Information on EC 1.1.1.103 - L-threonine 3-dehydrogenase

Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Specify your search results
Mark a special word or phrase in this record:
Select one or more organisms in this record:
Show additional data
Do not include text mining results
Include (text mining) results (more...)
Include results (AMENDA + additional results, but less precise; more...)


The expected taxonomic range for this enzyme is: Bacteria, Eukaryota, Archaea

EC NUMBER
COMMENTARY
1.1.1.103
-
RECOMMENDED NAME
GeneOntology No.
L-threonine 3-dehydrogenase
REACTION
REACTION DIAGRAM
COMMENTARY
ORGANISM
UNIPROT ACCESSION NO.
LITERATURE
L-threonine + NAD+ = L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
it is suggested that the unstable L-2-amino-3-oxobutanoate spontaneousely decarboxylates to the stable aminoacetone, there is also some evidence that L-threonine is oxidatively decarboxylated by threonine dehydrogenase to produce aminoacetone
-
L-threonine + NAD+ = L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
ordered bi-bi mechanism, NAD+ binds prior to L-threonine
-, Q8KZM4
L-threonine + NAD+ = L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
reaction mechanism, random bi bi kinetic mechanism
-
L-threonine + NAD+ = L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
His94 is an active site residue, substrate binding involved residues Gly66, Gly71, Gly77, and Val80
-
L-threonine + NAD+ = L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
catalytic mechanism, the carboxyl group of Glu152 is important for expressing the catalytic activity, the proton relay system works as a catalytic mechanism of TDH
-
L-threonine + NAD+ = L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
reaction mechanism involving catalytic residues T112, Y137, and K141, overview
-
L-threonine + NAD+ = L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
ordered bi-bi mechanism, NAD+ binds prior to L-threonine
Cytophaga sp. KUC-1
-
-
L-threonine + NAD+ = L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
reaction mechanism, random bi bi kinetic mechanism
Pyrococcus horikoshii OT-3
-
-
L-threonine + NAD+ = L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
REACTION TYPE
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
redox reaction
-
-
-
-
PATHWAY
KEGG Link
MetaCyc Link
aminopropanol phosphate biosynthesis II
-
Glycine, serine and threonine metabolism
-
NIL
-
threonine degradation II
-
threonine degradation III (to methylglyoxal)
-
SYSTEMATIC NAME
IUBMB Comments
L-threonine:NAD+ oxidoreductase
This enzyme acts in concert with EC 2.3.1.29, glycine C-acetyltransferase, in the degradation of threonine to glycine. This threonine-degradation pathway is common to prokaryotic and eukaryotic cells and the two enzymes involved form a complex [2]. In aqueous solution, the product L-2-amino-3-oxobutanoate can spontaneously decarboxylate to form aminoacetone.
SYNONYMS
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
L-ThrDH
Pyrococcus horikoshii OT-3
-
-
-
L-threonine dehydrogenase
-
-
-
-
L-threonine dehydrogenase
-
-
L-threonine dehydrogenase
-
-
L-threonine dehydrogenase
-
-
L-threonine dehydrogenase
O58389
-
L-threonine dehydrogenase
Pyrococcus horikoshii OT-3
-
-
-
L-threonine dehydrogenase
Q5JI69
-
L-threonine dehydrogenase
-
-
ThrDH
E5RQ20
-
threonine 3-dehydrogenase
-
-
-
-
threonine dehydrogenase
-
-
-
-
threonine dehydrogenase
-
-
threonine dehydrogenase
-
-
L-threonine dehydrogenase
-
-
additional information
O58389
the enzyme belongs to the medium-chain NAD(H)-dependent alcohol dehydrogenases
CAS REGISTRY NUMBER
COMMENTARY
9067-99-6
-
ORGANISM
COMMENTARY
LITERATURE
SEQUENCE CODE
SEQUENCE DB
SOURCE
goat
-
-
Manually annotated by BRENDA team
Japanese quail, fed a standard or threonine-rich diet or fasted for three days
-
-
Manually annotated by BRENDA team
strain KUC-1
Q8KZM4
Swissprot
Manually annotated by BRENDA team
Cytophaga sp. KUC-1
strain KUC-1
Q8KZM4
Swissprot
Manually annotated by BRENDA team
strain MDS42, which lacks 14.3% of its chromosome
-
-
Manually annotated by BRENDA team
Escherichia coli MDS42
strain MDS42, which lacks 14.3% of its chromosome
-
-
Manually annotated by BRENDA team
-
Swissprot
Manually annotated by BRENDA team
orf PH0655, gene TDH
-
-
Manually annotated by BRENDA team
strain OT3
-
-
Manually annotated by BRENDA team
Pyrococcus horikoshii OT-3
strain OT3
-
-
Manually annotated by BRENDA team
male Wistar albino, fed a standard diet or fasted for three days
-
-
Manually annotated by BRENDA team
-
Swissprot
Manually annotated by BRENDA team
GENERAL INFORMATION
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
evolution
-, E5RQ20
the enzyme belongs to the extended short-chain alcohol dehydrogenase superfamily
evolution
-
the enzyme belongs to the extended short-chain alcohol dehydrogenase superfamily
-
physiological function
-
over-expression of a feedback-resistant threonine operon thrA*BC, with deletion of the genes that encode threonine dehydrogenase tdh and threonine transporters tdcC and sstT, and introduction of a mutant threonine exporter rhtA23 in Escherichia coliMDS42. The resulting strain shows about 83% increase in L-threonine production when cells are grown by flask fermentation, compared to a wild-type Escherichia coli strain MG1655 engineered with the same threonine-specific modifications described above
physiological function
-
embryonic stem cells are critically dependent on the amino acid threonine, and threonine catabolism via the TDH enzyme is important to the growth and metabolic state of mouse embryonic stem cells
physiological function
-
the enzyme plays an important role in the regulation of somatic cell reprogramming
physiological function
Escherichia coli MDS42
-
over-expression of a feedback-resistant threonine operon thrA*BC, with deletion of the genes that encode threonine dehydrogenase tdh and threonine transporters tdcC and sstT, and introduction of a mutant threonine exporter rhtA23 in Escherichia coliMDS42. The resulting strain shows about 83% increase in L-threonine production when cells are grown by flask fermentation, compared to a wild-type Escherichia coli strain MG1655 engineered with the same threonine-specific modifications described above
-
malfunction
-
knockdown of the enzyme and posttranslational downregulation by microRNA-9 inhibits reprogramming efficiency
additional information
-, E5RQ20
the enzyme possesses a glycine-rich NAD+-binding domain at the N terminus and conserved catalytic triad of YxxxK residues
additional information
-
active site structure and subunit interaction, overview
additional information
-
the enzyme possesses a glycine-rich NAD+-binding domain at the N terminus and conserved catalytic triad of YxxxK residues
-
SUBSTRATE
PRODUCT                      
REACTION DIAGRAM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
(Substrate)
LITERATURE
(Substrate)
COMMENTARY
(Product)
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
butane-2,3-diol + NAD+
? + NADH
show the reaction diagram
-
-
-
-
?
