benzyl alcohol
-
-
?
(thiophen-2-yl)methanol + O2
thiophene-2-carbaldehyde + H2O2
show the reaction diagram
15.8% of the activity with benzyl alcohol
-
-
?
2,4-dimethoxybenzyl alcohol + O2
2,4-dimethoxybenzaldehyde + H2O2
show the reaction diagram
-
177.5% of the activity with benzyl alcohol
-
?
2,4-hexadien-1-ol + O2
2,4-hexadienal + H2O2
show the reaction diagram
2,4-hexadien-1-ol + O2
2,4-hexandienal + H2O2
show the reaction diagram
-
-
-
-
?
2,4-hexadien-1-ol + O2
? + H2O2
show the reaction diagram
-
531% of the activity with benzyl alcohol
-
?
2-naphthalenemethanol + O2
2-naphthaleneformaldehyde + H2O
show the reaction diagram
-
745.7% of the activity with benzyl alcohol
-
?
2-naphthalenemethanol + O2
?
show the reaction diagram
-
-
-
-
?
3,4-dimethoxybenzyl alcohol + O2
3,4-dimethoxybenzaldehyde + H2O2
show the reaction diagram
-
326.1% of the activity with benzyl alcohol
-
?
3,4-dimethoxybenzyl alcohol + O2
veratryl aldehyde + H2O2
show the reaction diagram
-
i.e. veratryl alcohol
-
?
3-anisyl alcohol + O2
3-anisyl aldehyde + H2O2
show the reaction diagram
-
-
-
-
?
3-chloro-4-anisyl alcohol + O2
3-chloro-4-anisyl aldehyde + H2O2
show the reaction diagram
-
high activity
-
-
?
3-chlorobenzyl alcohol + O2
3-chlorobenzyl aldehyde + H2O2
show the reaction diagram
-
-
-
-
?
3-fluorobenzyl alcohol + O2
3-fluorobenzyl aldehyde + H2O2
show the reaction diagram
-
low activity
-
-
?
3-methoxybenzyl alcohol + O2
3-methoxybenzaldehyde + H2O2
show the reaction diagram
-
as active as benzyl alcohol
-
?
4-aminobenzyl alcohol + O2
4-aminobenzaldehyde + H2O2
show the reaction diagram
18.6% of the activity with benzyl alcohol
-
-
?
4-anisyl alcohol + O2
4-anisaldehyde + H2O2
show the reaction diagram
-
-
-
-
r
4-anisyl alcohol + O2
4-anisyl aldehyde + H2O2
show the reaction diagram
4-chlorobenzyl alcohol + O2
4-chlorobenzyl aldehyde + H2O2
show the reaction diagram
-
-
-
-
?
4-fluorobenzyl alcohol + O2
4-fluorobenzyl aldehyde + H2O2
show the reaction diagram
-
-
-
-
?
4-methoxybenzyl alcohol + O2
4-methoxybenzaldehyde + H2O2
show the reaction diagram
anisyl alcohol + O2
anisaldehyde + H2O2
show the reaction diagram
-
-
-
-
?
anisyl alcohol + O2
anisyl aldehyde + H2O2
show the reaction diagram
647% of the activity with benzyl alcohol
-
-
?
benzyl alcohol + O2
benzaldehyde + H2O2
show the reaction diagram
cinnamyl alcohol + O2
cinnamaldehyde + H2O2
show the reaction diagram
-
451.1% of the activity with benzyl alcohol
-
?
cinnamyl alcohol + O2
cinnamyl aldehyde + H2O2
show the reaction diagram
cumic alcohol + O2
cumic aldehyde + H2O2
show the reaction diagram
149% of the activity with benzyl alcohol
-
-
?
isovanillyl alcohol + O2
isovanillyl aldehyde + H2O2
show the reaction diagram
m-anisyl alcohol + O2
m-anisaldehyde + H2O2
show the reaction diagram
-
-
-
-
?
veratryl alcohol + O2
? + H2O2
show the reaction diagram
-
-
-
-
?
veratryl alcohol + O2
veratryl aldehyde + H2O2
show the reaction diagram
veratryl alcohol + O2
veratrylaldehyde + H2O2
show the reaction diagram
-
-
-
-
?
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
(R,S)-4-methoxybenzyl alcohol + O2
1-(4-methoxyphenyl)ethanol + H2O2
show the reaction diagram
over 98% excess of the R enantiomer after treatment of racemic 1-(4-methoxyphenyl)ethanol, the hydride transfer is highly stereoselective
-
-
?
