Information on EC 1.1.1.67 - mannitol 2-dehydrogenase

Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Specify your search results
Mark a special word or phrase in this record:
Select one or more organisms in this record:
Show additional data
Do not include text mining results
Include (text mining) results (more...)
Include results (AMENDA + additional results, but less precise; more...)


The expected taxonomic range for this enzyme is: Eukaryota, Bacteria

EC NUMBER
COMMENTARY
1.1.1.67
-
RECOMMENDED NAME
GeneOntology No.
mannitol 2-dehydrogenase
REACTION
REACTION DIAGRAM
COMMENTARY
ORGANISM
UNIPROT ACCESSION NO.
LITERATURE
D-mannitol + NAD+ = D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
D-mannitol + NAD+ = D-fructose + NADH + H+
show the reaction diagram
the oxyanion hole of mannitol 2-dehydrogenase drives a precatalytic conformational equilibrium at the ternary complex level in which the reactive group of the substrate is activated for chemical conversion through its precise alignment with the unprotonated side chain of Lys295 in mannitol oxidation and C=O bond polarization by the carboxamide moieties of Asn191 and Asn300 in fructose reduction. In the subsequent hydride transfer step, the two asparagine residues provide about 40 kJ/mol of electrostatic stabilization
-
D-mannitol + NAD+ = D-fructose + NADH + H+
show the reaction diagram
binding of substrate and NAD(H) is random for both D-mannitol oxidation and D-fructose reduction. Hydride transfer is rate-determining for D-fructose reduction. Product release steps control the maximum rates in the other direction of the enzymatic reaction
-
REACTION TYPE
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
oxidation
-
-
-
-
oxidation
-
oxidation of D-mannitol
oxidation
-
oxidation of D-sorbitol
oxidation
Gluconobacter oxydans LMG 1489
-
oxidation of D-sorbitol
-
redox reaction
-
-
-
-
reduction
-
-
-
-
reduction
-
reduction of D-fructose
reduction
-
reduction of D-fructose
reduction
Gluconobacter oxydans LMG 1489
-
reduction of D-fructose
-
PATHWAY
KEGG Link
MetaCyc Link
Fructose and mannose metabolism
-
mannitol cycle
-
SYSTEMATIC NAME
IUBMB Comments
D-mannitol:NAD+ 2-oxidoreductase
-
SYNONYMS
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
D-mannitol dehydrogenase
-
-
-
-
D-mannitol dehydrogenase
-
-
mannitol 2-dehydrogenase
Q83VI5
-
mannitol 2-dehydrogenase
-
-
mannitol dehydrogenase
-
-
-
-
mannitol dehydrogenase
-
-
mannitol dehydrogenase
Gluconobacter oxydans LMG 1489
-
-
-
mannitol dehydrogenase
-
-
mannitol dehydrogenase
-
-
mannitol dehydrogenase
-
-
mannitol dehydrogenase
-
-
mannitol-2-dehydrogenase
-
-
MDH
Leuconostoc mesenteroides ATCC-9135
Q8KQG6
-
-
MtDH
Q9WYD4
-
MtlD
O08355
gene name
NADH-dependent mannitol dehydrogenase
-
-
polyol dehydrogenase
-
-
polyol dehydrogenase
Gluconobacter oxydans LMG 1489
-
-
-
polyol dehydrogenase
-
-
TM0298
Q9WYD4
-
CAS REGISTRY NUMBER
COMMENTARY
9001-65-4
-
ORGANISM
COMMENTARY
LITERATURE
SEQUENCE CODE
SEQUENCE DB
SOURCE
strain 2247 (ATCC14067)
-
-
Manually annotated by BRENDA team
Brevibacterium flavum 2247
strain 2247 (ATCC14067)
-
-
Manually annotated by BRENDA team
Fomes pinicola
-
-
-
Manually annotated by BRENDA team
i.e. Gluconobacter oxydans
-
-
Manually annotated by BRENDA team
strain LMG 1489
-
-
Manually annotated by BRENDA team
Gluconobacter oxydans LMG 1489
strain LMG 1489
-
-
Manually annotated by BRENDA team
Lactobacillus gayonii
-
-
-
Manually annotated by BRENDA team
Lactobacillus pentoaceticus
-
-
-
Manually annotated by BRENDA team
Leuconostoc mesenteroides ATCC-9135
ATCC-9135
SwissProt
Manually annotated by BRENDA team
strain ATCC 12291
-
-
Manually annotated by BRENDA team
strain ATCC12291, gene mdh
SwissProt
Manually annotated by BRENDA team
Leuconostoc pseudomesenteroides ATCC12291
strain ATCC12291, gene mdh
SwissProt
Manually annotated by BRENDA team
no activity in Lactobacillus plantarum
-
-
-
Manually annotated by BRENDA team
Nocardia erythropolis
-
-
-
Manually annotated by BRENDA team
phototrophic bacterium
-
-
Manually annotated by BRENDA team
Sarcina aurantiaca
-
-
-
Manually annotated by BRENDA team
Sarcina marginata
-
-
-
Manually annotated by BRENDA team
gene mtdh
-
-
Manually annotated by BRENDA team
strain MSB8 (ATCC 43589)
UniProt
Manually annotated by BRENDA team
SUBSTRATE
PRODUCT                      
REACTION DIAGRAM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
(Substrate)
LITERATURE
(Substrate)
COMMENTARY
(Product)
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
arabitol + NAD(P)+
? + NAD(P)H
show the reaction diagram
-
-
-
-
?
D-arabinitol + NAD+
D-ribulose + NADH + H+
show the reaction diagram
-
-
-
-
D-arabinitol + NAD+
D-ribulose + NADH + H+
show the reaction diagram
-
-
-
-
D-arabinitol + NAD+
D-ribulose + NADH + H+
show the reaction diagram
-
-
-
-
D-arabinitol + NAD+
D-ribulose + NADH + H+
show the reaction diagram
-
-
-
-
D-arabinitol + NAD+
D-xylulose + NADH + H+
show the reaction diagram
-
-
-
-
r
D-arabitol + NAD+
? + NADH
show the reaction diagram
-
-
-
-
D-arabitol + NAD+
? + NADH
show the reaction diagram
-
-
-
-
D-fructose + NAD(P)+
? + NAD(P)H
show the reaction diagram
-
-
-
-
?
D-fructose + NADH + H+
D-mannitol + NAD+
show the reaction diagram
-
-
-
-
r
D-fructose + NADH + H+
D-mannitol + NAD+
show the reaction diagram
-
-
-
-
r
D-fructose + NADH + H+
D-mannitol + NAD+
show the reaction diagram
-
-
-
-
?