D-allothreonine + NAD+
D-2-amino-3-oxobutanoate + NADH
show the reaction diagram
-
-
-
?
D-threonine + NAD+
D-2-amino-3-oxobutyrate + NADH
show the reaction diagram
-
-
-
-
?
DL-2-amino-3-hydroxypentanoate + NAD+
L-2-amino-3-oxopentanoate + NADH
show the reaction diagram
-
-
-
-
DL-2-amino-3-hydroxypentanoate + NAD+
L-2-amino-3-oxopentanoate + NADH
show the reaction diagram
-
-
-
?
DL-2-amino-3-hydroxyvalerate + NAD+
DL-2-amino-3-oxovalerate + NADH
show the reaction diagram
-
-
-
-
DL-2-amino-3-hydroxyvalerate + NAD+
DL-2-amino-3-oxovalerate + NADH
show the reaction diagram
-
-
-
?
DL-2-amino-3-hydroxyvalerate + NAD+
DL-2-amino-3-oxopentanoate + NADH + H+
show the reaction diagram
-, E5RQ20
-
-
-
?
DL-2-amino-3-hydroxyvalerate + NAD+
DL-2-amino-3-oxopentanoate + NADH + H+
show the reaction diagram
-, E5RQ20
-
-
-
?
DL-allothreonine + NAD+
D-2-amino-3-oxobutanoate + NADH
show the reaction diagram
-
-
-
?
DL-threo-3-hydroxynorvaline + NAD+
? + NADH
show the reaction diagram
-, Q8KZM4
31% the rate of L-threonine
-
-
?
DL-threo-3-hydroxynorvaline + NAD+
? + NADH
show the reaction diagram
Cytophaga sp. KUC-1
Q8KZM4
31% the rate of L-threonine
-
-
?
DL-threo-3-phenylserine + NAD+
? + NADH
show the reaction diagram
Pyrococcus horikoshii, Pyrococcus horikoshii OT-3
-
53% of the activity with L-threonine
-
-
?
DL-threo-beta-phenylserine + NAD+
DL-2-amino-3-phenyl-3-oxopropionate + NADH
show the reaction diagram
-
-
-
-
DL-threo-beta-phenylserine + NAD+
DL-2-amino-3-phenyl-3-oxopropionate + NADH
show the reaction diagram
-
-
-
-
DL-threo-beta-phenylserine + NAD+
DL-2-amino-3-phenyl-3-oxopropionate + NADH
show the reaction diagram
-
-
-
?
DL-threonine hydroxamate + NAD+
DL-2-amino-3-oxobutoxamate + NADH
show the reaction diagram
-
-
-
?
L-allothreonine + NAD+
L-2-amino-3-oxobutanoate + NADH
show the reaction diagram
-
-
-
?
L-serine + NAD+
L-2-amino-3-oxopropionate + NADH + H+
show the reaction diagram
-
-
-
-
L-serine + NAD+
L-2-amino-3-oxopropionate + NADH + H+
show the reaction diagram
-
-
-
-
L-serine + NAD+
L-2-amino-3-oxopropionate + NADH + H+
show the reaction diagram
-
-
-
?
L-serine + NAD+
L-2-amino-3-oxopropionate + NADH + H+
show the reaction diagram
-
-
-
-
?
L-serine + NAD+
? + NADH
show the reaction diagram
-
-
-
-
?
L-serine + NAD+
? + NADH
show the reaction diagram
Pyrococcus horikoshii, Pyrococcus horikoshii OT-3
-
21% of the activity with L-threonine
-
-
?
L-threonine + 3-acetyl-pyridine adenine dinucleotide
L-2-amino-3-oxobutanoate + ?
show the reaction diagram
-, Q8KZM4
60.6% the rate of NAD+
-
-
?
L-threonine + 3-acetyl-pyridine adenine dinucleotide
L-2-amino-3-oxobutanoate + ?
show the reaction diagram
Cytophaga sp. KUC-1
Q8KZM4
60.6% the rate of NAD+
-
-
?
L-threonine + 3-pyridinealdehyde adenine dinucleotide
L-2-amino-3-oxobutanoate + ?
show the reaction diagram
-, Q8KZM4
7.2% the rate of NAD+
-
-
?
L-threonine + 3-pyridinealdehyde adenine dinucleotide
L-2-amino-3-oxobutanoate + ?
show the reaction diagram
Cytophaga sp. KUC-1
Q8KZM4
7.2% the rate of NAD+
-
-
?
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
?
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
?
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
r
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
?
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-, Q8KZM4
-
-
-
?
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
O58389, -
-
-
-
?
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
r
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-, E5RQ20
-
-
-
?
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
O58389, -
active site structure, overview
-
-
?
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
Cytophaga sp. KUC-1
Q8KZM4
-
-
-
?
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-, E5RQ20
-
-
-
?
L-threonine + NAD+
L-2-amino-3-oxobutyrate + NADH + H+
show the reaction diagram
-
-
-
-
?
L-threonine + NAD+
L-2-amino-3-oxobutyrate + NADH + H+
show the reaction diagram
-
-
-
-
?
L-threonine + NAD+
L-2-amino-3-oxobutyrate + NADH + H+
show the reaction diagram
-
-
-
-
?
L-threonine + NAD+
L-2-amino-3-oxobutyrate + NADH + H+
show the reaction diagram
-
-
-
-
?
L-threonine + NAD+
L-2-amino-3-oxobutyrate + NADH + H+
show the reaction diagram
Q5JI69, -
-
-
-
?
L-threonine + NAD+
L-2-amino-3-oxobutyrate + NADH + H+
show the reaction diagram
-
-
-
-
?
L-threonine + NAD+
L-2-amino-3-oxobutyrate + NADH + H+
show the reaction diagram
-
-
-
-
?
L-threonine + NAD+
L-2-amino-3-oxobutyrate + NADH + H+
show the reaction diagram
-
catabolism through the threonine dehydrogenase pathway does not account for the high first-pass extraction rate of dietary threonine by the portal drained viscera in pigs, overview
-
-
?
L-threonine + NAD+
L-2-amino-3-oxobutyrate + NADH + H+
show the reaction diagram
-
stereospecificity, overview
-
-
?
L-threonine + NAD+
L-2-amino-3-oxobutyrate + NADH + H+
show the reaction diagram
-
substrate binding involved residues G66, G71, G77, and V80, H94 is an active site residue
-
-
?
L-threonine + NAD+
L-2-amino-3-oxobutyrate + NADH + H+
show the reaction diagram
Pyrococcus horikoshii OT-3
-
-, stereospecificity, overview
-
-
?
L-threonine + nicotinamide guanine dinucleotide
L-2-amino-3-oxobutanoate + ?
show the reaction diagram
-, Q8KZM4
5.1% the rate of NAD+
-
-
?
L-threonine + thionicotinamide-NAD+
L-2-amino-3-oxobutanoate + ?
show the reaction diagram
-, Q8KZM4
5.1% the rate of NAD+
-
-
?
L-threonine amide + NAD+
L-2-amino-3-oxobutyramide + NADH
show the reaction diagram
-
-
-
-
L-threonine amide + NAD+
L-2-amino-3-oxobutyramide + NADH
show the reaction diagram
-
-
-
-
L-threonine amide + NAD+
L-2-amino-3-oxobutyramide + NADH
show the reaction diagram
-
-
-
?