2,4-dimethoxybenzyl alcohol + O2
2,4-dimethoxybenzaldehyde + H2O2
show the reaction diagram
-
-
-
r
2,4-hexadien-1-ol + O2
?
show the reaction diagram
-
-
-
?
2,5-diformylfuran + 2 O2
2,5-furandicarboxylic acid + H2O2
show the reaction diagram
-
-
-
ir
2-naphthylmethanol + O2
2-naphthaldehyde + H2O2
show the reaction diagram
best substrate
-
-
r
3-methoxybenzyl alcohol + O2
3-methoxybenzaldehyde + H2O2
show the reaction diagram
-
-
-
r
4-anisyl alcohol + O2
4-anisaldehyde + H2O2
show the reaction diagram
the substrate is an extracellular fungal metabolite
-
-
?
4-anisyl alcohol + O2
4-anisyl aldehyde + H2O2
show the reaction diagram
preferred substrate
-
-
?
4-hydroxy-3-methoxybenzyl alcohol + O2
4-hydroxy-3-methoxybenzaldehyde + H2O2
show the reaction diagram
-
-
-
r
4-hydroxybenzyl alcohol + O2
4-hydroxybenzaldehyde + H2O2
show the reaction diagram
-
-
-
r
4-methoxybenzyl alcohol + O2
4-methoxybenzaldehyde + H2O2
show the reaction diagram
4-methoxycinnamyl alcohol + O2
4-methoxycinnamaldehyde + H2O2
show the reaction diagram
-
-
-
r
4-nitrobenzyl alcohol + O2
4-nitrobenzaldehyde + H2O2
show the reaction diagram
-
-
-
r
5-hydroxymethylfurfural + O2
2,5-diformylfuran + H2O2
show the reaction diagram
-
-
-
?
benzyl alcohol + O2
benzaldehyde + H2O2
show the reaction diagram
-
-
-
?
cinnamyl alcohol + O2
cinnamaldehyde + H2O2
show the reaction diagram
high activity
-
-
r
veratryl alcohol + O2
veratraldehyde + H2O2
show the reaction diagram
-
-
-
r
benzyl alcohol + O2
benzaldehyde + H2O2
show the reaction diagram
-
-
-
-
?
additional information
?
-
COFACTOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
4-anisic acid
competitive
H2O2
inhibitory to the oxidation of formylfurancarboxylic acid, oxidation activities of AAO on 5-hydroxymethylfurfural and 2,5-diformylfuran are independent of the presence of H2O2
3-Phenyl-1-propanol
4-anisic acid
-
competitive
4-methoxybenzylamine
-
uncompetitive, pH-dependent inhibition, best at pH 8.0
Ag+
-
0.5 mM, 38% inhibition
benzylmethyl ether
-
competitive
chavicol
-
competitive
NaN3
-
10 mM, 19% inhibition
Pb2+
-
0.5 mM, 63% inhibition
phenol
-
competitive
Toluene
-
competitive
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.091 - 0.12
2,4-hexadien-1-ol
13
2,4-hexadienal
wild type enzyme, at 24°C, 0.1 M sodium phosphate buffer, pH 6.0
3.3
2,5-diformylfuran
pH 6.0, 25°C
3
3,4-difluorobenzaldehyde
wild type enzyme, at 24°C, 0.1 M sodium phosphate buffer, pH 6.0
0.22 - 0.3
3-anisyl alcohol
0.7
3-chloro-4-anisaldehyde
wild type enzyme, at 24°C, 0.1 M sodium phosphate buffer, pH 6.0
1.5
3-Chlorobenzaldehyde
wild type enzyme, at 24°C, 0.1 M sodium phosphate buffer, pH 6.0
2.2
3-Fluorobenzaldehyde
wild type enzyme, at 24°C, 0.1 M sodium phosphate buffer, pH 6.0
0.7 - 0.8
4-anisaldehyde
0.025 - 0.04
4-anisyl alcohol
4.7
4-Chlorobenzaldehyde
wild type enzyme, at 24°C, 0.1 M sodium phosphate buffer, pH 6.0
4.9
4-Fluorobenzaldehyde
wild type enzyme, at 24°C, 0.1 M sodium phosphate buffer, pH 6.0
0.017 - 3.82
4-methoxybenzyl alcohol
2 - 5
4-nitrobenzaldehyde