D-fructose + NADH + H+
D-mannitol + NAD+
show the reaction diagram
-
-
-
-
?
D-fructose + NADH + H+
D-mannitol + NAD+
show the reaction diagram
Q83VI5
-
-
-
r
D-fructose + NADH + H+
D-mannitol + NAD+
show the reaction diagram
-
-
-
-
r
D-fructose + NADH + H+
D-mannitol + NAD+
show the reaction diagram
-
-
-
-
r
D-fructose + NADH + H+
D-mannitol + NAD+
show the reaction diagram
-
-
-
-
?
D-fructose + NADH + H+
D-mannitol + NAD+
show the reaction diagram
-
-
-
-
r
D-fructose + NADH + H+
D-mannitol + NAD+
show the reaction diagram
-
Asn300 has an auxiliary role in stabilization of the transition state of hydride transfer and His303 contributes to substrate positioning, role of Lys295 in general base enzymic catalysis
-
-
?
D-fructose + NADH + H+
D-mannitol + NAD+
show the reaction diagram
Q83VI5
-mannitol production
-
-
r
D-fructose + NADH + H+
D-mannitol + NAD+
show the reaction diagram
Gluconobacter oxydans LMG 1489
-
-
-
-
?
D-fructose + NADPH + H+
D-mannitol + NADP+
show the reaction diagram
Q9WYD4, -
also active on fructose with NADPH
-
-
?
D-fructose 1-phosphate + NADH
?
show the reaction diagram
Leuconostoc mesenteroides, Leuconostoc mesenteroides ATCC-9135
Q8KQG6
-
-
-
?
D-glucitol + NAD+
? + NADH
show the reaction diagram
-
-
-
-
D-glucitol + NAD+
? + NADH
show the reaction diagram
-
-
-
-
-
D-glucitol + NAD+
?
show the reaction diagram
-
4% of the activity with D-mannitol
-
-
?
D-mannitol + NAD(P)+
D-fructose + NAD(P)H + H+
show the reaction diagram
O08355
-
-
-
r
D-mannitol + NAD(P)+
D-fructose + NAD(P)H + H+
show the reaction diagram
Q9WYD4, -
-
-
-
r
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
r
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
r
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
r
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
r
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
r
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
r
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
r
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
r
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
r
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
Lactobacillus gayonii
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
Lactobacillus gayonii
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
Nocardia erythropolis
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
-, r
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
r
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
r
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
Sarcina marginata
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
Sarcina aurantiaca
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
Lactobacillus pentoaceticus
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
Lactobacillus pentoaceticus
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
r
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
r
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
Fomes pinicola
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
r
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
?
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
Q8KQG6
-
-
-
r
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-, Q4WQY4
-
-
-
r
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
?
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
r
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
enzyme highly specific for D-mannitol and D-fructose
-
r
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
enzyme highly specific for D-mannitol and D-fructose
-
r
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
Q9WYD4, -
100% activity
-
-
r
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
the epsilon-NH2 group of Lys295 participates in an obligatory pH-dependent, pre-catalytic equilibrium which may control alcohol/alkoxide equilibration of the enzyme-bound D-mannitol and activates the C2 atom for subsequent catalytic oxidation by NAD+
-
-
?
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
O08355
wild-type enzyme
-
-
r
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
free energy profiles for the enzymatic reaction suggest that enzyme primarily acts in D-mannitol oxidation
-
-
r
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
Leuconostoc mesenteroides ATCC-9135
Q8KQG6
-
-
-
r
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
Brevibacterium flavum 2247
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
Brevibacterium flavum 2247
-
-
-
r
D-mannitol + NADP+
D-fructose + NADPH + H+
show the reaction diagram
-
32% of the activity with NAD+
-
-
?
D-mannitol + NADP+
D-fructose + NADPH + H+
show the reaction diagram
-, Q4WQY4
M2DH is a much poorer enzyme when it employes NADP+ and NADPH as compared to NAD+ and NADH
-
-
r
D-mannitol + polyethyleneglycol-NH-succinyl-aminoethyl-NAD+
D-fructose + polyethyleneglycol-NH-succinyl-aminoethyl-NADH
show the reaction diagram
-
-
-
-
D-mannitol + polyethyleneglycol-NH-succinyl-NAD+
D-fructose + polyethyleneglycol-NH-succinyl-NADH
show the reaction diagram
-
-
-
-
D-mannitol + polyethylenimin-NH-succinyl-NAD+
D-fructose + polyethylenimin-NH-succinyl-NADH
show the reaction diagram
-
-
-
-
D-tagatose + NAD(P)+
? + NAD(P)H
show the reaction diagram
Q9WYD4, -
29% relative activity compared to D-fructose
-
-
?
D-tagatose + NAD+
?
show the reaction diagram
Q9WYD4, -
29% relative activity on D-tagatose compared to 100% activity on D-fructose
-
-
?
D-xylulose + NAD(P)+
? + NAD(P)H
show the reaction diagram
Q9WYD4, -
18% relative activity compared to D-fructose
-
-
?
D-xylulose + NAD+
?
show the reaction diagram
Q9WYD4, -
18% relative activity on D-xylulose compared to 100% activity on D-fructose
-
-
?
D-xylulose + NADH + H+
D-arabinitol + NAD+
show the reaction diagram
-
-
-
-
?
isomaltulose + NAD(P)+
? + NAD(P)H
show the reaction diagram
-
-
-
-
?
L-sorbitol + NAD+
L-sorbose + NADH + H+
show the reaction diagram
-
-
-
-
L-sorbitol + NAD+
L-sorbose + NADH + H+
show the reaction diagram
-
-
-
-
L-sorbitol + NAD+
L-sorbose + NADH + H+
show the reaction diagram
-
-
-
-
L-sorbitol + NAD+
L-sorbose + NADH + H+
show the reaction diagram
-
-
-
-
L-sorbitol + NAD+
L-sorbose + NADH + H+
show the reaction diagram
-
-
-
-
r
L-sorbose + NAD(P)+
? + NAD(P)H
show the reaction diagram
Q9WYD4, -
5% relative activity compared to D-fructose
-
-
?
L-sorbose + NADH + H+
L-sorbitol + NAD+
show the reaction diagram
-
-
-
-
r
sorbitol + NAD(P)+
? + NAD(P)H
show the reaction diagram
-
-
-
-
?
L-sorbose + NADH + H+
L-sorbitol + NAD+
show the reaction diagram
Q9WYD4, -
5% relative activity on L-sorbose compared to 100% activity on D-fructose
-
-
?
additional information
?
-
-
among the Escherichia coli strains, BL21 (DE3) plysS exhibits the maximum expression level of MDH (11mg/L)
-
-
-
additional information
?