L-threonine methyl ester + NAD+
L-2-amino-3-oxobutanoate methyl ester + NADH
show the reaction diagram
-
-
-
-
L-threonine methyl ester + NAD+
L-2-amino-3-oxobutanoate methyl ester + NADH
show the reaction diagram
-
-
-
-
L-threonine methyl ester + NAD+
L-2-amino-3-oxobutanoate methyl ester + NADH
show the reaction diagram
-
-
-
?
additional information
?
-
-
substrate specificity, overview
-
-
-
additional information
?
-
-, Q8KZM4
specific for L-form of threonine, no substrate: NADP, nicotinic acid adenine dinucleotide, alpha-NAD, nicotinamide hypoxanthine dinucleotide
-
-
-
additional information
?
-
-
broad substrate specificity, determinants, overview
-
-
-
additional information
?
-
-
the enzyme is an NAD+-dependent zinc-containing medium-chain enzyme
-
-
-
additional information
?
-
-
ste11 gene encoding a TDH may function as a modifier gene of ebosin during its biosynthesis
-
-
-
additional information
?
-
-, E5RQ20
L-threonine and DL-2-amino-3-hydroxyvalerate are the only substrates for ThrDH among other L-amino acids, alcohols, and amino alcohols, substrate specificity, overview
-
-
-
additional information
?
-
Cytophaga sp. KUC-1
Q8KZM4
specific for L-form of threonine, no substrate: NADP, nicotinic acid adenine dinucleotide, alpha-NAD, nicotinamide hypoxanthine dinucleotide
-
-
-
additional information
?
-
-, E5RQ20
L-threonine and DL-2-amino-3-hydroxyvalerate are the only substrates for ThrDH among other L-amino acids, alcohols, and amino alcohols, substrate specificity, overview
-
-
-
additional information
?
-
Pyrococcus horikoshii OT-3
-
substrate specificity, overview
-
-
-
NATURAL SUBSTRATES
NATURAL PRODUCTS
REACTION DIAGRAM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
(Substrate)
LITERATURE
(Substrate)
COMMENTARY
(Product)
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
?
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
?
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
r
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
?
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
O58389, -
-
-
-
?
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-
-
-
-
r
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-, E5RQ20
-
-
-
?
L-threonine + NAD+
L-2-amino-3-oxobutyrate + NADH + H+
show the reaction diagram
-
-
-
-
?
L-threonine + NAD+
L-2-amino-3-oxobutyrate + NADH + H+
show the reaction diagram
-
-
-
-
?
L-threonine + NAD+
L-2-amino-3-oxobutyrate + NADH + H+
show the reaction diagram
-
catabolism through the threonine dehydrogenase pathway does not account for the high first-pass extraction rate of dietary threonine by the portal drained viscera in pigs, overview
-
-
?
L-threonine + NAD+
L-2-amino-3-oxobutanoate + NADH + H+
show the reaction diagram
-, E5RQ20
-
-
-
?
L-threonine + NAD+
L-2-amino-3-oxobutyrate + NADH + H+
show the reaction diagram
Pyrococcus horikoshii OT-3
-
-
-
-
?
COFACTOR
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
IMAGE
3-acetyl-pyridine adenine dinucleotide
-, Q8KZM4
-
NAD+
Q8K3F7
amino terminal NAD+ binding domain
NAD+
Q8MIR0
aminoterminal NAD+ binding domain
NAD+
-
binding site of the essential co-factor NAD+ is present in all subunits, it occupies the active site pocket and is bound predominantly by Van der Waal interactions and hydrogen bonds with the surrounding amino acid residues
NAD+
-, E5RQ20
dependent on
nicotinamide guanine dinucleotide
-, Q8KZM4
-
thionicotinamide-NAD+
-, Q8KZM4
-
METALS and IONS
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
AlCl3
-, E5RQ20
18% activation at 1 mM
BaCl2
-, E5RQ20
13% activation at 1 mM
Ca2+
-
0.54 mol Ca2+ per mol of enzyme subunit
Ca2+
-
0.1 mM reactivates EDTA-100% inhibited enzyme by 40%
Cd2+
-
preincubation with 0.07 or 5 mM leads to 3fold increase of C38D mutant enzyme activity, 0.5 mM, 6.5fold increase of wild-type enzyme activity, substrate L-threonine
Cd2+
-
activation is not thiol-dependent
Cd2+
-
activity of metal-ion free enzyme increases 10fold
Cd2+
-
0.064 or 3.2 mM, 6fold increase of L-threonine dehydrogenase activity
Co2+
-
5 mM, 6fold increase of C38D mutant enzyme activity
Co2+
-
restores enzyme activity after EDTA treatment
Co2+
-
can replace Zn2+ with 35% of the activity with Zn2+
Co2+
-
activates
Co2+
-
0.1 mM reactivates EDTA-100% inhibited enzyme by 54%
CoCl2
-, E5RQ20
15% activation at 1 mM
CrCl3
-, E5RQ20
10% activation at 1 mM
CsCl
-, E5RQ20
17% activation at 1 mM
Cu2+
-
0.29 mol Ca2+ per mol of enzyme subunit
Cu2+
-
0.1 mM reactivates EDTA-100% inhibited enzyme by 63%
CuSO4
-, E5RQ20
15% activation at 1 mM
Mg2+
-
0.2 mol Ca2+ per mol of enzyme subunit
Mg2+
-
0.1 mM reactivates EDTA-100% inhibited enzyme by 27%
MgSO4
-, E5RQ20
12% activation at 1 mM
Mn2+
-
preincubation with 1 mM, 3.5fold increase of L-threonine oxidation
Mn2+
-
0.064 or 3.2 mM, 4fold increase of L-threonine dehydrogenase activity, activation is dependent on the presence of a reduced thiol in all enzyme stock solutions and assay buffers, binding of 0.86 mol of Mn2+ per mol of enzyme subunit
Mn2+
-
0.064 mM, 1.6fold activation, 3.2 mM, 2.4fold activation
Mn2+
-
restores enzyme activity after EDTA treatment
Mn2+
-
can replace Zn2+ with 77% of the activity with Zn2+
Mn2+
-
0.1 mM reactivates EDTA-100% inhibited enzyme by 38%
Na2MoO4
-, E5RQ20
13% activation at 1 mM
Ni2+
-
0.1 mM reactivates EDTA-100% inhibited enzyme by 30%
NiCl2
-, E5RQ20
19% activation at 1 mM
PbCl2