1.6 - 13
5-hydroxymethylfurfural
7
benzaldehyde
wild type enzyme, at 24°C, 0.1 M sodium phosphate buffer, pH 6.0
0.37 - 0.873
benzyl alcohol
0.017 - 0.348
O2
8
veratraldehyde
wild type enzyme, at 24°C, 0.1 M sodium phosphate buffer, pH 6.0
0.34 - 1
veratryl alcohol
0.79
2,4-Dimethoxybenzyl alcohol
-
pH 6.0, 25°C
0.059 - 0.263
2,4-hexadien-1-ol
0.41 - 1.2
3,4-dimethoxybenzyl alcohol
0.211 - 0.734
3-anisyl alcohol
0.014
3-chloro-4-anisyl alcohol
-
pH 6.0, 24°C
0.107
3-Chlorobenzyl alcohol
-
pH 6.0, 24°C
0.554
3-fluorobenzyl alcohol
-
pH 6.0, 24°C
0.22
3-Methoxybenzyl alcohol
-
pH 6.0, 25°C
0.015 - 0.053
4-anisyl alcohol
0.132
4-Chlorobenzyl alcohol
-
pH 6.0, 24°C
0.553
4-fluorobenzyl alcohol
-
pH 6.0, 24°C
0.034 - 0.04
4-methoxybenzyl alcohol
0.108 - 0.836
anisyl alcohol
0.051 - 5
benzyl alcohol
0.708
cinnamyl alcohol
-
pH 6.0, 24°C
0.831
isovanillyl alcohol
-
pH 6.0, 24°C
0.22 - 0.3
m-anisyl alcohol
0.03
p-anisyl alcohol
-
recombinant enzyme
0.027 - 2
veratryl alcohol
additional information
additional information
-
TURNOVER NUMBER [1/s]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
47 - 161
2,4-hexadien-1-ol
0.33
2,4-hexadienal
wild type enzyme, wild type enzyme, at 24°C, 0.1 M sodium phosphate buffer, pH 6.0
31.4
2,5-diformylfuran
pH 6.0, 25°C
0.867
3,4-difluorobenzaldehyde
wild type enzyme, at 24°C, 0.1 M sodium phosphate buffer, pH 6.0
0.057
3-chloro-4-anisaldehyde
wild type enzyme, at 24°C, 0.1 M sodium phosphate buffer, pH 6.0
0.85
3-Chlorobenzaldehyde
wild type enzyme, at 24°C, 0.1 M sodium phosphate buffer, pH 6.0
0.883
3-Fluorobenzaldehyde
wild type enzyme, at 24°C, 0.1 M sodium phosphate buffer, pH 6.0
0.012 - 0.12
4-anisaldehyde
129
4-anisyl alcohol
25°C, pH 6.0, recombinant enzyme
1.05
4-Chlorobenzaldehyde
wild type enzyme, at 24°C, 0.1 M sodium phosphate buffer, pH 6.0
0.367
4-Fluorobenzaldehyde
wild type enzyme, at 24°C, 0.1 M sodium phosphate buffer, pH 6.0
0.069 - 208
4-methoxybenzyl alcohol
1.21 - 1.633
4-nitrobenzaldehyde
0.67 - 20.1
5-hydroxymethylfurfural
0.5
benzaldehyde
wild type enzyme, at 24°C, 0.1 M sodium phosphate buffer, pH 6.0
15.1 - 34.4
benzyl alcohol
0.13
veratraldehyde
wild type enzyme, at 24°C, 0.1 M sodium phosphate buffer, pH 6.0
24.6 - 56.9
veratryl alcohol
1 - 206
2,4-hexadien-1-ol
1 - 26
3-anisyl alcohol
46
3-chloro-4-anisyl alcohol
-
pH 6.0, 24°C
22
3-Chlorobenzyl alcohol
-
pH 6.0, 24°C
6
3-fluorobenzyl alcohol
-
pH 6.0, 24°C
3 - 142
4-anisyl alcohol
51
4-Chlorobenzyl alcohol
-
pH 6.0, 24°C
32
4-fluorobenzyl alcohol
-
pH 6.0, 24°C
54 - 105
4-methoxybenzyl alcohol
1 - 33
benzyl alcohol
65
cinnamyl alcohol
-
pH 6.0, 24°C
127
isovanillyl alcohol
-
pH 6.0, 24°C
2 - 116
veratryl alcohol
kcat/KM VALUE [1/mMs-1]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
456 - 840
2,4-hexadien-1-ol
0.025
2,4-hexadienal
wild type enzyme, at 24°C, 0.1 M sodium phosphate buffer, pH 6.0
0.157
2,5-diformylfuran
pH 6.0, 25°C
0.282
3,4-difluorobenzaldehyde
wild type enzyme, at 24°C, 0.1 M sodium phosphate buffer, pH 6.0
0.085
3-chloro-4-anisaldehyde