-
Q9WYD4, -
mannitol can be produced directly from glucose in a two-step enzymatic process, using a Thermotoga neapolitana xylose isomerase mutant and TmMtDH at 60C. No activity with glucose, xylose, threonine, arabinose, acetaldehyde, 2-butanone, sorbitol, xylitol, ethanol, or 2-butanol
-
-
-
additional information
?
-
Q9WYD4, -
TM0298 shows no detectable activity on glucose, xylose, threonine, arabinose, acetaldehyde, 2-butanone, sorbitol, xylitol, ethanol, or 2-butanol
-
-
-
additional information
?
-
-
slightly active with sorbitol, no activity with ribitol, arabinitol, or mesoerythritol
-
-
-
additional information
?
-
-
a D-arabo configuration is required for a polyol substrate to become reactive. The C2 (R) configuration as in mannitol is preferred over the C2 (S) configuration as in D-sorbitol
-
-
-
NATURAL SUBSTRATES
NATURAL PRODUCTS
REACTION DIAGRAM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
(Substrate)
LITERATURE
(Substrate)
COMMENTARY
(Product)
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
D-fructose + NADH + H+
D-mannitol + NAD+
show the reaction diagram
-
-
-
-
r
D-fructose + NADH + H+
D-mannitol + NAD+
show the reaction diagram
Q83VI5
-mannitol production
-
-
r
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
Lactobacillus gayonii
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
Nocardia erythropolis
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
Pseudomonas coronafaciens, Sarcina marginata, Sarcina aurantiaca
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
Lactobacillus pentoaceticus
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
Fomes pinicola
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
-
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
O08355
wild-type enzyme
-
-
r
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
free energy profiles for the enzymatic reaction suggest that enzyme primarily acts in D-mannitol oxidation
-
-
r
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
Brevibacterium flavum 2247
-
-
-
-
-
COFACTOR
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
IMAGE
NAD(P)+
Q9WYD4, -
its catalytic efficiency is 33times higher with NAD+ than with NADP+
NAD(P)H
Q9WYD4, -
MtDH has a higher Vmax with NADPH than with NADH, whereas its catalytic efficiency is 2.2times higher with NADH than with NADPH. Cofactor specificity is due to the high density of negatively charged residues (Glu193, Asp195, and Glu196) downstream of the NAD(P) interaction site, the glycine motif
NAD+
Lactobacillus gayonii, Lactobacillus pentoaceticus
-
-
NAD+
Pseudomonas aeruginosa, Pseudomonas coronafaciens, Sarcina aurantiaca, Sarcina marginata
-
-
NAD+
-
; best initial reaction rates with 0.5 mM
NAD+
-
; binding structure, the carboxylate group of Asp69 forms a bifurcated hydrogen bond with the 2' and 3' hydroxyl groups of the adenosine of NAD+ and contributes to the 400fold preference of the enzyme for NAD+ as compared to NADP+, overview
NAD+
Q9WYD4, -
although MtDH has a higher Vmax with NADPH than with NADH, its catalytic efficiency is 33 times higher with NAD+ than with NADP+
NAD+
-
dependent on, M2DH is a much poorer enzyme when it employes NADP+ and NADPH as compared to NAD+ and NADH
NAD+
Fomes pinicola
-
-
NADH
Lactobacillus gayonii, Lactobacillus pentoaceticus
-
-
NADH
Pseudomonas aeruginosa, Pseudomonas coronafaciens, Sarcina aurantiaca, Sarcina marginata
-
-
NADH
Q9WYD4, -
although MtDH has a higher Vmax with NADPH than with NADH, its catalytic efficiency is 2.2times higher with NADH than with NADPH
NADH
Fomes pinicola
-
-
NADP+
-
32% of the activity with NAD+
NADP+
-
400fold preference of the enzyme for NAD+ as compared to NADP+
NADP+
-
M2DH is a much poorer enzyme when it employes NADP+ and NADPH as compared to NAD+ and NADH
additional information
-
only trace activity for utilization of NADP+
-
METALS and IONS
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
CaCl2
-
10 mM, activates to 173% of control
Co2+
Q9WYD4, -
-
KCl
-
10 mM, activates to 127% of control
LiCl
-
10 mM, activates to 126% of control
MgCl2
-
10 mM, activates to 149% of control
NH4Cl
-
10 mM, activates to 137% of control
NiCl2
-
10 mM, activates to 106% of control
Zn2+
Q9WYD4, -
contains 0.69 mol of Zn2+ per subunit of enzyme; MtDH contains a single catalytic zinc per subunit
Mn2+
Q9WYD4, -
-
additional information
Q9WYD4, -
20 mM MgCl2 or CaCl2 do not increase the activity of the EDTA-treated enzyme
additional information
-
does not require metals for activity
INHIBITORS
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
IMAGE
citrate
-
50 mM, pH 5.4, 72% inhibition
Cu2+
-
1 mM, 61% inhibition
CuSO4
-
1 mM, 28% inhibition of D-fructose reduction, 18% inhibition of D-sorbitol oxidation
D-fructose
-
substrate inhibition, Ki: 1.356 mM
D-Mannitol
-
product inhibition, Ki: 24.6 mM
EDTA
-
20 mM, complete inhibition, can be restored by 20 mM Zn2+, but not by Mn2+ or Mg2+
EDTA
Q9WYD4, -