-, E5RQ20
18% activation at 1 mM
Zn2+
-
5 mM, 60fold increase of C38D mutant enzyme activity, Zn2+ stimulated activity decreases to 10% when 1 mM Mn2+ is added, no increase in activity for wild-type enzyme
Zn2+
-
enzyme contains 1 Zn2+ atom per subunit
Zn2+
-
enzyme contains 1 Zn2+ atom per subunit; exchange of Zn2+ with Co2+ or Cd2+ does not change the specific activity of the enzyme
Zn2+
-
restores enzyme activity after EDTA treatment
Zn2+
-
2 Zn2+ per enzyme subunit, binding involves residues G168, G175, G180, and G212, overview
Zn2+
-
required, 1.22 mol Zn2+ per mol of enzyme subunit
Zn2+
-
1.22 mol of Zn2+ per mol of enzyme subunit, the catalytic zinc atom at the active center of TDH is coordinated by the highly conserved four residues Cys42, His67, Glu68 and Glu152 with low affinity
Zn2+
-
one molecule of TDH contains one zinc ion playing a structural role, the metal ion is ligated by foru Cys residues, coenzyme-binding domain shows a larger interdomain cleft compared to other ADHs, binding structure, overview
Zn2+
-
four zinc-binding cysteine residues, 0.1 mM reactivates EDTA-100% inhibited enzyme by 75%, 0.05 mM reactivates by 100%
ZnSO4
-, E5RQ20
9% activation at 1 mM
MnSO4
-, E5RQ20
12% activation at 1 mM
additional information
-
the active site catalytic zinc ion is absent from the TDH structure
additional information
-, E5RQ20
no effect at 1 mM by AgNO3, MgCl2, and 10 mM EDTA and ethylene glycol tetraacetic acid
INHIBITORS
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
IMAGE
1,10-phenanthroline
-
1.26 mM, 41% inhibition after 1 h, 82% inhibition after 2 h, no change in remaining activity after removal of 1,10-phenanthroline
4-chloromercuribenzonic acid
-, E5RQ20
94% inhibition at 10 mM
-
5,5'-dithiobis-(2-nitrobenzoic acid)
-
0.25 mM, 90% inhibition, 67% activity is recovered after incubation with 1 mM, 2-mercaptoethanol or dithieothreitol for 15 min
adenosine-5'-diphosphoribose
-
competive inhibition vs. NAD+, noncompetitive inhibition vs. L-threonine
adenosine-5'-diphosphoribose
-, Q8KZM4
-
Ag+
-
0.064 mM, activity is completely blocked
aminoacetone
-
uncompetitive inhibition vs. NAD+ or L-threonine
Be2+
-
3.2 mM, 20-50% inhibition
calcium pantothenate
-, E5RQ20
slight inhibition
-
Cd2+
-
0.05 and 1.0 mM, 90% inhibition
Cu2+
-
3.2 mM, 20-50% inhibition
Cu2+
-
3.2 mM, 67% inhibition
Cu2+
-
0.05 and 1.0 mM, 90% inhibition
CuCl2
-, Q8KZM4
1 mM, 100% inhibition
dipicolinic acid
-
40 mM, 99% inhibition after 1 h, complete loss of enzyme-bound Zn2+
EDTA
-
50 mM, 99% inhibition after 1 h, complete loss of enzyme-bound Zn2+
EDTA
-
complete inhibition, fully reversible by Zn2+ or Co2+
EDTA
-
complete inhibition at 50 mM
EDTA
-
retains 65% of its original activity after dialysis at 48C against a buffer containing 1 mM EDTA. Activity is lost when TDH is heated at 60C for 40 min and in boiling water for 5 min in the presence of 1 mM EDTA
FeCl2
-, E5RQ20
32% inhibition at 1 mM after 60 min
FeCl3
-, E5RQ20
73% inhibition at 1 mM after 60 min
HCO3-
-
noncompetitive inhibition vs. NAD+ or L-threonine
Hg2+
-
0.5 mM, 100% inhibition of wild-type and C38D mutant enzyme
Hg2+
-
0.064 mM, activity is completely blocked
Hg2+
-
0.25 mM, complete inhibition, 0.05 mM, 95% inhibition
HgCl2
-, Q8KZM4
10 mM, 100% inhibition
HgCl2
-, E5RQ20
77% inhibition at 1 mM after 60 min
iodoacetamide
-
3.2 mM, 10% inhibition
iodoacetamide
-
30 mM, 15% inhibition
iodoacetamide
-, E5RQ20
99% inhibition at 10 mM
iodoacetate
-
iodoacetate reacts with 1 sulfhydryl group per subunit of the enzyme, enzyme retains 15% of its initial activity
iodoacetate
-
15% protection against inhibition with 5 mM NAD+, 30% with 5 mM L-threonine, 60-70% protection in the presence of both NAD+ and L-threonine, inactivation occurs more rapidly in the presence of Cd2+; enzyme contains 6 half-cystine residues per subunit, 2 disulfide bonds and 4 sulfhydryl groups
iodoacetic acid
-, E5RQ20
52% inhibition at 10 mM
Iodosobenzoic acid
-
0.3 mM, 17% inhibition
K3[Fe(CN)6]
-, E5RQ20
25% inhibition at 10 mM
L-2-amino-3-oxobutyrate
-
competitive product inhibition by the unstable L-2-amino-3-oxobutyrate only in presence of NADH, which stabilizes
methyl p-nitrobenzenesulfonate
-
2 mM, 40% inhibition within 80 min, 65% protection with 250 mM L-threonine, 64% with 250 mM L-threonine methyl ester, 58% with 250 mM L-threonine amide
Methylglyoxal
-
1.0 mM, 42% inhibition, 2 mM, 63% inhibition, methylglyoxal binds at an allosteric site of the enzyme
methylmethanethiosulfonate
-
0.4 mM, 350fold molar excess over enzyme sulfhydryl groups leads to complete inactivation
Mn2+
-
preincubation with 1 mM, 47% inhibition of L-threonine amide oxidation, 73% inhibition of L-threonine methyl ester oxidation, 59% inhibition of L-serine oxidation, 48% inhibition of D,L-threo-beta-phenylserine oxidation
Mn2+
-
1.0 mM, 40-50% inhibition
N-ethylmaleimide
-
0.32 mM, 10 min, 37C, 23% inhibition
N-ethylmaleimide
-, Q8KZM4
10 mM, 48% inhibition
N-ethylmaleimide
-, E5RQ20
complete inhibition
NAD+
-
competitive inhibition of L-2-amino-3-oxobutanoate reduction
NADH
-
competitive inhibition vs. NAD+, noncompetitive vs. L-threonine
NADH
-
competitive inhibition vs. NAD+, noncompetitive vs. L-threonine
NADH
-, Q8KZM4
competitive to NAD+, noncompetitive to L-threonine
NaN3
-, E5RQ20
88% inhibition at 10 mM
Ni2+
-
3.2 mM, 20-50% inhibition
Ni2+
-
3.2 mM, 69% inhibition
Ni2+
-