wild type enzyme, at 24°C, 0.1 M sodium phosphate buffer, pH 6.0
0.643
3-Chlorobenzaldehyde
wild type enzyme, at 24°C, 0.1 M sodium phosphate buffer, pH 6.0
0.407
3-Fluorobenzaldehyde
wild type enzyme, at 24°C, 0.1 M sodium phosphate buffer, pH 6.0
0.013 - 0.087
4-anisaldehyde
0.223
4-Chlorobenzaldehyde
wild type enzyme, at 24°C, 0.1 M sodium phosphate buffer, pH 6.0
0.075
4-Fluorobenzaldehyde
wild type enzyme, at 24°C, 0.1 M sodium phosphate buffer, pH 6.0
0.019 - 5160
4-methoxybenzyl alcohol
0.315 - 0.597
4-nitrobenzaldehyde
0.0167
5-(hydroxymethyl)furan-2-carboxylic acid
pH 6.0, 25°C
0.215 - 1.51
5-hydroxymethylfurfural
0.073
benzaldehyde
wild type enzyme, at 24°C, 0.1 M sodium phosphate buffer, pH 6.0
41 - 78
benzyl alcohol
0.0167
veratraldehyde
wild type enzyme, at 24°C, 0.1 M sodium phosphate buffer, pH 6.0
72 - 139
veratryl alcohol
866 - 1555
2,4-hexadien-1-ol
1562 - 2979
4-methoxybenzyl alcohol
71 - 131
benzyl alcohol
28 - 36
veratryl alcohol
Ki VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.08
4-anisic acid
pH 6.0, 25°C, recombinant enzyme
4.48
3-Phenyl-1-propanol
0.08
4-anisic acid
-
pH 6.0, 24°C
0.25
4-methoxybenzylamine
-
pH 8.0, 24°C
1.35
benzylmethyl ether
-
pH 6.0, 24°C
0.11
chavicol
-
pH 6.0, 24°C
1.92
phenol
0.75
Toluene
-
pH 6.0, 24°C
additional information
additional information
-
SPECIFIC ACTIVITY [µmol/min/mg]
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
96
purified recombinant enzyme from Escherichia coli
24
-
purified recombinant H91N FX7 mutant, pH 6.0, 24°C
74
-
purified recombinant wild-type enzyme, pH 6.0, 24°C
additional information
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
5
-
wild-type and mutant enzymes
pH RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
3 - 9
pH-dependencies of wild-type and mutant enzymes, overview
4 - 9
AAO shows no pH dependence of kcat or catalytic efficiency for the substrates analyzed, AAO is unstable above pH 9.0
3 - 9
-
about 40% of maximal activity at pH 3.0 and pH 9.0
TEMPERATURE OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
12
steady-state kinetic assays at
TEMPERATURE RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
40
about 4% residual activity
20 - 60
-
20°C: about 55% of maximal activity, 60°C: about 50% of maximal activity
47
-
90% of maximal activity within this range
pI VALUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
3.8
isoelectric focusing
4.5
isoelelctric focusing, recombinant protein from wild-type Pichia pastoris
4.6
isoelectric focusing, recombinant protein from glycosylation-deficient Saccharomyces cerevisiae
4.8
isoelectric focusing, recombinant protein from wild-type Saccharomyces cerevisiae
4.3
-
recombinant H91N FX7 mutant, isoelectric focusing
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
additional information
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
evolution
metabolism
physiological function
physiological function
additional information
UNIPROT
ENTRY NAME
ORGANISM
NO. OF AA
NO. OF TRANSM. HELICES
MOLECULAR WEIGHT[Da]
SOURCE
SEQUENCE
LOCALIZATION PREDICTION?