activity of MtDH pretreated with 10 mM EDTA for 20 min at 37C decreases 96%. Adding 20 mM ZnCl2 to the EDTA-treated enzyme restores activity up to 80% of the control (enzyme not treated with EDTA). Adding 20 mM CoCl2 and 20 mM MnCl2 to the EDTA-treated enzyme restores activity up to 132% and 94% of the control, respectively. In contrast, adding 20 mM MgCl2 or CaCl2 does not increase the activity of the EDTA-treated enzyme.; activity of MtDH pretreated with 10 mM for 20 min at 37C decreases 96%. Adding 20 mM ZnCl2 to the EDTA-treated enzyme restores activity up to 80% of the control. Adding 20 mM CoCl2 and 20 mM MnCl2 to the EDTA-treated enzyme restores activity up to 132% and 94% of the control, respectively
FeCl2
-
10 mM, 88% inhibition
imidazole
-
175 mM,pH 7.0, 74% inhibition
L-sorbitol
-
Ki: 24.6 mM
mannitol
Q9WYD4, -
-
mannitol 1-phosphate
-
-
Methyl mercurinitrate
-
complete inhibition
NaCl
-
with increasing NaCl concentrations enzyme activity decreases, 1.5 M NaCl 74% inhibition for oxidation and 72% inhibition for reduction
NAD+
-
product inhibition, Ki: 0.6 mM
p-chloromercuribenzoate
-
0.1 mM, 100% inhibition
p-hydroxymercuribenzoate
-
1 mM, 56% inhibition
p-hydroxymercuribenzoate
-
complete inhibition
PCMB
Q8KQG6
0.1 mM, complete inhibition
Zn2+
-
1 mM, 94% inhibition
ZnCl2
-
10 mM, 60% inhibition
MnCl2
-
10 mM, 48% inhibition
additional information
-
no inhibitory effect on D-fructose reduction detected for MgSO4, CaSO4, Na2SO4, ZnSO4 and MnSO4
-
additional information
-
no inhibition of M2DH by bovine serum albumin
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
IMAGE
EDTA
-
10 mM, activates to 158% of control
EDTA
-
13% stimulation of D-fructose reduction
additional information
-
no clear stimulatory effect of MgSO4+, MnSO4, CuSO4, ZnSO4, Na2SO4 and CaSO4 on activity
-
additional information
-
no activation of M2DH by bovine serum albumin
-
KM VALUE [mM]
KM VALUE [mM] Maximum
SUBSTRATE
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
IMAGE
1.8
6.5
D-Arabinitol
-
-
163
-
D-Arabinitol
-
pH 10.0, 25C
1.6
-
D-Arabitol
-
recombinant protein
0.24
-
D-fructose
-
wild-type, pH 7.1, 25C
0.24
-
D-fructose
-
wild-type, pH 7.1, temperature not specified in the publication
0.44
-
D-fructose
-
in 50 mM glycine/NaOH buffer at pH 10.0
0.54
-
D-fructose
-
mutant N191D, pH 10.0, temperature not specified in the publication
0.6
-
D-fructose
-
pH 7.1, 25C
1.1
-
D-fructose
-
mutant N191L, pH 7.1, 25C
3.9
-
D-fructose
-
mutant N300D, pH 10.0, temperature not specified in the publication
6
-
D-fructose
-
mutant N191D, pH 7.1, temperature not specified in the publication
9
-
D-fructose
-
mutant N191A, pH 7.1, 25C
16.3
79.2
D-fructose
-
-
16.3
79.2
D-fructose
-
-
16.3
79.2
D-fructose
-
-
16.3
79.2
D-fructose
-
-
16.3
79.2
D-fructose
-
-
20
-
D-fructose
-
mutant N191A/N300A, pH 7.1, 25C
20
-
D-fructose
-
mutant N191D/N300D, pH 10.0, temperature not specified in the publication
22
-
D-fructose
-
mutant N300D, pH 6.8, temperature not specified in the publication
24
-
D-fructose
-
25C, pH 7.3
25
-
D-fructose
-
recombinant protein
44
-
D-fructose
-
pH 5.4, 30C
50
-
D-fructose
Q9WYD4, -
at 60C and pH 6.1; at 60C, pH 6.1
50.97
-
D-fructose
Q9WYD4, -
at 80C and pH 6.1; at 80C, pH 6.1
60
-
D-fructose
-
at 25C, in 100 mM Tris/HCl buffer, pH 7.1
71
-
D-fructose
Q8KQG6
pH 5.3
0.29
21.8
D-Mannitol
-
-
0.29
21.8
D-Mannitol
-
-
0.29
21.8
D-Mannitol
-
-
0.29
21.8
D-Mannitol
-
-
0.29
21.8
D-Mannitol
-
-
0.29
21.8
D-Mannitol
-
-
0.29
21.8
D-Mannitol
-
-
0.3
-
D-Mannitol
-
mutant N300D, pH 10.0, temperature not specified in the publication
0.32
-
D-Mannitol
-
mutant N191D, pH 10.0, temperature not specified in the publication
0.4
-
D-Mannitol
-
in 50 mM glycine/NaOH buffer at pH 10.0
0.4
-
D-Mannitol
-
wild-type, pH 10.0, 25C
0.6
-
D-Mannitol
-
recombinant protein
0.9
-
D-Mannitol
-
mutant N191L, pH 10.0, 25C
1.2
-
D-Mannitol
-
recombinant protein
5.51
-
D-Mannitol
Q9WYD4, -
at 80C and pH 8.3; at 80C, pH 8.3
8.7
-
D-Mannitol
-
mutant N191A, pH 10.0, 25C
9
-
D-Mannitol
-
mutant N191D, pH 7.1, temperature not specified in the publication
9.1
-
D-Mannitol
-
25C, pH 9.0
12
-
D-Mannitol
-
pH 8.6, 30C
13
-
D-Mannitol
-
at 25C, in 100 mM glycine/NaOH buffer pH 10.0
13
-
D-Mannitol
-
pH 10.0, 25C
13.23
-
D-Mannitol
Q9WYD4, -
at 60C and pH 6.1; at 60C, pH 6.1
15.4
-
D-Mannitol
-
41C, pH 9.0
21
-
D-Mannitol
-
wild-type, pH 7.1, temperature not specified in the publication
32
-
D-Mannitol
Q8KQG6
pH 8.6
93
-
D-Mannitol
-
mutant N300D, pH 6.8, temperature not specified in the publication
1187
-
D-Mannitol
-
mutant N191A/N300A, pH 10.0, 25C
58.5
-
D-Sorbitol
-
recombinant protein
1.7
-
D-xylulose
-
pH 7.1, 25C
0.001
-
NAD+
-
mutant N300D, pH 6.8, temperature not specified in the publication
0.054
-
NAD+
-
mutant N191D, pH 10.0, temperature not specified in the publication
0.055
-
NAD+
-
mutant N191L, pH 10.0, 25C
0.074
-
NAD+
-
mutant N300D, pH 10.0, temperature not specified in the publication
0.093
-
NAD+
-
in 50 mM glycine/NaOH buffer at pH 10.0
0.093
-
NAD+
-
wild-type, pH 10.0, 25C
0.11
-
NAD+
-
pH 7.1, 25C
0.14
-
NAD+
Q9WYD4, -
at 80C and pH 8.3; at 80C, pH 8.3
0.15
-
NAD+
-
at 25C, in 100 mM glycine/NaOH buffer pH 10.0
0.18
0.27
NAD+
-
-
0.231
-
NAD+
-
mutant N191D, pH 7.1, temperature not specified in the publication
0.31
-
NAD+
-
mutant N191A, pH 10.0, 25C
0.314
-
NAD+
-
mutant N191A/N300A, pH 10.0, 25C
0.775
-
NAD+
-
wild-type, pH 7.1, temperature not specified in the publication