1 mM, 40-50% inhibition
p-chloromercuribenzoate
-
complete inhibition
p-chloromercuribenzoic acid
-, Q8KZM4
10 mM, 44% inhibition
p-mercuribenzoate
-
10fold excess leads to immidiate inactivation
p-mercuribenzoate
-
0.0013 mM, 75% inhibition, completely reversed within 20 min by addition of 0.02-0.2 mM 2-mercaptoethanol or dithiothreitol
p-mercuribenzoate
-
-
phenazinemethosulfate
-, E5RQ20
complete inhibition
phenylmethanesulfonyl fluoride
-, E5RQ20
63% inhibition at 10 mM
pyruvate
-, Q8KZM4
competitive to L-threonine
pyruvate
-
20% inhibition at 10 mM
SnCl2
-, E5RQ20
16% inhibition at 1 mM after 60 min
thionitrobenzoate
-
40fold molar excess, gradual 99% loss of enzyme activity
Zn2+
-
0.05 and 1.0 mM, 90% inhibition
ZnCl2
-, Q8KZM4
1 mM, 72% inhibition
monoiodoacetate
-, Q8KZM4
10 mM, 100% inhibition
additional information
-, E5RQ20
poor inhibition by K[Fe(CN)6], no inhibition by ethylene diamine tetraacetic acid and ethylene glycol tetraacetic acid, and by trypsin inhibitor T-9378
-
additional information
-
L-ThrDH is unaffected by EDTA, Li2SO4, MgCl2, MnCl2, CaCl2, NiCl2, CoCl2, BaCl2, HgCl2, CdSO4, CuSO4, ZnCl2, or iodoacetic acid, each at 1 mM
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
IMAGE
2-mercaptoethanol
-, E5RQ20
14% activation at 10 mM
DTT
-, E5RQ20
25% activation at 10 mM
additional information
-
L-ThrDH is unaffected by EDTA, Li2SO4, MgCl2, MnCl2, CaCl2, NiCl2, CoCl2, BaCl2, HgCl2, CdSO4, CuSO4, ZnCl2, or iodoacetic acid, each at 1 mM
-
KM VALUE [mM]
KM VALUE [mM] Maximum
SUBSTRATE
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
IMAGE
16
-
L-allothreonine
-
-
0.0118
-
L-threonine
-
pH 7.5, 65C, recombinant wild-type enzyme
0.013
-
L-threonine
-
pH 7.5, 65C
0.7
-
L-threonine
-
-
1.1
-
L-threonine
-
metal-ion free enzyme
1.1
-
L-threonine
-
demetallized enzyme
1.43
-
L-threonine
-
-
1.5
-
L-threonine
-
pH 7.0, 70C, recombinant enzyme
1.51
-
L-threonine
-
pH 7.5, 65C, recombinant mutant E199A
1.6
-
L-threonine
-
at 50C
2.5
-
L-threonine
-
pH 7.5, 65C, recombinant mutant R204A
3.56
-
L-threonine
-, Q8KZM4
pH 9.0, 20C
3.81
-
L-threonine
-, Q8KZM4
pH 9.0, 10C
5.38
-
L-threonine
-
-
5.5
-
L-threonine
-
-
5.96
-
L-threonine
-, Q8KZM4
pH 9.0, 30C
6.1
-
L-threonine
-
-
8.2
-
L-threonine
-
enzyme activated with 0.07 mM Cd2+
8.4
-
L-threonine
-
-
8.7
-
L-threonine
-
-
10.5
-
L-threonine
-
at pH 7.5
11.2
-
L-threonine
-, Q8KZM4
pH 9.0, 40C
11.6
-
L-threonine
-, E5RQ20
pH 10.0, 30C, native enzyme
13
-
L-threonine
-
-
17.5
-
L-threonine
-
pH 10.0, 70C
19.5
-
L-threonine
-, Q8KZM4
pH 9.0, 50C
211
-
L-threonine
-
enzyme activated with 0.25 mM Mn2+
0.0099
-
NAD+
-
pH 7.5, 65C, recombinant wild-type enzyme
0.01
-
NAD+
-
pH 7.5, 65C
0.055
-
NAD+
-
pH 7.0, 70C, recombinant enzyme
0.0615
-
NAD+
-
pH 7.5, 65C, recombinant mutant E152A
0.1
-
NAD+
-, E5RQ20
pH 10.0, 30C, native enzyme
0.11
-
NAD+
-
metal-ion free enzyme
0.11
-
NAD+
-
demetallized enzyme
0.14
-
NAD+
-
at pH 7.5
0.152
-
NAD+
-
pH 7.5, 65C, recombinant mutant E152T
0.163
-
NAD+
-
pH 7.5, 65C, recombinant mutant E152C
0.18
-
NAD+
-
enzyme activated with 0.07 mM Cd2+
0.185
-
NAD+
-
pH 10.0, 70C
0.19
-
NAD+
-
-
0.216
-
NAD+
-
pH 7.5, 65C, recombinant mutant E152Q
0.24
-
NAD+
-
-
0.291
-
NAD+
-
pH 7.5, 65C, recombinant mutant R204A
0.304
-
NAD+
-
pH 7.5, 65C, recombinant mutant E199A
0.399
-
NAD+
-
pH 7.5, 65C, recombinant mutant E152D
0.6
-
NAD+
-
enzyme activated with 0.25 mM Mn2+
0.6
-
NAD+
-
enzyme saturated with 0.25 mM Mn2+
0.607
-
NAD+
-
pH 7.5, 65C, recombinant mutant E152S
0.75
-
NAD+
-
C38D mutant
0.98
-
NAD+
-
-
1
-
NAD+
-
-
221
-
L-threonine
-
enzyme saturated with 0.25 mM Mn2+
additional information
-
additional information
-
kinetics
-
additional information
-
additional information
-
kinetic analysis of Glu152 mutants, overview
-
TURNOVER NUMBER [1/s]
TURNOVER NUMBER MAXIMUM[1/s]
SUBSTRATE
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
IMAGE
0.55
-
L-threonine
-
pH 7.5, 65C, recombinant mutant E199A
0.667
-
L-threonine
-
pH 7.5, 65C, recombinant mutant R204A
7.2
-
L-threonine
-
pH 7.5, 65C
11
-
L-threonine
-
pH 7.5, 65C, recombinant wild-type enzyme
23.3
-
L-threonine
-
-
43.8
-
L-threonine
-, E5RQ20
pH 10.0, 30C, native enzyme
135
-
L-threonine
-
-
551.7
-
L-threonine
-
pH 7.5, 65C
0.009
-
NAD+
-
pH 7.5, 65C, recombinant mutant E152A
0.01
-
NAD+
-
pH 7.5, 65C, recombinant mutant E152Q
0.08
-
NAD+
-
pH 7.5, 65C, recombinant mutant E152T
0.085
-
NAD+
-
pH 7.5, 65C, recombinant mutant E152S
0.24
-
NAD+
-
pH 7.5, 65C, recombinant mutant E152C
0.55
-
NAD+
-
pH 7.5, 65C, recombinant mutant E199A
0.667
-
NAD+
-
pH 7.5, 65C, recombinant mutant R204A
1.11
-
NAD+
-
pH 7.5, 65C, recombinant wild-type enzyme
3.5
-
NAD+
-
pH 7.5, 65C, recombinant mutant E152D
7.2
-
NAD+
-
pH 7.5, 65C
11
-
NAD+
-
pH 7.5, 65C, recombinant wild-type enzyme
38
-
NAD+
-, E5RQ20
pH 10.0, 30C, native enzyme
551.7
-
NAD+
-
pH 7.5, 65C
Ki VALUE [mM]
Ki VALUE [mM] Maximum
INHIBITOR
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
IMAGE
0.37
-
adenosine-5'-diphosphoribose
-, Q8KZM4
substrate NAD+, pH 9.0, 30C
1.42
-
adenosine-5'-diphosphoribose
-, Q8KZM4
substrate L-threonine, pH 9.0, 30C
23.2
-
pyruvate
-, Q8KZM4
substrate L-threonine, pH 9.0, 30C
50.7
-
pyruvate
-, Q8KZM4
substrate NAD+, pH 9.0, 30C
SPECIFIC ACTIVITY [µmol/min/mg]
SPECIFIC ACTIVITY MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
0.029
-
-
partially purified enzyme