O94219_PLEER
593
0
63709
TrEMBL
Secretory Pathway (Reliability: 1)
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
61847
x * 61847, recombinant enzyme from Escherichia coli, mass spectrometry, x * 69114, wild-type enzyme, mass spectrometry, x * 69792, recombinant enzyme from Emericella nidulans, mass spectrometry
69114
x * 61847, recombinant enzyme from Escherichia coli, mass spectrometry, x * 69114, wild-type enzyme, mass spectrometry, x * 69792, recombinant enzyme from Emericella nidulans, mass spectrometry
69792
x * 61847, recombinant enzyme from Escherichia coli, mass spectrometry, x * 69114, wild-type enzyme, mass spectrometry, x * 69792, recombinant enzyme from Emericella nidulans, mass spectrometry
70000
gel filtration
66700
-
gel filtration
70000
71200
-
x * 71200, SDS-PAGE
72500
-
1 * 72500, SDS-PAGE
72600
-
1 * 72600, SDS-PAGE
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
monomer
monomer
additional information
-
the molecular model of AAO from Pleurotus eryngii, PDB entry 1QJN, shows that it is a globular protein with common features with the overall structure topology of the other members of glucose-methanol-choline oxidoreductases family
POSTTRANSLATIONAL MODIFICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
glycoprotein
glycoprotein
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
sitting drop vapor diffusion method, using 1 M Li2SO4, 0.1 M bis-Tris propane pH 7.4
structure in complex with 4-anisidic acid
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
A77W/R80C/H91N/L170M/V340A/I500M/F501W
best performer with substrate (S)-1-(4-methoxyphenyl)-ethanol, with a total 800fold enhancement of activity relative to the parental type
F397Y
mutant shows improved production of 2,5-furandicarboxylic acid, with 70% yield
F501A
F501H
mutant shows improved production of 2,5-furandicarboxylic acid, with 97% yield
F501W
site-directed mutagenesis, the mutant shows a twofold increase in O2 reactivity compared to the wild-type enzyme
H502A
H502S
H546A
site-directed mutagenesis, the mutant shows over 35fold decreased both catalytic and transient-state reduction constants for 4-methoxybenzyl alcohol, as well as a strong decrease in the alcohol affinity compared to the wild-type enzyme
H546S
H91N/L170M
H91N/L170M/F501W
mutant with increased activity on 5-hydroxymethylfurfural and its oxidation products
H91N/L170M/I500L/F501I
mutation H91N in an alpha-helix situated at the protein surface, and the consensus mutation H91N in the FAD attachment loop, to enhance stability and improve production by Saccharomyces cerevisiae to 4.5 mg/l and by Pichia pastoris in a bioreactor to 25.5 mg/l. I500L/F501I present a 15fold enhancement in activity with substrate (S)-1-(4-methoxyphenyl)-ethanol
H91N/L170M/I500M/F501V
mutation H91N in an alpha-helix situated at the protein surface, and the consensus mutation H91N in the FAD attachment loop, to enhance stability and improve production by Saccharomyces cerevisiae to 4.5 mg/l and by Pichia pastoris in a bioreactor to 25.5 mg/l. I500M/F501V present a 30fold enhancement in activity with substrate (S)-1-(4-methoxyphenyl)-ethanol
H91N/L170M/I500M/F501W
H91N/L170M/I500Q/F501W
mutation H91N in an alpha-helix situated at the protein surface, and the consensus mutation H91N in the FAD attachment loop, to enhance stability and improve production by Saccharomyces cerevisiae to 4.5 mg/l and by Pichia pastoris in a bioreactor to 25.5 mg/l. I500Q/F501W present a 5fold enhancement in activity with substrate (S)-1-(4-methoxyphenyl)-ethanol
I500M
mutant shows improved production of 2,5-furandicarboxylic acid, with 80% yield
I500M/F501 W
mutant shows improved production of 2,5-furandicarboxylic acid, reaching a total turnover number over 16,000 in presence of 15 mM 5-hydroxymethylfurfural
synthesis
expression of AAO in the ascomycete Aspergillus nidulans. The activity of the recombinant enzyme in Aspergillus nidulans cultures is much higher than found in the extracellular fluid of Pleurotus eryngii. The recombinant enzyme shows the same molecular mass, pI and catalytic properties as that of the mature protein secreted by Pleurotus eryngii
F501A
F501Y
H502L
-
site-directed mutagenesis, inactive mutant
H502R
-
site-directed mutagenesis, the mutant shows highly reduced activity compared to the wild-type enzyme
H502S
-
site-directed mutagenesis, inactive mutant
H546L
-
site-directed mutagenesis, inactive mutant
H546R
-
site-directed mutagenesis, the mutant shows highly reduced activity compared to the wild-type enzyme
H546S
-
site-directed mutagenesis, inactive mutant
H91N
-