0.0033
-
NADH
-
mutant N191L, pH 7.1, 25C
0.008
-
NADH
-
mutant N191D, pH 7.1, temperature not specified in the publication
0.009
-
NADH
-
mutant N300D, pH 10.0, temperature not specified in the publication
0.01
0.079
NADH
-
-
0.01
0.079
NADH
-
-
0.01
-
NADH
-
in 50 mM glycine/NaOH buffer at pH 10.0
0.011
-
NADH
-
mutant N191D/N300D, pH 10.0, temperature not specified in the publication
0.015
-
NADH
-
pH 7.1, 25C
0.016
-
NADH
-
mutant N191D, pH 10.0, temperature not specified in the publication
0.017
-
NADH
-
mutant N191A, pH 7.1, 25C
0.019
-
NADH
-
at 25C, in 100 mM Tris/HCl buffer, pH 7.1
0.02
-
NADH
-
mutant N300D, pH 6.8, temperature not specified in the publication
0.023
-
NADH
-
mutant N191A/N300A, pH 7.1, 25C
0.037
-
NADH
Q9WYD4, -
at 60C and pH 6.1; at 60C, pH 6.1
0.048
-
NADH
Q9WYD4, -
at 80C and pH 6.1; at 80C, pH 6.1
0.067
-
NADH
-
wild-type, pH 7.1, 25C
0.067
-
NADH
-
wild-type, pH 7.1, temperature not specified in the publication
0.15
-
NADH
-
recombinant protein
7.5
-
NADP+
Q9WYD4, -
at 80C and pH 8.3; at 80C, pH 8.3
0.17
-
NADPH
Q9WYD4, -
at 80C and pH 6.1; at 80C, pH 6.1
0.1
-
polyethyleneglycol-NH-succinyl-aminoethyl-NADH
-
-
-
0.125
-
polyethyleneglycol-NH-succinyl-NADH
-
-
-
0.074
-
polyethylenimine-NH-succinyl-NADH
-
-
-
680
-
L-sorbitol
-
pH 10.0, 25C
additional information
-
additional information
-
steady-state kinetic analysis, recombinant wild-type and mutant enzymes, overview
-
TURNOVER NUMBER [1/s]
TURNOVER NUMBER MAXIMUM[1/s]
SUBSTRATE
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
IMAGE
162
-
D-Arabinitol
-
pH 10.0, 25C
0.15
-
D-fructose
-
mutant N191D/N300D, pH 10.0, temperature not specified in the publication
0.8
-
D-fructose
-
mutant N300D, pH 10.0, temperature not specified in the publication
0.9
-
D-fructose
-
mutant N300D, pH 6.8, temperature not specified in the publication
2.7
-
D-fructose
-
mutant N191D, pH 7.1, temperature not specified in the publication
8.2
-
D-fructose
-
mutant N191D, pH 10.0, temperature not specified in the publication
20
-
D-fructose
-
in 50 mM glycine/NaOH buffer at pH 10.0
61
-
D-fructose
-
wild-type, pH 7.1, temperature not specified in the publication
86
-
D-fructose
-
pH 7.1, 25C
0.00055
-
D-Mannitol
-
mutant N191D, pH 7.1, temperature not specified in the publication
0.0011
-
D-Mannitol
-
mutant N191D, pH 10.0, temperature not specified in the publication
0.0014
-
D-Mannitol
-
mutant N300D, pH 6.8, temperature not specified in the publication
0.0015
-
D-Mannitol
-
mutant N300D, pH 10.0, temperature not specified in the publication
15.9
-
D-Mannitol
-
wild-type, pH 7.1, temperature not specified in the publication
40
-
D-Mannitol
-
in 50 mM glycine/NaOH buffer at pH 10.0
212
-
D-Mannitol
-
pH 10.0, 25C
64
-
D-xylulose
-
pH 7.1, 25C
60
-
L-sorbitol
-
pH 10.0, 25C
3
-
NAD(P)H
-
wild-type
12
-
NAD(P)H
-
mutant D69A/D69A
24
-
NAD(P)H
-
mutant D69A
0.04
-
NAD+
-
mutant N191A/N300A, pH 10.0, 25C
0.55
-
NAD+
-
mutant N191L, pH 10.0, 25C
2.78
-
NAD+
-
mutant N191A, pH 10.0, 25C
20
-
NAD+
-
recombinant protein
40
-
NAD+
-
wild-type, pH 10.0, 25C
0.00045
-
NADH
-
mutant N191A/N300A, pH 7.1, 25C
0.55
-
NADH
-
mutant N191L, pH 7.1, 25C
0.56
-
NADH
-
mutant N191A, pH 7.1, 25C
4.6
-
NADH
-
mutant D69A/D69A
15
-
NADH
-
mutant D69A
26
-
NADH
-
wild-type
54
-
NADH
-
recombinant protein
61
-
NADH
-
wild-type, pH 7.1, 25C
kcat/KM VALUE [1/mMs-1]
kcat/KM VALUE [1/mMs-1] Maximum
SUBSTRATE
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
IMAGE
0.99
-
D-Arabinitol
-
pH 10.0, 25C
9091
2.6e-05
-
D-fructose
-
mutant N191A/N300A, pH 7.1, 25C
9137
0.0074
-
D-fructose
-
mutant N191D/N300D, pH 10.0, temperature not specified in the publication
9137
0.041
-
D-fructose
-
mutant N300D, pH 6.8, temperature not specified in the publication
9137
0.064
-
D-fructose
-
mutant N191A, pH 7.1, 25C
9137
0.205
-
D-fructose
-
mutant N300D, pH 10.0, temperature not specified in the publication
9137
0.407
-
D-fructose
-
mutant N191L, pH 7.1, 25C
9137
0.45
-
D-fructose
-
mutant N191D, pH 7.1, temperature not specified in the publication
9137
15
-
D-fructose
-
mutant N191D, pH 10.0, temperature not specified in the publication
9137
140
-
D-fructose
-
pH 7.1, 25C
9137
250
-
D-fructose
-
wild-type, pH 7.1, 25C
9137
250
-
D-fructose
-
wild-type, pH 7.1, temperature not specified in the publication
9137
1.5e-05
-
D-Mannitol
-
mutant N300D, pH 6.8, temperature not specified in the publication
9272
3.4e-05
-
D-Mannitol
-
mutant N191A/N300A, pH 10.0, 25C
9272
6.1e-05
-
D-Mannitol
-
mutant N191D, pH 7.1, temperature not specified in the publication
9272
0.0034
-
D-Mannitol
-
mutant N191D, pH 10.0, temperature not specified in the publication
9272
0.0049
-
D-Mannitol
-
mutant N300D, pH 10.0, temperature not specified in the publication
9272
0.319
-
D-Mannitol
-
mutant N191A, pH 10.0, 25C
9272
0.598
-
D-Mannitol
-
mutant N191L, pH 10.0, 25C
9272
0.757
-
D-Mannitol
-
wild-type, pH 7.1, temperature not specified in the publication
9272
17
-
D-Mannitol
-
pH 10.0, 25C
9272
100
-
D-Mannitol
-
wild-type, pH 10.0, 25C
9272
39
-
D-xylulose
-
pH 7.1, 25C
9406
0.088
-
L-sorbitol
-
pH 10.0, 25C
79813
1.1
-
L-sorbose
-
pH 7.1, 25C
12411
0.0024
-
NAD+
-
mutant N191D, pH 7.1, temperature not specified in the publication