0.032
-
-
enzyme activity in mitochondrial extracts prepared from fresh mitochondria
0.055
-
-
enzyme activity in mitochondrial extracts
0.062
-
-
enzyme activity in mitochondrial extracts after freezing the mitochondria for 2 weeks at -20C
0.1
-
-
C38D mutant, incubated with 1 mM Mn2+ 15 min before assay
0.2
-
-
C38D mutant
0.6
-
-
C38D mutant, incubated with 0.07 or 5 mM Cd2+ 15 min before assay
1.2
-
-
C38D mutant, incubated with 5 mM Co2+ 15 min before assay
2
-
-
C38D mutant, incubated with 5 mM Zn2+ and 1 mM Mn2+ 15 min before assay
3.43
-
-
purified recombinant enzyme
8
-
-
fully demetalized enzyme
8.45
-
-
-
10.2
-
-
C38D mutant, incubated with 5 mM Zn2+ and 0.07 mM Cd2+ 15 min before assay
11.4
-
-
C38D mutant, incubated with 5 mM Zn2+ 15 min before assay
28.3
-
-
metal-ion free enzyme
42.2
-
-, E5RQ20
purified native enzyme, pH 10.0, 30C
65
-
-, E5RQ20
purified recombinant enzyme, pH 10.0, 30C
91.4
-
-, Q8KZM4
pH 9.0, 10C
156
-
-, Q8KZM4
pH 9.0, 20C
243
-
-
enzyme activated with 0.07 mM Cd2+
284
-
-, Q8KZM4
pH 9.0, 30C
380
-
-
-
611
-
-, Q8KZM4
pH 9.0, 50C
685
-
-
enzyme activated with 0.25 mM Mn2+
722
-
-, Q8KZM4
pH 9.0, 40C
18920
-
-
-
additional information
-
-
specific activity in animals fed a standard diet is 11times higher than in the liver of rats fed a standard diet. Enzyme activities in the livers of fasting and threonine-rich diet groups are three and two times higher than in the group fed with standard diet
additional information
-
-
specific activity in Japanese quail fed a standard diet is 11times higher than in the liver of rats fed a standard diet. Enzyme activities in the livers of fasting groups are the same level as in the group fed with standard diet
additional information
-
-
threonine sequestration in the portal drained viscera and liver, threonine flux, overview
pH OPTIMUM
pH MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
7
-
-
C38D mutant enzyme
7
-
-
assay at
7.8
-
-
crude enzyme extracts from mitochondria
8.2
8.8
-
-
8.4
-
-
C38D mutant enzyme, stimulated with 5 mM Zn2+
8.5
8.9
-
-
8.6
8.7
-
30% activity at pH 7.5, 80% activity at pH 9.8
9
-
-
crude enzyme extracts from mitochondria frozen for 14 days and dialyzed
9.5
-
-, Q8KZM4
-
10
-
-, E5RQ20
glycine-KOH buffer
10.1
-
-
wild-type enzyme
10.3
-
-
35% activity at pH 9.0, 6% activity at pH 11.0
pH RANGE
pH RANGE MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
6
12
-, E5RQ20
activity range, pH-dependent activity varies in different buffer systems, profile overview
7.4
9
-
-
8.5
-
-, Q8KZM4
74% of maximum activity
9.2
12
-
22% of maximal activity at pH 9.2, 50% at pH 9.5, and 52% at pH 12.0
10.5
-
-, Q8KZM4
31% of maximum activity
additional information
-
-
pH dependencies of wild-type enzyme and E152D mutant, overview
TEMPERATURE OPTIMUM
TEMPERATURE OPTIMUM MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
45
-
-, Q8KZM4
-
70
-
-
assay at
75
-
-, E5RQ20
-
additional information
-
-
hyperthermophilic enzyme
TEMPERATURE RANGE
TEMPERATURE MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
10
30
-, Q8KZM4
60 min, more than 90% residual activity
25
80
-, E5RQ20
activity range, profile overview
pI VALUE
pI VALUE MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
6.9
-
Q8K3F7
predicted from gene sequence
6.9
-
Q8MIR0
predicted from gene sequence
SOURCE TISSUE
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
SOURCE
-
embryonic stem cells are critically dependent on the amino acid threonine, and threonine catabolism via the TDH enzyme is important to the growth and metabolic state of mouse embryonic stem cells
Manually annotated by BRENDA team
Q8K3F7
most abundant
Manually annotated by BRENDA team
-
extensive threonine utilization
Manually annotated by BRENDA team
-
portal drained viscera, PDV
Manually annotated by BRENDA team
additional information
-
no activity in intestine
Manually annotated by BRENDA team
PDB
SCOP
CATH
ORGANISM
Pyrococcus horikoshii (strain ATCC 700860 / DSM 12428 / JCM 9974 / NBRC 100139 / OT-3)
Pyrococcus horikoshii (strain ATCC 700860 / DSM 12428 / JCM 9974 / NBRC 100139 / OT-3)
Thermococcus kodakaraensis (strain ATCC BAA-918 / JCM 12380 / KOD1)
Thermoplasma volcanium (strain ATCC 51530 / DSM 4299 / JCM 9571 / NBRC 15438 / GSS1)
Thermoplasma volcanium (strain ATCC 51530 / DSM 4299 / JCM 9571 / NBRC 15438 / GSS1)
Thermoplasma volcanium (strain ATCC 51530 / DSM 4299 / JCM 9571 / NBRC 15438 / GSS1)
Thermoplasma volcanium (strain ATCC 51530 / DSM 4299 / JCM 9571 / NBRC 15438 / GSS1)
Thermotoga maritima (strain ATCC 43589 / MSB8 / DSM 3109 / JCM 10099)
Thermus thermophilus (strain HB8 / ATCC 27634 / DSM 579)
Thermus thermophilus (strain HB8 / ATCC 27634 / DSM 579)
MOLECULAR WEIGHT
MOLECULAR WEIGHT MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
38100
-
-
sequence analysis
73000
-
-
gel filtration
74000
-
-
gel filtration
76000
-
-
recombinant enzyme, gel filtration
77000
-
-
gel filtration
78000
-
-
gel filtration
79400
-
-, E5RQ20
native enzyme, gel filtration
86000
-
-
gel filtration
88000
-
-
density gradient
139000
-
-, Q8KZM4
gel filtration
140000
-
-
sucrose density and sedimentation equilibrium
149000
-
-
non-denaturing PAGE, wild-type and C38D mutant
154000
-
-
by gel filtration
155000
-
-
about, recombinant enzyme, gel filtration
192000
-
-
recombinant enzyme, gel filtration
SUBUNITS
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
?