random mutageneis, the FX7 mutant (harboring the H91N mutation) shows a dramatic 96fold improvement in total activity with secretion levels of 2 mg/liter. Analysis of the N-terminal sequence of the FX7 variant confirms the correct processing of the prealphaproK hybrid peptide by the KEX2 protease. FX7 shows higher stability in terms of pH and temperature, whereas the pH activity profiles and the kinetic parameters are maintained. The Asn91 lies in the flavin attachment loop motif, and it is a highly conserved residue in all members of the GMC superfamily, except for Pleurotus eryngii and Pleurotus pulmonarius AAO. FX7 mutant homology modeling using the crystal structure of the AAO from Pleurotus eryngii at a resolution of 2.55 A, PDB ID 3FIM, structure-function analysis
L315A
-
site-directed mutagenesis, the mutant shows reduced activity compared to the wild-type enzyme
Y78A
-
site-directed mutagenesis, the mutant shows activity similar to the wild-type enzyme
Y92A
-
site-directed mutagenesis, inactive mutant
Y92F
-
site-directed mutagenesis, the mutant shows activity similar to the wild-type enzyme
additional information
pH STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
9
stable up to, unstable above
698931
3 - 9
1 h, 90% residual activity
762662
4 - 9
-
24 h, stable
389839
6 - 9
-
very stable
671834
TEMPERATURE STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
61.2
melting temperature, recombinant protein from glycosylation-deficient Saccharomyces cerevisiae
61.3
melting temperature, recombinant protein from wild-type Pichia pastoris
63
melting temperature, recombinant protein from wild-type Saccharomyces cerevisiae
4 - 50
1 h, 90% residual activity
47.5
-
T50 of recombinant wild-type enzyme
50
-
30 min, stable up to
55
1 h, 70% residual activity
64.3
-
T50 of recombinant mutant H91N
65
-
5 min, total inactivation
70
-
10 min, complete inactivation
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
recombinant enzyme from Escherichia coli
recombinant FLAG1-tagged enzyme in Escherichia coli strain W3110 solubilized from inclusion bodies 9.6fold by anion exchange chromatography
recombinant mature enzyme from Escherichia coli by anion exchange chromatography
recombinant wild-type and mutant emzymes from Escherichia coli to homogeneity
recombinant enzyme
-
recombinant enzyme from Emericella nidulans by gel filtration and anion exchange chromatography
-
recombinant protein
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
DNA and amino acid sequence determination and analysis, sequence comparison, phylogenetic tree, recombinant expression in Escherichia coli
expressed in Escherichia coli
expression in Aspergillus nidulans
expression in Escherichia coli
expression of the mature enzyme in Escherichia coli
gene aao, expression of FLAG1-tagged enzyme in Escherichia coli strain W3110, the non-glycosylated recombinant enzyme is successfully activated in vitro after Escherichia coli expression in form of inclusion bodies, expression iand glycosylation of the enzyme in Emericella nidulans strain IJFM A729
gene aao, expression of wild-type and mutant emzymes in Escherichia coli
gene aao, recombinant enzyme expression in Escherichia coli
in fusion with chimeric prepro-leader (pre-alpha-factor-proKiller) that enhances secretion by introducing the F[3alpha]S, N[25proK]D, T[50proK]A and F[52proK]L mutations
expression in Aspergillus nidulans, activity of the recombinant enzyme in Aspergillus nidulans culture is much higher than in extracellular fluid of Pleurotus eryngii
-
expression in Emericella nidulans under control of the fungal alc promoter
-
expression of wild-type and mutant enzymes in Emericella nidulans under control of the inducible fungal alc promoter
-
expression of wild-type enzyme in Escherichia coli, expression of wild-type and mutant enzymes in Emericella nidulans
-
gene aao, recombinant expression of wild-type and mutant enzymes in Saccharomyces cerevisiae
-
RENATURED/Commentary
ORGANISM
UNIPROT
LITERATURE
the non-glycosylated recombinant enzyme is successfully activated in vitro after Escherichia coli expression in form of inclusion bodies
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
synthesis
synthesis
expression and secretion of AAO with yield of 315 mg/l using Pichia pastoris
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Guillen, F.; Martinez, A.T.; Martinez, M.J.
Production of hydrogen peroxide by aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryhgii
Appl. Microbiol. Biotechnol.
32
465-469
1990
Pleurotus eryngii
-
Manually annotated by BRENDA team
Varela, E.; Martinez, A.T.; Martinez, M.J.
Molecular cloning of aryl-alcohol oxidase from the fungus Pleurotus eryngii, an enzyme involved in lignin degradation
Biochem. J.
341
113-117
1999
Pleurotus eryngii
-
Manually annotated by BRENDA team
Varela, E.; Guillen, F.; Martinez, A.T.; Martinez, M.J.
Expression of Pleurotus eryngii aryl-alcohol oxidase in Aspergillus nidulans: purification and characterization of the recombinant enzyme
Biochim. Biophys. Acta
1546
107-113
2001
Pleurotus eryngii
Manually annotated by BRENDA team
Guillen, F.; Martinez, A.T.; Martinez, M.J.