14330
0.02
-
NAD+
-
mutant N191D, pH 10.0, temperature not specified in the publication; mutant N300D, pH 10.0, temperature not specified in the publication
14330
0.127
-
NAD+
-
mutant N191A/N300A, pH 10.0, 25C
14330
1.4
-
NAD+
-
mutant N300D, pH 6.8, temperature not specified in the publication
14330
8.968
-
NAD+
-
mutant N191A, pH 10.0, 25C
14330
9.964
-
NAD+
-
mutant N191L, pH 10.0, 25C
14330
20
-
NAD+
-
wild-type, pH 7.1, temperature not specified in the publication
14330
400
-
NAD+
-
wild-type, pH 10.0, 25C
14330
0.019
-
NADH
-
mutant N191A/N300A, pH 7.1, 25C
14331
15
-
NADH
-
mutant N191D/N300D, pH 10.0, temperature not specified in the publication
14331
32
-
NADH
-
mutant N191A, pH 7.1, 25C
14331
45
-
NADH
-
mutant N300D, pH 6.8, temperature not specified in the publication
14331
89
-
NADH
-
mutant N300D, pH 10.0, temperature not specified in the publication
14331
170
-
NADH
-
mutant N191L, pH 7.1, 25C
14331
340
-
NADH
-
mutant N191D, pH 7.1, temperature not specified in the publication
14331
510
-
NADH
-
mutant N191D, pH 10.0, temperature not specified in the publication
14331
910
-
NADH
-
wild-type, pH 7.1, 25C
14331
910
-
NADH
-
wild-type, pH 7.1, temperature not specified in the publication
14331
Ki VALUE [mM]
Ki VALUE [mM] Maximum
INHIBITOR
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
IMAGE
5.6
-
ADP
-
pH 7.1, 25C, reduction of fructose
5.7
-
ADP
-
pH 7.1, 25C, oxidation of mannitol
2.9
-
AMP
-
pH 7.1, 25C, reduction of fructose
4.8
-
AMP
-
pH 7.1, 25C, oxidation of mannitol
1356
-
D-fructose
-
-
24.6
-
D-Mannitol
-
-
24.6
-
L-sorbitol
-
-
99
-
mannitol
Q9WYD4, -
-
0.003
-
NAD+
-
mutant N191D, pH 7.1, temperature not specified in the publication
0.07
-
NAD+
-
mutant N300D, pH 6.8, temperature not specified in the publication
0.08
-
NAD+
-
wild-type, pH 7.1, temperature not specified in the publication
0.061
-
NADH
-
mutant N300D, pH 6.8, temperature not specified in the publication
0.064
-
NADH
-
mutant N191D, pH 7.1, temperature not specified in the publication
0.08
-
NADH
-
wild-type, pH 7.1, temperature not specified in the publication
SPECIFIC ACTIVITY [µmol/min/mg]
SPECIFIC ACTIVITY MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
0.003
-
-
cells grown on D-glucose, crude extracts
0.012
-
-
cells grown on D-mannitol + glucose, crude extracts
0.015
-
-
cells grown on D-ribose, crude extracts
0.05
-
-
41C, pH 9.0
0.243
-
-
cells grown on D-mannitol, crude extracts
10.24
-
-
-
14
-
-
crude extract, at 25C, using 100 mM Tris-HCl buffer, pH 7.1
33
-
-
after 6.7fold purification, at 25C, using 100 mM Tris-HCl buffer, pH 7.1
46
-
-
histidine-tagged recombinant protein
54
-
Q9WYD4, -
purified enzyme at 80C with D-fructose as the substrate and NADH as the cofactor; purified enzyme, at 80C with fructose as the substrate and NADH as the cofactor
63
-
-
MDH expressed in Escherichia coli strain BL21 (DE3) plysS, with fructose as substrate
68.3
-
-
recombinant protein
additional information
-
-
the activity for inositol, sorbitol, galactitol, ribitol, xylitol, arabitol and erythritol is very low
pH OPTIMUM
pH MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
5.3
-
-
D-fructose reduction
5.3
-
-
D-fructose reduction
5.4
-
-
reduction of D-fructose
5.5
6
-
optimal pH in den range of 5.5-6.0 for reduction of fructose
5.5
6
Q9WYD4, -
optimally reduces L-fructose at pH values between pH 5.5 and 6.0
5.5
-
-
for reduction of D-fructose; optimal for D-fructose reduction
5.8
-
-
reduction of D-fructose
6
7.2
-
D-fructose reduction
6
7.2
-
D-fructose reduction
6
7.2
-
D-fructose reduction
6
7.2
-
D-fructose reduction
6
7.2
-
D-fructose reduction
6
7.2
-
D-fructose reduction
7
-
-
D-fructose reduction, recombinant protein
8
-
-
oxidation of D-mannitol
8
-
-
for oxidation of D-mannitol; optimal for D-mannitol oxidation
8
-
-
assay at, both reaction directions
8.3
8.6
Q9WYD4, -
optimally oxidizes L-mannitol between pH 8.3 and 8.6
8.6
-
-
D-mannitol oxidation
8.6
-
-
D-mannitol oxidation
8.6
-
-
oxidation of D-mannitol
8.9
10
-
D-mannitol oxidation
8.9
10
-
D-mannitol oxidation
8.9
10
-
D-mannitol oxidation
8.9
10
-
D-mannitol oxidation
8.9
10
-
D-mannitol oxidation
8.9
10
-
D-mannitol oxidation
9
-
-
for the oxidation of mannitol
10
-
-
D-mannitol oxidation, recombinant protein
additional information
-
Q9WYD4, -
pH 5.5-6 is the optimum for D-fructose reduction and pH 8.3-8.6 is the optimum for mannitol reduction
pH RANGE
pH RANGE MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
4.5
7
-
pH 4.5: about 80% of maximal activity, pH 7.0: about 60% of maximal activity, reduction of D-fructose
5
-
-
not active below, D-mannitol oxidation
5
-
-
not active below, D-mannitol oxidation
6
6.5
-
not active below, D-mannitol oxidation
6.8
8.3
-
pH 6.8: about 20% of maximal activity, pH 8.3: about 55% of maximal activity, oxidation of D-mannitol
8
-
-
not active above, D-fructose reduction
9
9.5
-
not active above, D-fructose reduction
TEMPERATURE OPTIMUM
TEMPERATURE OPTIMUM MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
25
-
-
assay at, both reaction directions
35
-
-
reduction of D-fructose
40
-
-
for oxidation of D-mannitol; optimal for D-mannitol oxidation