Q8K3F7
x * 41500, deduced from gene sequence, aminoterminal mitochondrial targeting sequence
?
Q8MIR0
x * 41500, pro-protein, x * 36000, mature enzyme, deduced from gene sequence, aminoterminal mitochondrial targeting sequence
?
-
x * 37700, recombinant enzyme, SDS-PAGE
?
-
x * 38000, recombinant wild-type and mutant enzymes, SDS-PAGE
dimer
-
2 * 36000, SDS-PAGE
dimer
-
2 * 37000, SDS-PAGE
dimer
-
2 * 36000-38000, recombinant enzyme, SDS-PAGE, 2 * 37742, sequence calculation
dimer
-, E5RQ20
2 x 37200, native enzyme, SDS-PAGE, x * 34628, sequence calculation
dimer
-
2 * 35000, SDS-PAGE, 2 * 35843, sequence calculation
dimer
-
2 x 37200, native enzyme, SDS-PAGE, x * 34628, sequence calculation
-
homotetramer
-, Q8KZM4
4 * 35000, SDS-PAGE
homotetramer
Q5JI69
4 * 38016, electrospray mass spectrometry and gel filtration
homotetramer
Cytophaga sp. KUC-1
-
4 * 35000, SDS-PAGE
-
monomer
-
1 * 89000, SDS-PAGE
tetramer
-
4 * 35000, SDS-PAGE
tetramer
-
4 * 41200, recombinant enzyme, SDS-PAGE, 4 * 41815, sequence calculation
tetramer
-
4 * 40000, recombinant enzyme, SDS-PAGE, 4 * 37823, sequence calculation
tetramer
-
4 * 35000, recombinant enzyme, SDS-PAGE
tetramer
Pyrococcus horikoshii OT-3
-
4 * 41200, recombinant enzyme, SDS-PAGE, 4 * 41815, sequence calculation
-
monomer
-
1 * 88000, SDS-PAGE
additional information
-
crystal structure analysis, each subunit is composed of two domains: an NAD(H)-binding domain and a catalytic domain. The NAD(H)-binding domain contains the alpha/beta Rossmann fold motif, characteristic of the NAD(H)-binding protein
POSTTRANSLATIONAL MODIFICATION
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
proteolytic modification
Q8MIR0
pro-protein is cleaved to produce a 36000 Da mature enzyme
Crystallization/COMMENTARY
ORGANISM
UNIPROT ACCESSION NO.
LITERATURE
purified recombinant enzyme, hanging drop vapour diffusion method, 4C, 10 mg/ml protein in 50 mM Tris-HCl, pH 7.5, 0.0015 ml of protein and reservoir solution are mixed, the reservoir solution contains 0.2 M NaCl, 0.1 M HEPES, pH 7.5, and 40% v/v PEG 400, 5 days, X-ray diffraction structure determination and preliminary analysis at 2.2 A resolution
-
selenomethionine-substituted enzyme, 10 mg/ml protein in 50 mM Tris-HCl buffer, pH 7.5, hanging-drop vapor-diffusion method at 4C, mixing of 0.0015 ml of each, protein and reservoir solution, the latter containing 0.2 M sodium chloride, 0.1 M HEPES buffer, pH 7.5, and 40% v/v PEG 400, five days, X-ray diffraction structure determination and analysis, single wavelength anomalous diffraction method
-
at room temperature using hanging-drop vapour diffusion method, at 2.4 A resolution. The enzyme is a homotetramer, each monomer consisting of 350 amino acids that form two domains, a catalytic domain and a NAD+-binding domain, which contains an alpha/beta Rossmann fold motif. An extended twelve-stranded beta-sheet is formed by the association of pairs of monomers in the tetramer
-
by hanging-drop vapour-diffusion method, to 2.6 A resolution. Crystals grow in the tetragonal space group P43212, with unit-cell parameters a=b=124.5, c=271.1 A. There are four molecules in the asymmetric unit of the crystal
-
purified wild-type enzyme or enzyme mutant Y137F in complex with NAD+ and L-3-hydroxynorvaline or pyruvate or L-threonine, sitting drop vapor diffusion method, mixing of 0.001 ml of 40 mg/ml wild-type or 25 mg/ml mutant enzyme, and 1 mM NAD+ mixed with 0.001 ml of 100 mM cacodylate buffer, pH 6.4, 50% v/v 2-methyl-2,4-pentandiol, and 5% w/v PEG 8000, 20C, crystals of ligand-bound wild-type or mutant enzymes by soaking the crystals in reservoir solution containing 0.3 M pyruvate for 2 h, or 0.1ML-threonine for 8 h or 0.1MDL-3-hydroxynorvaline for 7 h, respectively, X-ray diffraction structure determination and analysis at 1.77-2.07 A resolution, molecular replacement
-
pH STABILITY
pH STABILITY MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
4
11
-, E5RQ20
the purified enzyme is very stable from pH 6.0 to pH 11.0 in the glycine-KOH system, the enzyme is unstable in sodium acetate buffer, pH 4.0-5.0, and Na2CO3-NaHCO3 buffer, pH 10.0-11.0
4.5
9.5
-
purified recombinant enzyme, 20 min, 50C, no loss in activity
5.5
7.5
-
activity at pH 5.5 is 50% of that at pH 7.5
TEMPERATURE STABILITY
TEMPERATURE STABILITY MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
25
35
-
85% inactivation after 2 min at 35C, 10% inactivation at 35C in the presence of 80 mM KCl
25
45
-
enzyme shows 50% activity at 25C compared with that at 35C
25
75
-, E5RQ20
quite stable at, rapid loss of activity above 80C
40
-
-, Q8KZM4
half-life 160 min
45
-
-, Q8KZM4
half-life 14 min
50
-
-, Q8KZM4
rapid inactivation
70
-
-
purified recombinant enzyme, 10 min, 90% activity remaining
80
-
-
60 min, pH 7.0, over 90% remaining activity, purified recombinant enzyme
85
-
-
the enzyme shows a half life of 2 h at 85C and 24 min in boiling water
100
-
-
30 min, pH 7.0, over 90% remaining activity, purified recombinant enzyme
105
-
-
higher loss of activity above, purified recombinant enzyme
108
-
-
2-step thermal inactivation
120
-
-
20 min, inactivation, purified recombinant enzyme
GENERAL STABILITY
ORGANISM
UNIPROT ACCESSION NO.
LITERATURE
most stable in Tris-HCl, pH 8, purified preparations in phosphate buffers lose their activity overnight
-
STORAGE STABILITY
ORGANISM
UNIPROT ACCESSION NO.
LITERATURE
-20C, 10 mM potassium phosphate, pH 7.0, 30% sucrose, 0.1 mM NAD+, 5 mM L-threonine, several months, no loss of activity
-, Q8KZM4
4C, 50 mM Tris-HCl, pH 8.4, 1 mM 2-mercaptoethanol, 2 months, no loss of activity
-
-20C, 14 mM 2-mercaptoethanol, 20% glycerol, at least 1 month, little loss of activity
-
50 mM TrisHCl buffer, pH 8.0
-
Purification/COMMENTARY
ORGANISM
UNIPROT ACCESSION NO.