Substrate specificity and properties of the aryl-alcohol oxidase from ligninolytic fungus Pleurotus eryngii
Eur. J. Biochem.
209
603-611
1992
Pleurotus eryngii
Manually annotated by BRENDA team
Ferreira, P.; Medina, M.; Guillen, F.; Martinez, M.J.; Van Berkel, W.J.; Martinez, A.T.
Spectral and catalytic properties of aryl-alcohol oxidase, a fungal flavoenzyme acting on polyunsaturated alcohols
Biochem. J.
389
731-738
2005
Pleurotus eryngii
Manually annotated by BRENDA team
Ferreira, P.; Ruiz-Duenas, F.J.; Martinez, M.J.; van Berkel, W.J.; Martinez, A.T.
Site-directed mutagenesis of selected residues at the active site of aryl-alcohol oxidase, an H2O2-producing ligninolytic enzyme
FEBS J.
273
4878-4888
2006
Pleurotus eryngii
Manually annotated by BRENDA team
Ruiz-Duenas, F.J.; Ferreira, P.; Martinez, M.J.; Martinez, A.T.
In vitro activation, purification, and characterization of Escherichia coli expressed aryl-alcohol oxidase, a unique H2O2-producing enzyme
Protein Expr. Purif.
45
191-199
2006
Pleurotus eryngii (O94219), Pleurotus eryngii
Manually annotated by BRENDA team
Ferreira, P.; Hernandez-Ortega, A.; Herguedas, B.; Martinez, A.T.; Medina, M.
Aryl-alcohol oxidase involved in lignin degradation: a mechanistic study based on steady and pre-steady state kinetics and primary and solvent isotope effects with two alcohol substrates
J. Biol. Chem.
284
24840-24847
2009
Pleurotus eryngii (O94219)
Manually annotated by BRENDA team
Munteanu, F.; Ferreira, P.; Ruiz-Duenas, F.; Martinez, A.; Cavaco-Paulo, A.
ioelectrochemical investigations of aryl-alcohol oxidase from Pleurotus eryngii
J. Electroanal. Chem.
618
83-86
2008
Pleurotus eryngii
-
Manually annotated by BRENDA team
Fernandez, I.S.; Ruiz-Duenas, F.J.; Santillana, E.; Ferreira, P.; Martinez, M.J.; Martinez, A.T.; Romero, A.
Novel structural features in the GMC family of oxidoreductases revealed by the crystal structure of fungal aryl-alcohol oxidase
Acta Crystallogr. Sect. D
65
1196-1205
2009
Pleurotus eryngii (O94219), Pleurotus eryngii
Manually annotated by BRENDA team
Ferreira, P.; Hernandez-Ortega, A.; Herguedas, B.; Rencoret, J.; Gutierrez, A.; Martinez, M.J.; Jimenez-Barbero, J.; Medina, M.; Martinez, A.T.
Kinetic and chemical characterization of aldehyde oxidation by fungal aryl-alcohol oxidase
Biochem. J.
425
585-593
2010
Pleurotus eryngii (O94219)
Manually annotated by BRENDA team
Hernandez-Ortega, A.; Ferreira, P.; Martinez, A.T.
Fungal aryl-alcohol oxidase: a peroxide-producing flavoenzyme involved in lignin degradation
Appl. Microbiol. Biotechnol.
93
1395-1410
2012
Bjerkandera adusta, Botrytis cinerea, Phanerodontia chrysosporium, Trametes versicolor, Rigidoporus microporus, Fusarium solani, Postia placenta, Pleurotus eryngii (O94219), Pleurotus eryngii
Manually annotated by BRENDA team
Hernandez-Ortega, A.; Borrelli, K.; Ferreira, P.; Medina, M.; Martinez, A.T.; Guallar, V.
Substrate diffusion and oxidation in GMC oxidoreductases: an experimental and computational study on fungal aryl-alcohol oxidase
Biochem. J.
436
341-350
2011
Pleurotus eryngii (O94219)
Manually annotated by BRENDA team
Hernandez-Ortega, A.; Lucas, F.; Ferreira, P.; Medina, M.; Guallar, V.; Martinez, A.T.
Role of active site histidines in the two half-reactions of the aryl-alcohol oxidase catalytic cycle
Biochemistry
51
6595-6608
2012
Pleurotus eryngii (O94219)
Manually annotated by BRENDA team
Hernandez-Ortega, A.; Ferreira, P.; Merino, P.; Medina, M.; Guallar, V.; Martinez, A.T.