50
-
-
for reduction of D-fructose; optimal for D-fructose reduction
90
100
Q9WYD4, -
most active around 95C
95
-
Q9WYD4, -
-
TEMPERATURE RANGE
TEMPERATURE MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
20
40
-
20C: about 85% of maximal activity, 40C: about 70% of maximal activity, reduction of D-fructose
90
120
Q9WYD4, -
MtDH retains 63% of its activity at 120C but shows no detectable activity at 25C
95
120
Q9WYD4, -
retains 63% of its activity at 120C but shows no detectable activity at room temperature
SOURCE TISSUE
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
SOURCE
-
glucose as carbon source represses mannitol dehydrogenase
Manually annotated by BRENDA team
-
glucose induces enzyme production
Manually annotated by BRENDA team
Brevibacterium flavum 2247
-
glucose as carbon source represses mannitol dehydrogenase
-
Manually annotated by BRENDA team
MOLECULAR WEIGHT
MOLECULAR WEIGHT MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
36000
-
-
estimated molecular mass from sequence of cDNA
45000
-
-
recombinant protein, gel filtration
47200
-
-
sucrose density gradient centrifugation
53000
-
-
gel filtration
54000
-
-
recombinant protein, SDS-PAGE
54490
-
-
calculated from gene sequence
58000
-
-
recombinant enzyme, SDS-PAGE
64500
-
-
sucrose density gradient centrifugation
120000
134000
Q9WYD4, -
gel filtration
120000
143000
Q9WYD4, -
gel filtration or analytical ultracentrifugation
120000
-
Q9WYD4, -
ultracentrifugation
132000
138000
-
gel filtration, sucrose density gradient centrifugation
133000
-
-
gel filtration
155000
-
-
gel filtration
SUBUNITS
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
?
-
x * 55000, SDS-PAGE
dimer
Q6ECH5
gel filtration at room temperature, MtDH in solution
monomer
-
1 * 52200, SDS-PAGE
monomer
-
1 * 67000
monomer
-
1 * 54000, SDS-PAGE, recombinant protein
monomer
Q8KQG6
1 * 41000, SDS-PAGE
monomer
-
1 * 44000, SDS-PAGE
monomer
-
1 * 54000
monomer
-
1 * 58000, recombinant enzyme, SDS-PAGE
monomer
Leuconostoc mesenteroides ATCC-9135
-
1 * 41000, SDS-PAGE
-
octamer
Q6ECH5
gel filtration at room temperature, MtDH in solution
tetramer
-
4 * 36000, SDS-PAGE
tetramer
-
4 * 43000, SDS-PAGE
tetramer
Q6ECH5
gel filtration at room temperature, MtDH in solution
tetramer
Q9WYD4, -
4 * 34000, SDS-PAGE; gel filtration or analytical ultracentrifugation, MtDH in solution
Crystallization/COMMENTARY
ORGANISM
UNIPROT ACCESSION NO.
LITERATURE
hanging drop vapor diffusion method, binary complex of selenomethionine substituted proteins with NAD(H) and a ternary complex with NAD(H) and D-mannitol have been determined to resolutions of 1.7 and 1.8 A respectively
-
hanging drop vapor diffusion method, binary complex with NAD+ and ternary complex with NAD+ and D-mannitol have been determined to resolutions of 1.7 and 1.8 A and R-factors of 0.171 and 0.176 respectively
-
purified recombinant His-tagged enzyme, 10 mg/ml protein in 50 mM Tris-HCl, pH 8.5, room temperature, microbatch-under-oil method, mixing of equal volumes of protein and crystallization solutions, the latter containing 30% 2-methyl-2,4-pentanediol, and 0.1 M Na HEPES, pH 7.5, X-ray diffraction structure determination and analysis at 3.3 A resolution, molecular-replacement
-
pH STABILITY
pH STABILITY MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
5
9
-
at 35C for 1 h
6
6.5
-
highest stability
6
8
-
at 35C for 5 h
8.5
-
Q9WYD4, -
TM0298 is sensitive to proteolytic degradation in purification protocols at pH 8.5
TEMPERATURE STABILITY
TEMPERATURE STABILITY MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
20
-
-
not stable above
25
-
-
half-life 3.6 h
30
40
-
The enzyme is very stable at 30C. The half life time at 40C is 35 min for D-mannitol oxidation.
30
-
-
half-life 0.42 h
40
-
-
not stable above
40
-
-
stable up to 40C
50
-
-
heat inactivation, 50% loss of activity after 30 min incubation
80
-
Q9WYD4, -
half-life: 57 min; half-lives of 57 min
95
-
Q9WYD4, -
half-life: 6 min; half-lives of 6 min
GENERAL STABILITY
ORGANISM
UNIPROT ACCESSION NO.
LITERATURE
stabilized with 0.5 mM EDTA, 1% bovine serum albumin
-
STORAGE STABILITY
ORGANISM
UNIPROT ACCESSION NO.
LITERATURE
-20C, 10 mM dithiothreitol, 45 days
-
-10C, 1 month, 50% loss of activity
-
-16C, 0.02 M sodium acetate buffer pH 6.0, 1 mM 2-mercaptoethanol, several weeks
-
3C, crystalline enzyme in ammonium sulfate, 2 months
-
4C or 20C, enzyme loses approximately 60% of its specific activity after storage for 3 weeks in presence of 1 mM DTT, without DTT the same loss is observed after 2 days
-
Purification/COMMENTARY
ORGANISM
UNIPROT ACCESSION NO.
LITERATURE
Co2+ chelating Sepharose column chromatography and Superdex 200 gel filtration
-
HisBind affinity chromatography
-
recombinant enzyme
Q8KQG6
by Ni2+-NTA affinity chromatography
-
histidine-tagged recombinant protein, expressed in Escherichia coli
-
mutants purified to apparent homogeneity
-
recombinant protein
-
recombinant protein
-
by heat treatment at 85C and on Ni-NTA column; Ni-NTA agarose column chromatography
Q9WYD4, -
recombinant His-tagged enzyme from Escherichia coli strain BL21(DE3) by nickel affinity chromatography
-
Cloned/COMMENTARY
ORGANISM
UNIPROT ACCESSION NO.