LITERATURE
protamine sulfate, Sephadex G-200, DEAE-cellulose
-
acid precipitation, ammonium sulfate, Sephadex G-100, Sephadex G-200
-
recombinant His-tagged enzyme 4.2fold from Escherichia coli strain BL21(DE3) by nickel affinity chromatography, native enzyme 75.4fold by anion exchange and hydrophobic interaction chromatography, dialysis, hydroxyapatite chromatography, followed by gel filtration
-, E5RQ20
-
-, Q8KZM4
treatment of cell extract at 60C, DEAE-Sephadex, Mn2+ activation, Blue 2-Sepharose CL-6B, C38D mutant was purified without Mn2+ activation
-
DEAE-cellulose, ammonium sulfate, DEAE-cellulose, Blue dextran-Sepharose, Sephadex G-200, amylamine sepharose, Sephadex G-200
-
DEAE-cellulose, hydrophobic interaction chromatography, Affi-Gel Blue, Matrex Red A
-
recombinant enzyme 48fold from Escherichia coli to homogeneity by heat treatment and anion exchange chromatography
-
recombinant enzyme from Escherichia coli
-
recombinant enzyme from Escherichia coli strain BL21(DE3) by heat treatment at 85C for 30 min, centrifugation, ion exchange chromatography, and gel filtration
-
recombinant His-tagged enzyme from Escherichia coli strain TOP10 by nickel affinity chromatography
-
recombinant wild-type and mutant enzymes from Escherichia coli strain BL21(DE3) by heat treatment at 85C for 30 min, anion exchange and hydrophobic interaction chromatography
-
ammonium sulfate, DEAE-cellulose, 7fold purification
-
hydroxyapatite
-
MnCl2, ammonium sulfate, calcium phosphate gel, protamine sulfate, DEAE-cellulose, 7fold purification
-
by sonication, centrifugation and on a Ni-NTA resin column
-
DEAE Sepharose FF, Affi-Gel blue, Sephacryl S-200, Matrix Gel red A, Matrix gel Green A
-
by sonication, centrifugation, heating of the soluble fraction, anion-exchange and hydrophobic interaction chromatography
-
by sonication, heating of the cell lysate, anion exchange and hydrophobic interaction chromatography
-
by heat treatment (about 80% pure recombinant TDH protein) and gel filtration
-
Cloned/COMMENTARY
ORGANISM
UNIPROT ACCESSION NO.
LITERATURE
DNA and amino acid seuence determination and analysis, sequence comparisons, phylogenetic tree, expression of His-tagged enzyme in Escherichia coli strains JM109 and BL21(DE3)
-, E5RQ20
-
-, Q8KZM4
cloned as a 3562-base pair EcoRI fragment
-
gene tdh, functional expression in Escherichia coli
-
orf PH0655, amino acid sequence determination and analysis, expression of His-tagged enzyme in Escherichia coli strain TOP10
-
orf PH0655, expression in Escherichia coli
-
orf PH0655, gene TDH, overexpression in Escherichia coli strain BL21(DE3)
-
orf PH0655, NA and amino acid sequence determination, analysis, and comparison, expression of selenomethionine-labeled wild-type and mutant enzymes in Escherichia coli strain BL21(DE3)
-
orf PH0655, overexpression of wild-type and mutant enzymes in Escherichia coli strain BL21(DE3)
-
into pET-30a digested with KpnIEcoRI to construct pET-ste11 and expressed in Escherichia coli BL21
-
ligated into the pTZ57R/T cloning vector. The recombinant pTZ-tdh plasmid digested with NcoI and EcoRI and the TDH gene ligated with pET-8c, giving the recombinant pET-tdh plasmid, used to transform Escherichia coli DH5alpha competent cells. Recombinant and purified pET-tdh plasmid expressed in Escherichia coli BL21 (DE3)
-
recombinant pET-tdh plasmid expressed in Escherichia coli BL21 (DE3)
-
plasmid pTZ-tdh transformed in Escherichia coli DH5alpha competent cells. NcoI-EcoRI restriction fragment inserted into the pET-8c expression vector at the corresponding sites. The resulting plasmid pET-tdh expressed in Escherichia coli strain BL21(DE3)CodonPlus-RIL
-
overexpression in Escherichia coli
-
ENGINEERING
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
C38D
-
site-directed mutagenesis
C38S
-
site-directed mutagenesis, catalytically inactive mutant, C38 is located in an activating divalent metal-ion binding site
E152A
-
site-directed mutagenesis, the mutant shows reduced activity compared to the wild-type enzyme
E152C
-
site-directed mutagenesis, the mutant shows reduced activity compared to the wild-type enzyme
E152D
-
site-directed mutagenesis, the E152D mutant shows 3-fold higher turnover rate and reduced affinities toward L-threonine and NAD+ compared to wild-type TDH, Glu152 to Asp substitution causes the enhancement of deprotonation of His47 or ionization of zinc-bound water and threonine in the enzyme-NAD+ complex
E152K
-
site-directed mutagenesis, inactive mutant
E152Q
-
site-directed mutagenesis, the mutant shows reduced activity compared to the wild-type enzyme
E152S
-
site-directed mutagenesis, the mutant shows reduced activity compared to the wild-type enzyme
E152T
-
site-directed mutagenesis, the mutant shows reduced activity compared to the wild-type enzyme
E199A
-
site-directed mutagenesis, the mutant shows altered kinetics compared to the wild-type enzyme
C38S
-
1 cysteine residue per subunit is essential for catalytic activity and Mn2+ binding
additional information
-
all individuals examined contain at least two mutations that on translation would generate truncated proteins that would be non-functional since they have lost the splicing acceptor site preceding exon 6 and codon Arg214 is mutated to a stop codon. Therefore the gene is an expressed pseudogene
R204A
-
site-directed mutagenesis, the mutant shows altered kinetics compared to the wild-type enzyme
additional information
-
ste11 gene knocked out with a double crossover via homologous recombination. Monosaccharide composition of exopolysaccharide produced by the mutant strain is altered from that of ebosin. Bioactivity of the mutant is lower than ebosin
APPLICATION
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
synthesis
-
over-expression of a feedback-resistant threonine operon thrA*BC, with deletion of the genes that encode threonine dehydrogenase tdh and threonine transporters tdcC and sstT, and introduction of a mutant threonine exporter rhtA23 in Escherichia coliMDS42. The resulting strain shows about 83% increase in L-threonine production when cells are grown by flask fermentation, compared to a wild-type Escherichia coli strain MG1655 engineered with the same threonine-specific modifications described above
synthesis
Escherichia coli MDS42
-
over-expression of a feedback-resistant threonine operon thrA*BC, with deletion of the genes that encode threonine dehydrogenase tdh and threonine transporters tdcC and sstT, and introduction of a mutant threonine exporter rhtA23 in Escherichia coliMDS42. The resulting strain shows about 83% increase in L-threonine production when cells are grown by flask fermentation, compared to a wild-type Escherichia coli strain MG1655 engineered with the same threonine-specific modifications described above
-