Stereoselective hydride transfer by aryl-alcohol oxidase, a member of the GMC superfamily
ChemBioChem
13
427-435
2012
Pleurotus eryngii (O94219)
Manually annotated by BRENDA team
Hernandez-Ortega, A.; Lucas, F.; Ferreira, P.; Medina, M.; Guallar, V.; Martinez, A.T.
Modulating O2 reactivity in a fungal flavoenzyme: involvement of aryl-alcohol oxidase Phe-501 contiguous to catalytic histidine
J. Biol. Chem.
286
41105-41114
2011
Pleurotus eryngii (O94219)
Manually annotated by BRENDA team
Vina-Gonzalez, J.; Gonzalez-Perez, D.; Ferreira, P.; Martinez, A.T.; Alcalde, M.
Focused directed evolution of aryl-alcohol oxidase in Saccharomyces cerevisiae by using chimeric signal peptides
Appl. Environ. Microbiol.
81
6451-6462
2015
Pleurotus eryngii
Manually annotated by BRENDA team
Ferreira, P.; Hernandez-Ortega, A.; Lucas, F.; Carro, J.; Herguedas, B.; Borrelli, K.W.; Guallar, V.; Martinez, A.T.; Medina, M.
Aromatic stacking interactions govern catalysis in aryl-alcohol oxidase
FEBS J.
282
3091-3106
2015
Pleurotus eryngii (O94219)
Manually annotated by BRENDA team
Vina-Gonzalez, J.; Jimenez-Lalana, D.; Sancho, F.; Serrano, A.; Martinez, A.; Guallar, V.; Alcalde, M.
Structure-guided evolution of aryl alcohol oxidase from Pleurotus eryngii for the selective oxidation of secondary benzyl alcohols
Adv. Synth. Catal.
361
2514-2525
2019
Pleurotus eryngii (O94219)
-
Manually annotated by BRENDA team
de Almeida, T.; van Schie, M.; Ma, A.; Tieves, F.; Younes, S.; Fernandez-Fueyo, E.; Arends, I.; Riul, A.J.; Hollmann, F.
Efficient aerobic oxidation of trans-2-hexen-1-ol using the aryl alcohol oxidase from Pleurotus eryngii
Adv. Synth. Catal.
361
2668-2672
2019
Pleurotus eryngii (O94219)
-
Manually annotated by BRENDA team
Jankowski, N.; Koschorreck, K.; Urlacher, V.B.
High-level expression of aryl-alcohol oxidase 2 from Pleurotus eryngii in Pichia pastoris for production of fragrances and bioactive precursors
Appl. Microbiol. Biotechnol.
104
9205-9218
2020
Pleurotus eryngii (D3YBH4), Pleurotus eryngii
Manually annotated by BRENDA team
Varela, E.; Guillen, F.; Martinez, A.T.; Martinet, M.J.
Expression of Pleurotus eryngii aryl-alcohol oxidase in Aspergillus nidulans purification and characterization of the recombinant enzyme
Biochim. Biophys. Acta
1546
107-113
2001
Pleurotus eryngii (O94219), Pleurotus eryngii
Manually annotated by BRENDA team
Vina-Gonzalez, J.; Martinez, A.T.; Guallar, V.; Alcalde, M.
Sequential oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid by an evolved aryl-alcohol oxidase
Biochim. Biophys. Acta
1868
140293
2020
Pleurotus eryngii (O94219)
Manually annotated by BRENDA team
Vina-Gonzalez, J.; Elbl, K.; Ponte, X.; Valero, F.; Alcalde, M.
Functional expression of aryl-alcohol oxidase in Saccharomyces cerevisiae and Pichia pastoris by directed evolution
Biotechnol. Bioeng.
115
1666-1674
2018
Pleurotus eryngii (O94219)
Manually annotated by BRENDA team
Serrano, A.; Calvino, E.; Carro, J.; Sanchez-Ruiz, M.I.; Canada, F.J.; Martinez, A.T.
Complete oxidation of hydroxymethylfurfural to furandicarboxylic acid by aryl-alcohol oxidase
Biotechnol. Biofuels
12
217
2019
Pleurotus eryngii (O94219), Pleurotus eryngii
Manually annotated by BRENDA team
Carro, J.; Martinez-Julvez, M.; Medina, M.; Martinez, A.T.; Ferreira, P.
Protein dynamics promote hydride tunnelling in substrate oxidation by aryl-alcohol oxidase
Phys. Chem. Chem. Phys.
19
28666-28675
2017
Pleurotus eryngii (O94219), Pleurotus eryngii
Manually annotated by BRENDA team