LITERATURE
expressed in Escherichia coli JM109 cells
-
expressed in Escherichia coli strain BL21pLysS
-
MtDH is expressed in Escherichia coli BL21(DE3)
Q6ECH5
fusion of six His codons to the 3'-end of the mdh gene and expression in Escherichia coli M15. The enzyme shares significant sequence similarity with the medium-chain dehydrogenase/reductase protein family
Q8KQG6
expression in Escherichia coli
-
expression in Escherichia coli, effecting strong catalytic activity of an NADH-dependent reduction of D-fructose to D-mannitol in cell extracts of the recombinant Escherichia coli strain
-
gene mdh, high level expression in Bacillus megaterium requiring the adaptation of the corresponding ribosome binding site, the fdh gene is adapted to Bacillus megaterium codon usage via complete chemical gene synthesis, overview
Q83VI5
expressed in Escherichia coli; expression of wild-type and mutant enzymes in Escherichia coli strain JM109
-
expression in Escherichia coli
-
expression of wild-type enzyme and mutant enzymes in Escherichia coli
-
subcloned into vector pDEST110 and overexpressed in different strains of Escherichia coli (BL21 (DE3) plysS, JM109, Origami(DE3) or M15)
-
expression in Escherichia coli
-
expressed in Escherichia coli BL21(DE3) cells; the TM0298 gene subcloned into the NdeI and XhoI sites of pET24a(+) to yield plasmid pTmMtDH, from which MtDH is expressed with a C-terminal His6-tag in Escherichia coli BL21(DE3)
Q9WYD4, -
gene mtdh, expression of the His-tagged enzyme in Escherichia coli strain BL21(DE3)
-
ENGINEERING
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
D69A
-
site-directed mutagenesis, the mutant shows an altered cofactor specificity compared to the wild-type enzyme, which is switched to NADP(H), EC 1.1.1.138, NADP(H) is equally utilized as NAD(H); utilizes NAD(H) and NADP(H) with similar catalytic efficiencies. Uses NADP(H) almost as well as wild-type enzyme uses NAD(H)
E292A
-
mutation partially disrupts the catalytic cycle. Role for residue Glu292 as a gate in a water chain mechanism of proton translocation. Removal of gatekeeper control in the E292A mutant results in a selective, up to 120fold slowing down of microscopicsteps immediately preceding catalytic oxidation of mannitol, consistent with the notion that formation of the productive enzyme-NAD-mannitol complex is promoted by a corresponding position change of Glu292
E68K
-
site-directed mutagenesis, the mutant shows an altered cofactor specificity compared to the wild-type enzyme, which is switched to NADP(H), EC 1.1.1.138, NADP(H) is preferred by 10fold over NAD(H)
E68K/D69A
-
shows about a 10fold preference for NADP(H) over NAD(H), accompanied by a small decrease in catalytic efficiency for NAD(H)-dependent reactions as compared to wild-type enzyme
H303A
-
mutant enzyme displays catalytic efficiency for NAD+-dependent oxidation of D-mannitol 300fold below the wild-type value
K295A
-
mutant enzyme displays catalytic efficiency for NAD+-dependent oxidation of D-mannitol 400000fold below the wild-type value
K295A
-
30000fold lower turnover number for D-mannitol oxidation at pH 10.0 than the wild-type enzyme
K295M
-
2000000fold lower turnover number for D-mannitol oxidation at pH 10.0 than the wild-type enzyme
N191A
-
the rate constants for the overall hydride transfer to and from C-2 of mannitol are selectively slowed, between 540- and 2700fold. Partial disruption of the oxyanion hole in the single-site mutant causes an upshift, by about 1.2 pH units, in the kinetic pK of the catalytic acid-base Lys295 in the enzymeNAD+-mannitol complex
N191A/N300A
-
the rate constants for the overall hydride transfer to and from C-2 of mannitol are selectively slowed, with additive effects in the double mutant
N191D
-
the internal equilibrium of enzyme-NADH-fructose and enzyme-NAD+-mannitol is altered 10000- to 100000fold from being balanced in the wild-type enzyme to favoring enzyme-NAD+-mannitol in the single site mutants, N191D and N300D. N191D and N300D appear to lose fructose binding affinity due to deprotonation of the respective Asp above apparent pK values of 5.3  0.1 and 6.3  0.2, respectively
N191D/N300D
-
mutant behaves as a slow fructose reductase at pH 5.2, lacking measurable activity for mannitol oxidation in the pH range 6.8-10
N191L
-
the rate constants for the overall hydride transfer to and from C-2 of mannitol are selectively slowed, between 540- and 2700fold. Partial disruption of the oxyanion hole in the single-site mutant causes an upshift, by about 1.2 pH units, in the kinetic pK of the catalytic acid-base Lys295 in the enzymeNAD+-mannitol complex
N300A
-
mutant enzyme displays catalytic efficiency for NAD+-dependent oxidation of D-mannitol 1000fold below the wild-type value
N300D
-
the internal equilibrium of enzyme-NADH-fructose and enzyme-NAD+-mannitol is altered 10000- to 100000fold from being balanced in the wild-type enzyme to favoring enzyme-NAD+-mannitol in the single site mutants, N191D and N300D. N191D and N300D appear to lose fructose binding affinity due to deprotonation of the respective Asp above apparent pK values of 5.3  0.1 and 6.3  0.2, respectively
additional information
Q83VI5
D-mannitol production by resting state whole cell biotransformation of D-fructose by heterologous mannitol dehydrogenase gene from Leuconostoc pseudomesenteroides and the formate dehydrogenase gene, gene fdh from Mycobacterium vaccae N10, expression in Bacillus megaterium, development of an in vivo system, overview
APPLICATION
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
analysis
-
sensitive and specific photometric determination of mannitol in human serum
biotechnology
-
recombinant Escherichia coli expressing the enzyme from Leuconostoc pseudomesenteroides expressing strong catalytic activity of an NADH-dependent reduction of D-fructose to D-mannitol in cell extracts of the recombinant Escherichia coli strain can be utilized as an efficient biocatalyst for D-mannitol formation
synthesis
Q83VI5
the recombinant enzyme expressed in Bacillus megaterium is useful in production of D-mannitol using a resting cell biotransformation approach
industry
-
redox balancing between the intracellular NADP(H) and NAD(H) based on NAD(P)(H)-dependent interconversion of mannitol and fructose by M2DH may be a useful strategy of metabolic engineering
industry
-
best strain for expression of MDH in both laboratory and industrial applications is Escherichia coli BL21 (DE3) plysS
nutrition
-
cofactor regeneration system